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Abstract

In real applications where data acquisition is carried out under extreme conditions, post-processing techniques for

systematic corrections are of critical importance. In micrometeorological studies, it is often the case that acquired

data contains both missing information and impulse noise due to instrumentation failure, data transmission and

data rejection for quality assurance. In this work, we propose a simple algorithm based on an �1 − �1 variational

formulation that simultaneously suppresses impulse noise and interpolates missing information. Our approach

consists of relaxing the objective function in the variational formulation with a strictly convex and continuously

differentiable function that depends on a regularization parameter. We solve a sequence of strictly convex op-

timization subproblems as the regularization parameter goes to zero, converging to the solution of the original

problem. Numerical experiments on real micrometeorological datasets are conducted showing the effectiveness of

the proposed approach. Furthermore, a convergence analysis is presented providing theoretical guaranties of our

method.
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1. Introduction

In Micrometeorology, the tower-based Eddy Covariance (EC) method is widely used to measure the exchange

of carbon dioxide, water vapor, and energy between terrestrial ecosystems and the atmosphere. From EC mea-

surements, patterns and controls of ecosystem exchange are typically deduced and the potential for environmental

impacts such as desertification of arid rangelands, deforestation of tropical forest, and warming of tundra land-

scapes are assessed.

Importantly, the EC method can be limited by environmental variability (hilly areas, heterogeneous canopy height,

downwind turbulence), extreme environmental events (freezes, snow, dust storms, hail, lightening) and general

instrumentation requirements (insufficient or none power supply, incorrect calibration, transmission), thereby pro-

ducing incomplete and sparsely corrupted (spiky) datasets (Moncrieff et al., 1996).

In order to compute accurate representations of land-atmosphere trace gas fluxes and energy exchange so that

reliable conclusions can be drawn, raw EC data needs to be corrected and processed. As a consequence, gap filling

and de-spiking procedures need to be established (Falge et al., 2001).

Several gap filling methods have been developed and tested by the micrometeorological community. These meth-

ods include non-linear regression, Kalman filtering, artificial neural networks, mean diurnal variation, and the

recently proposed wavelet sparse representation (Ramirez et al., 2012). A comprehensive comparison of such

methods can be found in (Moffat et al., 2007). These methods, however, only address the interpolation process,

and consider the removal of spikes as a separate task. In this work, we propose a simple algorithm based on an
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an �1 − �1 variational formulation that simultaneously suppresses the impulse noise (i.e., sparse corruption) and

interpolates the missing information.

Although the �1 − �1 variational model has been a subject of interest for the signal processing community in recent

years, most of this interest has been focused on image processing applications such as denoising and deblurring

in the presence of impulse noise (Bar & Kiryati, 2006; Nikolova, 2004). To the best of our knowledge, research

aimed at interpolating signals in the presence of impulse noise has been very limited, perhaps with the exception

of Wang et al. (2011) and Yan (2011) which, nonetheless, fall in the image processing setting.

This paper is organized as follows. In Section 2, we present the mathematical formulation of the problem. In

Section 3, we describe our algorithm and give theoretical guaranties that motivate the numerical implementation. In

Section 4, we present numerical results involving real micrometeorological data supporting the proposed method.

In Section 5, we present the relevance of this study and how it relates to previous work. Finally, Section 6 presents

some concluding remarks.

2. Problem Formulation

An observed signal b ∈ Rm is obtained after the original data set u ∈ Rn is subject to a data loss process followed

by a selective corruption in some elements of b. This degradation process can be modeled as an underdetermined

linear system

b = Hu + ν,

where H ∈ R
m×n (m < n) is constructed by removing from the n × n identity matrix, the n − m rows associated

with the missing data. The vector ν ∈ R
m is additive impulse or sparse noise in which the nonzero elements are

drawn from a normal distribution with zero mean and standard deviation σ0. Thus, the difference Hu − b must be

sparse at the solution, so that the fidelity term ‖Hu − b‖1 becomes a suitable choice for measuring the discrepancy

between b and Hu. Furthermore, if u is assumed to be sparse in a given basis Ψ, that is u = Ψx with x sparse, this

prior knowledge can be imposed at the solution with an �1 penalty term. Therefore, in order to recover or estimate

the original signal (data), we formulate the following unconstrained optimization problem

min
x

f (x) = ‖Ax − b‖1 + λ‖x‖1, (1)

where A = HΨ and λ ∈
(
0, ‖AT sig(b)‖∞

)
is a penalization parameter that balances the fidelity of the solution in the

�1 norm sense, while promoting sparsity in x. The operator sig(·) is applied component wise, and returns the sign

of the argument.

3. Methodology

The major challenge of solving problem (1) is dealing with the non differentiability of the �1 norm. While several

numerical methods have proliferated for solving (1) in which the fidelity term is measured with the �2 norm, e.g.

(Chen et al., 2001; Kim et al., 2007; Figueiredo et al., 2007; Wright et al., 2008; Argaez et al., 2011; Becker et

al., 2010), research efforts aimed at solving (1) as it is presented here have been more limited. Such works include

Fu et al. (2006), where problem (1) is posed as a linear programming problem and solved using interior point

methods; Nikolova (2004), who considers the denoising case, i.e. A = I, and proposes a regularization term based

upon local regularity replacing the second term in (1) by

1

2

n∑
i=1

∑
j∈Ni

|xi − x j|,

where Ni is a neighborhood of xi. Finally, Bar and Kiryati (2006) consider the image deconvolution problem in

the presence of impulse noise using an �1 fidelity term, and a Mumford-Shah functional to promote piece-wise

regularity as well as edge preserving features.

In order to solve (1), we extend our ideas reported in (Ramirez & Argaez, 2013) where the non differentiability of

the �1 norm is overcome by approximating the absolute value with a continuously differentiable and strictly convex

function that depends on a regularization parameter μk.More specifically, |x| ≈ √x2 + μk where μk → 0 as k → ∞.
Therefore, our strategy consists of solving a sequence of strictly convex optimization subproblems of the form

min
x

fμk (x) =

m∑
i=1

√(
aT

i x − bi

)2
+ μk + λ

n∑
i=1

√
x2

i + μk, (2)
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as k → ∞.
The main difference of this formulation and the one presented in (Ramirez & Argaez, 2013) is that the latter

assumes normality in the distribution of residuals ri = aT
i x − bi whereas in this work the residual vector r is

modeled as sparse vector due to the presence of spikes in the measurements b.

Now, notice that for any μk > 0, Problem (2) is strictly convex since the Hessian matrix

∇2 fμk (x) = μkAT D−
3
2

r A + diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λμk(

x2
i + μk

) 3
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is positive definite. Here Dr = diag

(
r2

i + μk

)
and ri = aT

i x − bi. In fact, for any non-zero d ∈ Rn, we have that

dT∇2 fμk (x)d = μkdT AT D−
3
2

r Ad + λμk

n∑
i=1

d2
i(

x2
i + μk

) 3
2

= μk‖D−
3
4

r Ad‖22 + λμk

n∑
i=1

d2
i(

x2
i + μk

) 3
2

≥ λμk

n∑
i=1

d2
i(

x2
i + μk

) 3
2

> 0.

Additionally, fμk is proper since fμk (x) < ∞ for at least one x ∈ R
n (e.g. x = 0), and fμk (x) > −∞ for all x ∈ R

n

(in fact, fμk is bounded below by 0). Finally, fμk is coercive since lim‖x‖→∞ fμk (x) = +∞. Therefore for μk > 0, the

optimal set of (2) is nonempty and has at most one element. Put differently, the global minimizer xμk of (2) exists

and is unique.

3.1 Optimality Conditions

The partial derivative of fμk (x) with respect to xi is

∂ fμk (x)

∂xi
=

m∑
j=1

a ji(aT
j x − b j)√

(aT
j x − b j)2 + μk

+ λ
xi√

x2
i + μk

.

Using matrix notation, the gradient of fμk (x) is written more compactly as

∇ fμk (x) = AT D−
1
2

r (Ax − b) + λD−
1
2

x x,

where Dr = diag(r2
i + μk) with ri = aT

i x − bi, and Dx = diag(x2
i + μk).

Consequently, the unique minimizer of (2) is characterized by the following system of nonlinear equations

AT D−
1
2

r Ax − AT D−
1
2

r b + λD−
1
2

x x = 0. (3)

Noticing that λD−
1
2

x is a positive definite matrix, we can write (3) as a fixed point equation of the form

x = F (x),

where F (x) = (AT D−
1
2

r A+λD−
1
2

x )−1AT D−
1
2

r b. Therefore, given an initial point x ,we solve for x the following linear

system

(AT D−
1
2

r A + λD−
1
2

x )x = AT D−
1
2

r b, (4)

where Dr = diag((r )2
i +μk) with (r )i = aT

i x − bi, and Dx = diag((x )2
i +μk).We continue this process iteratively

until two consecutive points x and x are sufficiently close. This fixed point scheme motivates the algorithmic

framework presented below.

3.2 The Algorithm

We propose a modification of the Fixed Point Least Squares-Preconditioned Conjugate Gradient (FPLS PCG)

algorithm presented in (Ramirez & Argaez, 2013) for solving Problem (1).
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FPLS PCG algorithm

Input Matrix A, and vector b.
Output Return x = arg min {‖Ax − b‖1 + λ‖x‖1}
Parameters Penalization parameter λ, and maximum number

of outer iterations N.
Step 1. Initial point:

x = AT (AAT )−1b
Step 2. Outer loop
Step 3. for k = 1 : N
Step 4. Update regularization parameter:

μ = 1
2k+15

Step 5. Inner loop
Step 6. Update diagonal matrices:

r = Ax − b

D−
1
2

x = diag

(
1√

(x )2
i +μ

)

D−
1
2

r = diag

(
1√

(r )2
i +μ

)

Step 7. Using a Preconditioned Conjugate Gradient (PCG) solve for x :(
AT D−

1
2

r A + λD−
1
2

x

)
x = AT D−

1
2

r b

Step 8. if ‖x−x ‖2
1+‖x ‖2 >

√
μ

Step 9. Improve approximate solution:

x = x
Step 10. Remain inner loop:

go to Step 6

Step 11. end-if
Step 12. end-for

Before concluding this section, we want to comment on the following two aspects. Firstly, it is important to realize

that the main difference between the FPLS PCG algorithm presented here and the one in (Ramirez & Argaez,

2013) is in the Steps 6 and 7. In these Steps there is an extra re-weighting matrix Dr associated with the residual

vector r = Ax − b which accounts for the non-Gaussian noise present in the measurement vector b. Secondly,

although any monotonically decreasing sequence {μk}k is theoretically a guarantee for convergence to the optimal

set of (1) as proved in next section, numerical experiments have demonstrated that the choice μk =
1

2k+15 performs

well in practice for a broad set of problems. This is, however, not a general rule and the choice of {μk}k can be

considered a non-sensitive parameter.

3.3 Convergence Analysis

We show that any limit point of the sequence of minimizers {xμk }μk→0 of Problem (2) is contained in the optimal

set of Problem (1).

Notice that the family of global minimizers {xμ} as μ→ 0 is bounded. This is a consequence of the bound

λ

n∑
i=1

|(xμ)i| ≤ λ
n∑

i=1

√
(xμ)2

i + μ

≤
m∑

i=1

√
(aT

i xμ − bi)2 + μ + λ

n∑
i=1

√
(xμ)2

i + μ

≤ m
√
‖b‖2∞ + μ + nλ

√
μ,

where the last inequality follows because fμ(xμ) ≤ fμ(x) for all x ∈ Rn, in particular for x = 0. Therefore,

‖xμ‖1 ≤ m
λ

√
‖b‖2∞ + μ + n

√
μ

and the family {xμ}μ→0 is bounded. Hence, there exists a convergent subsequence of {xμk }k which for simplicity
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will be denoted by {xμk }k, and whose limit is written as

x̄ = lim
k→∞

xμk .

Now, since xμk is the global minimizer of fμk (x), then we have

m∑
i=1

√
(aT

i xμk − bi)2 + μ + λ

n∑
i=1

√
(xμk )

2
i + μk ≤

m∑
i=1

√
(aT

i x∗ − bi)2 + μ + λ

n∑
i=1

√
(x∗)2

i + μk,

where x∗ = arg min f (x) is a solution of (1).

Taking the limit as μk → 0 in the above expression and by continuity it yields

‖Ax̄ − b‖1 + λ‖x̄‖1 ≤ ‖Ax∗ − b‖1 + λ‖x∗‖1.
Consequently, f (x̄) ≤ f (x∗) and therefore x̄ is a minimizer of f (x). In other words, any limit point of the sequence

of minimizers {xμk }μk→0 of Problem (2), is contained in the optimal set of (1).

4. Numerical Results

In this section we use datasets from the Eddy Covariance tower established by UTEP’s Systems Ecology Lab

(SEL) and Cyber-ShARE center at the Jornada Basin Experimental Range, Las Cruces, New Mexico (USA). We

select a 31-month data set of four 30-min averaged micrometeorological variables (Carbon Dioxide-CO2, Water

Vapor-H2O, Air Temperature-AT and Atmospheric Pressure-PRESS). The variables H2O and AT have 44.953

measurements where a total of 5.303 are missing or rejected, and nearly 1% are corrupted by impulse noise. On

the other hand, the variables CO2 and PRESS whose sensor platform was deployed at a later date, have 42.363

measurements where a total of 4.229 are missing or rejected, with the same percentage of impulse noise.

Figure 1. (Left) Corrupted and incomplete datasets of CO2, H2O, AT and PRESS respectively. (Right) Recovered

datasets after applying the FPLS PCG algorithm

Our aim is to simultaneously estimate the missing information while suppressing the impulse or sparse noise.

We further assume that the variable of interest can be sparsified by the Discrete Cosine Transform (DCT). This

is a reasonable assumption in micrometeorology, since the variable of interest derives most of its features from
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seasonal and diurnal changes. Therefore, we solve Problem (1) where Ψ is the DCT transform, H is the sub-

sampled identity matrix associated with the missing information, and b is the observed data. Figure 1 (left) shows

the incomplete and corrupted datasets corresponding to CO2, H2O, AT and PRESS respectively. Figure 1 (right)

shows a successfully recovered dataset after running our FPLS PCG algorithm for all four variables.

In order to assess the error associated with the increase of missing and corrupted elements, we take a 512-length

fraction of uncorrupted data denoted by u∗, and solve the recovery problem after artificial gaps and impulse noise

are randomly added. The added artificial gaps range from 5% up to 20%, and the impulse noise from 1% up to

3%. In each case, we compute the 2-norm error defined by

2-norm error =
‖û − u∗‖2
‖u∗‖2 ,

where û is the recovered signal. This experiment set up is run one hundred times, and the averaged results are

reported in Table 1, which shows that even with 20% of missing pixels and 3% of impulse noise, a successful

recovery is achieved. Figure 2 illustrates the recovery for the AT data set where 10% of the data is missing, and

2% of the elements are affected by impulse noise.

Table 1. Scalability 2-norm error for different percentages of artificial gaps and impulse noise in a 512-length

signal

5% 10%

1% 2% 3% 1% 2% 3%

CO2 5.01E-4 1.02E-3 1.10E-3 6.68E-4 7.84E-4 7.14E-4

H2O 1.21E-2 1.29E-2 2.04E-2 1.53E-2 3.37E-2 4.65E-2

PRESS 2.64E-5 2.40E-5 2.37E-5 4.25E-5 4.16E-5 5.43E-5

AT 5.90E-2 5.91E-2 5.90E-2 7.22E-2 7.55E-2 9.15E-2

15% 20%

1% 2% 3% 1% 2% 3%

CO2 9.13E-4 8.63E-4 7.95E-4 9.53E-4 1.09E-3 8.91E-4

H2O 1.88E-2 2.39E-2 4.67E-2 2.41E-2 4.14E-2 6.89E-2

PRESS 3.76E-5 5.37E-5 4.45E-5 6.21E-5 5.56E-5 5.24E-5

AT 1.13E-1 1.15E-1 1.24E-1 1.47E-1 2.86E-1 3.34E-1

Figure 2. (Top) Original Signal (AT). (Middle) Incomplete and corrupted signal. 10% of the data has been

removed, and a 2% of impulse noise has been added. (Bottom) Recovered signal after applying the FPLS PCG

algorithm with a relative 2-norm error of 0.075
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5. Discussion

The work presented here focuses on recovering degraded digital signals based on a sparse-inducing variational

formulation. While numerous algorithms and methodologies have been proposed to solve this problem in the

presence of Gaussian noise e.g. (Chen et al, 2001; Kim et al., 2007; Figueiredo et al., 2007; Wright et al., 2008;

Argaez et al., 2011; Becker et al., 2010), strategies addressing the case of impulse or sparse noise are more limited.

Recently, the works of Nikolova (2004), Fu et al. (2006) and Bar et al. (2006) studied the recovery problem in the

presence of impulse noise but in an image processing setting and for complete datasets. Our work, on the other

hand, is aimed at solving the recovery problem in the presence of impulse noise where the set of observations is

not complete. Prior and related works in this direction include Wang et al. (2011) and Yan (2011), but consider

Gaussian noise and fall in the image processing setting. Furthermore, our work is an extension of Ramirez et

al. (2012) where only the interpolation process is considered. Last but not least, this work constitutes an effort to

bridge state-of-the-art signal processing techniques with other scientific disciplines, in this case, micrometeorology.

6. Concluding Remarks

In this paper, we propose a simple algorithm for recovering incomplete micrometeorological signals that are further

corrupted by impulse or sparse noise. The underlying approach consists of solving an �1−�1 variational problem in

which the absolute value is relaxed with a continuously differentiable and strictly convex function that depends on

a regularization parameter. We solve a sequence of strictly convex optimization subproblems as the regularization

parameter goes to zero. A convergence analysis is presented showing the theoretical guaranties of the proposed

method. Furthermore, numerical experiments on real micrometeorological datasets are conducted demonstrating

the effectiveness of the proposed algorithm.
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