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Abstract

In this paper, we are concerned with the following Kirchhoff problem

⎧⎪⎪⎨⎪⎪⎩
(
a + λ

∫
RN (|∇u|2 + V(x)|u|2)

)
[−Δu + V(x)u] = f (x, u), x ∈ RN ,

u ∈ H1(RN), u > 0, x ∈ RN ,

where N ≥ 3, a > 0 is a constant, λ > 0 is a parameter, the potential V(x) may not be radially symmetric and f (x, s)

is asymptotically linear with respect to s at infinity. Under some assumptions on V and f , we prove the existence

of a positive solution for λ small and the nonexistence result for λ large.
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1. Introduction

In this paper, we consider the existence of positive solutions to the following Kirchhoff type problem:

⎧⎪⎪⎨⎪⎪⎩
(
a + λ

∫
RN (|∇u|2 + V(x)|u|2)

)
[−Δu + V(x)u] = f (x, u), x ∈ RN ,

u ∈ H1(RN), u > 0, x ∈ RN ,
(1)

where N ≥ 3, a > 0 is a constant and λ > 0 is a parameter. We assume that V(x) and f (x, s) verify the following

hypotheses:

(V1) V(x) ∈ C(RN) and there exists Γ0 > 0 such that

Γ0 � inf
u∈H1(RN )\{0}

∫
RN (|∇u|2 + V(x)u2)∫

RN |u|2
> 0;

(V2) lim
|x|→+∞

V(x) = V(∞) ∈ (0,+∞);

( f1) f ∈ C(RN × R+,R+) and f (x, s) ≡ 0 for all s ≤ 0;

( f2) there exist 0 ≤ p(x), q(x) ∈ L∞(RN) with |p(x)|∞ < Γ0, q(∞) = lim
|x|→+∞

q(x) < V(∞) such that

lim
s→0

f (x, s)

as
= p(x), lim

s→+∞
f (x, s)

as
= q(x) � 0 uniformly in x ∈ RN

and 0 ≤ f (x,s)

as ≤ q(x) for all x ∈ RN and s � 0.

By a positive solution of problem (1), we mean u ∈ H1(RN) such that u > 0 a.e. in R
N and(

a + λ
∫
RN

(|∇u|2 + V(x)u2)

) ∫
RN

(∇u∇v + V(x)uv) =

∫
RN

f (x, u)v,
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for any v ∈ H1(RN).

In recent years, the following elliptic problem

⎧⎪⎪⎨⎪⎪⎩
−
(
a + b

∫
RN |∇u|2

)
Δu + V(x)u = f (x, u), x ∈ RN ,

u ∈ H1(RN)
(2)

has been studied extensively by many researchers, where N = 1, 2, 3 and a, b > 0 are constants. (2) is a nonlocal

problem as the appearance of the term
∫
RN |∇u|2 implies that (2) is not a pointwise identity. This causes some

mathematical difficulties which make the study of (2) particularly interesting. Problem (2) arises in an interesting

physical context. Indeed, if we set V(x) = 0 and replace R
N by a bounded domain Ω ⊂ R

N in (2), then we get the

following Kirchhoff Dirichlet problem

⎧⎪⎪⎨⎪⎪⎩
−
(
a + b

∫
Ω
|∇u|2
)
Δu = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
which is related to the stationary analogue of the equation

ρ
∂2u
∂t2
−
(

P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u∂x
∣∣∣∣∣
2

dx
)
∂2u
∂x2
= 0

presented by Kirchhoff in 1883. The readers can learn some early research of Kirchhoff equations from Bernstein

(1940) and Pohoz̆aev (1975). In 1978, J. L. Lions introduced an abstract functional analysis framework to the

following equation

utt −
(
a + b

∫
Ω

|∇u|2
)
Δu = f (x, u). (3)

After that, (3) received much attention, see (Alves & Crrea, 2001; Alves & Figueiredo, 2009; Arosio & Panizzi,

1996; Cavalcanti & Cavalcanti, 2001; D’Ancona & Spagnolo, 1992) and the references therein.

Before we review some results about (2), we give several definitions.

Let (X, ‖ · ‖) be a Banach space with its dual space (X∗, ‖ · ‖∗), I ∈ C1(X,R) and c ∈ R. We say a sequence {xn}
in X a Palais-Smale sequence at level c ((PS )c sequence in short) if I(xn) → c and ‖ I′(xn) ‖∗→ 0 as n → ∞.We

say that I satisfies (PS )c condition if for any (PS )c sequence {xn} in X, there exists a subsequence {xnk } such that

xnk → x0 in X for some x0 ∈ X.

Throughout the paper, we use the standard notations. We write
∫
Ω

h to mean the Lebesgue integral of h(x) over a

domain Ω ⊂ R
N . The norm of u ∈ Lp(RN) (1 ≤ p ≤ +∞) will be denoted by |u|p.We use “→” and “⇀” to denote

the strong and weak convergence in the related function space respectively. Br(x) � {y ∈ R
N | |x − y| < r}. We

denote |A| the Lebesgue measure of a subset A ⊂ R
N . C will denote a positive constant unless specified.

There have been some works about the existence, multiplicity results to (2) by using variational methods, see e.g.

(He & Zou, 2012; Jin & Wu, 2010; Liu & He, 2012; Wang et al., 2012; Wu, 2011). Clearly weak solutions of (2)

correspond to critical points of the energy functional

Ψ(u) =
1

2

∫
RN

(a|∇u|2 + V(x)|u|2) +
b
4

(∫
RN
|∇u|2
)2
−
∫
RN

F(x, u)

defined on E � {u ∈ H1(RN)| ∫
RN V(x)|u|2 < ∞}, where F(x, u) =

∫ u
0

f (x, s)ds. A typical way to deal with (2) is

to use the Mountain-Pass Theorem. For this purpose, one usually assumes that f (x, u) is subcritical, superlinear at

the origin and either is 4-superlinear at infinity in the sense that

lim
|u|→+∞

F(x, u)

u4
= +∞ uniformly in x ∈ RN

or satisfies the Ambrosetti-Rabinowitz type condition ((AR) in short):

(AR) ∃ μ > 4 such that 0 < μ F(x, u) ≤ f (x, u)u for all u � 0.
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Under the above conditions, one easily sees that Ψ possesses a mountain-pass geometry around 0 ∈ H1(RN) and

by the Mountain-Pass Theorem, one can get a (PS ) sequence of Ψ. Moreover, the (PS ) sequence is bounded if

(F) 4F(x, u) ≤ f (x, u)u for all u ∈ R
holds. However, it is not easy to see that Ψ′ is weakly continuous by direct calculations due to the existence of

the nonlocal term
∫
RN |∇u|2. In fact, in general, we do not know

∫
RN |∇un|2 →

∫
RN |∇u|2 from un ⇀ u in E. This

difficulty was dealt with in (Jin & Wu, 2010; Li et al., 2012), when V(x) ≡ const and f (x, u) is radially symmetric

to x, by using the radially symmetric Sobolev space H1
r (RN) = {u ∈ H1(RN)| u(|x|) = u(x)}, where the embeddings

H1
r (RN) ↪→ Lq(RN) (2 < q < 2∗) are compact. In (Liu & He, 2012; Wu, 2011), the potential V(x) satisfies:

(V3) inf
x∈RN

V(x) ≥ a1 > 0 and for each M > 0, |{x ∈ RN | V(x) ≤ M}| < +∞.

By using a weighted Sobolev space E = {u ∈ H1(RN)| ∫
RN V(x)|u|2 < ∞}, where E ↪→ Lq(RN) (2 ≤ q < 2∗) are

compact to guarantee that (PS ) condition holds, this difficulty was overcome. In (He & Zou, 2012; Wang et al.,

2012), the potential V(x) satisfies:

(V4) 0 < V0 = inf
x∈RN

V(x) < lim inf
|x|→+∞

V(x),

then the method used above can not work. However, for the mountain-pass level c, it can be proved in (He & Zou,

2012; Wang et al., 2012) that each (PS )c sequence weakly converges to a critical point of Ψ in H1(RN) and their

argument strongly depends on the fact that c = infΨ(N), where N = {u ∈ H1(RN)\{0}| 〈Ψ′(u), u〉 = 0} and
f (x,u)

u3 is

strictly increasing for u > 0.

Recently, in 2012, Li et al. studied (1) in the case when V(x) ≡ b > 0 is a constant and f (x, u) ≡ f (u) is of

subcritical growth and superliner at the origin and at infinity, i.e.

lim
u→0

f (u)

u
= 0, lim

u→+∞
f (u)

u
= +∞.

By using a truncation argument combined with the monotonicity trick, they showed that there exists λ0 > 0 such

that for any λ ∈ [0, λ0), (1) has at least one positive radially symmetric solution.

In this paper, we try to prove the existence of positive solutions to problem (1) under the assumptions that V(x)

and f (x, s) may not be necessarily radially symmetric with respect to x and f (x, s) is asymptotically linear in s at

infinity (i.e. ( f1) ( f2) hold). As far as we know, it seems there are few results to (1) in this situation.

2. Method

We try to use the Mountain-Pass Theorem to get a positive critical point for Iλ. There are some difficulties. First,

as mentioned before, (AR) condition does not hold, which makes it difficult to get a (PS )c sequence. Secondly,

condition ( f2) implies that (F) is no longer true, then the boundedness of the (PS )c sequence is difficult to prove.

Thirdly, due to the effect of the nonlocal term
∫
RN (|∇u|2+V(x)u2), we still face the difficulty to verify that the weak

limit of the (PS )c sequence is a critical point of Iλ if we have obtained a bounded (PS )c sequence since in general,

we do not know that ∫
RN

(|∇un|2 + V(x)u2
n)→

∫
RN

(|∇u|2 + V(x)u2)

just from un ⇀ u in H1(RN). Our assumptions imposed on V(x) and f (x, s) make the method used in (He & Zou,

2012; Jin & Wu, 2010; Liu & He, 2012; Wang et al., 2012; Wu, 2011) can not be applied in our case to deal with

this difficulty. We overcome these difficulties by adapting an argument used in (del Pino & Felmer, 1996; Wang

& Zhou, 2007). However, since the conditions are different and we deal with a Kirchhoff equation, the arguments

should be improved and more careful analysis is needed.

By (V1) (V2), V(x) ∈ L∞(RN) and

V(∞) ≤ |V(x)|∞. (4)

Then by ( f2) and (4), we see that

−q(∞) > −V(∞) ≥ −|V(x)|∞. (5)

Moreover,

|V(x)|∞ =
⎧⎪⎪⎨⎪⎪⎩

max
x∈RN

V(x), if |V(x)|∞ is attained at some point in R
N ,

V(∞), otherwise.
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By ( f1) ( f2), we have that

0 ≤ F(x, s) ≤ aq(x)

2
s2 ≤ a|q(x)|∞

2
s2, ∀ x ∈ RN , s ∈ R. (6)

On the other hand, condition (AR) implies that for some C > 0,

F(x, s) ≥ Csμ, ∀ x ∈ RN , s ∈ R.

So the classical condition (AR) can not be satisfied in our case.

Since V(x) satisfies (V1) (V2), we introduce an equivalent norm on H1(RN): the norm of u ∈ H1(RN) is defined as

‖u‖ =
(∫

RN
|∇u|2 + V(x)|u|2

) 1
2

,

which is induced by the corresponding inner product on H1(RN). Weak solutions of (1) correspond to critical

points of the following C1 functional

Iλ(u) =
a
2

∫
RN

(|∇u|2 + V(x)|u|2) +
λ

4

(∫
RN

(|∇u|2 + V(x)|u|2)

)2
−
∫
RN

F(x, u),

where F(x, u) =
∫ u

0
f (x, s)ds. Note that if λ = 0 in (5), we still denote the functional by I0(u).

Define

L = inf

{∫
RN

(|∇u|2 − q(x)u2)| u ∈ H1(RN), |u|2 = 1

}
. (7)

Clearly, L ≥ −|q(x)|∞ > −∞ since inf
u∈H1(RN ), |u|2=1

∫
RN |∇u|2 = 0. As is well-known (Berzin & M. Shubin, 1991),

L = inf σ(S ), where σ(S ) is the spectrum of the self-adjoint operator S : H2(RN)→ L2(RN) defined by

S u = −Δu − q(x)u, ∀ u ∈ H2(RN).

Furthermore, the essential spectrum of S is the interval [−q(∞),+∞) and so we have that

−|q(x)|∞ ≤ L ≤ −q(∞). (8)

The operator S plays a crucial role since it defines the asymptotic linearization of (1).

Lemma 1 Assume that (V1) (V2), ( f1) ( f2) hold and L + |V(x)|∞ < 0, then

(i) there exist ρ, α > 0 satisfying Iλ(u) ≥ α > 0 for all ‖u‖ = ρ;
(ii) there exist e ∈ H1(RN) with ‖e‖ > ρ and λ0 > 0 such that Iλ(e) < 0 for λ ∈ (0, λ0).

Proof. (i) By ( f1) ( f2), for any ε > 0 and r ∈ (2, 2∗), there exists Cε > 0 such that for all (x, s) ∈ RN × R+,

F(x, s) ≤ a
2

(|p(x)|∞ + ε)s2 +Cεsr. (9)

Taking ε > 0 such that |p(x)|∞ + ε < Γ0 since |p(x)|∞ < Γ0, then by (V1), (9) and the Sobolev inequality, we see

that

Iλ(u) ≥ a
2

(
1 − |p(x)|∞ + ε

Γ0

)
‖u‖2 −Cε‖u‖r.

So (i) is proved if we choose ‖u‖ = ρ > 0 small enough.

(ii) Since L + |V(x)|∞ < 0, there exists δ > 0 such that L + |V(x)|∞ + δ < 0. For such a δ > 0, we conclude from

the definition of L that there exists a nonnegative w ∈ H1(RN) satisfying

∫
RN

(|∇w|2 − q(x)w2) ≤ (L + δ)
∫
RN

w2. (10)
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Hence by Fatou’s Lemma and (10), for any t > 0, we see that

lim
t→+∞

I0(tw)

t2 = a
2

∫
RN (|∇w|2 + V(x)w2) − limt→+∞

∫
RN

F(x,tw)

t2w2 w2

≤ a
2

[∫
RN (|∇w|2 − q(x)w2) +

∫
RN V(x)w2

]

≤ a
2

∫
RN (L + δ + |V(x)|∞)w2 < 0.

So lim
t→+∞ I0(tw) = −∞, which implies that there exists e ∈ H1(RN) with ‖e‖ > ρ such that I0(e) < 0. Since

lim
λ→0+

Iλ(e) = I0(e), there exists 0 < λ0 < 1 small such that Iλ(e) < 0 for λ ∈ (0, λ0). �

By Lemma 1 and the Mountain-Pass Theorem (Ambrosetti & Rabinowitz, 1973), for λ ∈ (0, λ0), there is a (PS )cλ
sequence {un} ⊂ H1(RN) such that

Iλ(un)→ cλ and I′λ(un)→ 0 in H−1(RN), (11)

where

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≥ α > 0

and Γ = {γ ∈ C([0, 1],H1(RN))| γ(0) = 0, γ(1) = e}.
Remark 1 If we assume ( f2)′ instead of ( f2), then Lemma 3 is also true since b > Γ0 implies that there exists a

nonnegative w ∈ H1(RN) satisfying ∫
RN

(|∇w|2 + V(x)w2) < b
∫
RN

w2.

Lemma 2 Assume that (V1) (V2), ( f1) ( f2) hold, then there exists λ1 > 0 such that the (PS )cλ sequence {un} given
by (11) is bounded in H1(RN) for each λ ∈ (0, λ1).

Proof. For any fixed R > 0, let ηR ∈ C∞(RN ,R) such that ηR(x) ≡ 0 for |x| ≤ R
2

, ηR(x) ≡ 1 for |x| ≥ R and

|∇ηR(x)| ≤ 4
R for all x ∈ RN . Then for any u ∈ H1(RN) and R > 1, we easily see that there exists a constant C > 0

such that ηRu ∈ H1(RN) and ‖ηRu‖ ≤ C‖u‖.
Since I′λ(un)→ 0 in H−1(RN), for n large, we see that

〈I′λ(un), ηRun〉 ≤ ‖I′λ(un)‖H−1(RN )‖ηRun‖ ≤ ‖un‖,
i.e. for n large,

(a + λ‖un‖2)

(∫
RN

(|∇un|2 + V(x)u2
n)ηR +

∫
RN
∇unun∇ηR

)
≤
∫
RN

f (x, un)unηR + ‖un‖. (12)

Since lim
|x|→+∞

q(x) < V(∞) = lim
|x|→+∞

V(x), there are δ > 0, R1 > 1 such that V(x) > lim
|x|→+∞

q(x) + δ for |x| ≥ R1. On

the other hand, there exists R2 > R1 such that

q(x) ≤ V(x) − δ for |x| ≥ R2.

By ( f2), f (x, un)un ≤ aq(x)u2
n for all x ∈ R

N . Then choosing R > 2R2 in the definition of ηR and by (12), we see

that

a
∫
RN

(|∇un|2 + δu2
n)ηR ≤ 4

R
(a + λ‖un‖2)

(∫
RN
|∇un|2 +

∫
RN

u2
n

)
+ ‖un‖.

Therefore, there exists a constant C > 0 independent of R such that

a
∫
|x|≥R

u2
n ≤

C
R

(a‖un‖2 + λ‖un‖4) +C‖un‖. (13)

Similarly, we see that 〈I′λ(un), un〉 ≤ ‖un‖, i.e.

a
∫
RN

(|∇un|2 + V(x)u2
n) + λ‖un‖4 −

∫
RN

f (x, un)un ≤ ‖un‖. (14)
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For each n ∈ N, λ > 0 and β > 1, we consider the following function hλ(t): R+ → R:

hλ(t) = t4

(
λ

2
‖un‖4 − λβ

∫
RN
|un|4
)
+

a‖un‖2
2

t2.

Denote

C4 = inf
H1(RN )\{0}

∫
RN |∇u|2 + V(x)|u|2

|u|2
4

> 0. (15)

Then for all t ≥ 0,

hλ(t) = t2
[
t2
(
λ
2
‖un‖4 − λβ

∫
RN |un|4

)
+ a

2
‖un‖2

]
≥ 0 if

∫
R3 |un|4 ≤ 1

2λβ−1 ‖un‖4,

hence there exists λ1 =
(√

2C4

)− 2
β−1

such that hλ(t) ≥ 0 for all t ≥ 0 and λ ∈ (0, λ1). In particular, hλ(1) ≥ 0, i.e.

λ

2
‖un‖4 ≥ λβ

∫
RN
|un|4 − a

2
‖un‖2 for λ ∈ (0, λ1). (16)

So it follows from (14) (16) and ( f2) that for λ ∈ (0, λ1),

a
2
‖un‖2 + λ

2
‖un‖4 +

∫
RN

(λβ|un|4 − a|q(x)|∞|un|2) ≤ ‖un‖.

Set g(t) = λβt4 − a|q(x)|∞t2, then
a
2
‖un‖2 + λ

2
‖un‖4 +

∫
RN

g(un) ≤ ‖un‖. (17)

Let b = inf
t∈R

g(t), then b ∈ (−∞, 0). By (13), we have that

∫
RN g(un) ≥ ∫

|x|≤R b − a|q(x)|∞
∫
|x|≥R |un|2

≥ b|BR(0)| − C|q(x)|∞
R (a‖un‖2 + λ‖un‖4) −C|q(x)|∞‖un‖.

(18)

By (17) (18), we see that

a
2
‖un‖2 + λ

2
‖un‖4 ≤ C|q(x)|∞

R
(a‖un‖2 + λ‖un‖4) + (C|q(x)|∞ + 1)‖un‖ + |b||BR(0)|. (19)

Choosing R > 0 large in (19) satisfying
C|q(x)|∞

R < 1
2
, then {un} is bounded in H1(RN). �

Lemma 3 Assume that (V1) (V2), ( f1) ( f2) hold, then the (PS )cλ condition holds for Iλ if λ ∈ (0, λ1), where λ1 is
given in Lemma 2.

Proof. By Lemma 2, for λ ∈ (0, λ1), the (PS )cλ sequence {un} is bounded in H1(RN) and then

〈I′λ(un), ηRun〉 = o(1),

where ηR is given in Lemma 2, o(1)→ 0 as n→ +∞. Then similar to (13), we have that∫
|x|≥R

u2
n ≤

C
R

(‖un‖2 + ‖un‖4) + o(1). (20)

Hence for any ε > 0, there exists R > 0 such that for n large∫
|x|≥R

u2
n ≤ ε. (21)

Since {un} is bounded in H1(RN), up to a subsequence, we may assume that for some u ∈ H1(RN),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

un ⇀ u in H1(RN),

un → u in Ls
loc(RN),

un(x)→ u(x) a.e. in R
N .

(22)
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Then by ( f2), (22) and Hölder inequality, we have that

∣∣∣∫
RN f (x, un)(un − u)

∣∣∣ ≤ ∫
|x|≤R | f (x, un)(un − u)| + ∫|x|≥R | f (x, un)(un − u)|

≤ C|un − u|L2(BR(0)) +C|q(x)|∞
(∫
|x|≥R |un|2

) 1
2 .

Thus ∫
RN

f (x, un)(un − u) = o(1). (23)

By (22), we see that

‖un‖2 = ‖u‖2 + ‖un − u‖2 + o(1). (24)

So by (22)-(24), we have that

o(1) = 〈I′λ(un), un − u〉
= (a + λ‖un‖2)

∫
RN [∇un(∇un − ∇u) + V(x)un(un − u) +

∫
RN f (x, un)(un − u)

= (a + λ‖un‖2)(‖un‖2 − ‖u‖2) + o(1)

≥ a
∫
RN ‖un − u‖2 + o(1).

By (22), we easily see that ‖un‖ → ‖u‖ as n→ +∞, hence un → u in H1(RN). �
Remark 2 If we assume ( f2)′ instead of ( f2), then Lemma 4 and Lemma 5 are also true since b < V(∞) and

0 ≤ f (x, s) ≤ bs2 for all (x, s) ∈ RN × R.
In order to get the non-existence result, we need the following lemma which gives the decay estimate of the solution

at infinity.

Lemma 4 Assume that (V1) (V2) ( f1), ( f2) or ( f2)′ hold. If u ∈ H1(RN) is a nontrivial solution of (1), then u > 0

a.e. in R
N and lim

|x|→+∞
u(x) = 0.

Proof. Let M = ‖u‖2. Then problem (1) can be rewritten as

−Δu + V(x)u =
1

a + λM
f (x, u).

Hence by using standard boot-strap arguments and the strong maximum principle, we see that u > 0 a.e. in R
N .

The proof of lim
|x|→+∞

u(x) = 0 is initiated in the Morse iterative method of (Moser, 1960), which is similar to that of

Lemma 4.5 in (He & Zou, 2012), so we omit it. �
3. Results

Theorem 5 Assume that V(x) satisfies (V1) (V2) and f (x, u) satisfies ( f1) ( f2).

(i) If problem (1) has a positive solution, then L < −q(∞).

(ii) If L + |V(x)|∞ < 0, there exists λ∗ > 0 such that problem (1) has a positive solution for any λ ∈ (0, λ∗).

Proof. (i) Suppose that 0 < u ∈ H1(RN) is a positive solution of (1), then

a
∫
RN

(|∇u|2 + V(x)u2) + λ

(∫
RN

(|∇u|2 + V(x)u2)

)2
=

∫
RN

f (x, u)u.

By ( f2) and the definition of L, we see that

L
∫
RN

u2 ≤
∫
RN

(|∇u|2 − q(x)u2) ≤ −
∫
RN

V(x)u2,

then V(x) ≤ −L in R
N , hence

|V(x)|∞ ≤ −L. (25)
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On the other hand, by (8), we have that L ≤ −q(∞). Just suppose that L = −q(∞). By (5) (25), we see that

−|V(x)|∞ < −q(∞) = L ≤ −|V(x)|∞,
which is impossible. So L < −q(∞).

(ii) Set

λ∗ = min{λ0, λ1}.
Then Theorem 5 is a direct consequence of Lemmas 1-3. �
Theorem 6 Assume that V(x) satisfies (V1) (V2) and f (x, u) satisfies ( f1) ( f2).

(i) If L + |V(x)|∞ > 0, then problem (1) has no positive solution;

(ii) For the case where L + |V(x)|∞ = 0, if |V(x)|∞ is attained at some point in R
N and there exist ε0 > 0, R0 > 0

such that
(pq) p(x) + ε0 < q(x) for |x| ≥ R0,

then problem (1) has no positive solution;

(iii) If L + |V(x)|∞ < 0, then there exists λ∗ > 0 such that problem (1) has no positive solution for any λ > λ∗.

proof Suppose that 0 < u ∈ H1(RN) is a positive solution of (1), then

a
∫
RN

(|∇u|2 + V(x)u2) + λ‖u‖4 =
∫
RN

f (x, u)u. (26)

(i) Similar to the proof of Theorem 6 (i), we have that |V(x)|∞ ≤ −L, which implies that if L + |V(x)|∞ > 0, then

(1) has no positive solution.

(ii) By condition (pq), there exist ε0 > 0, R0 > 0 such that

p(x) +
ε0

2
< q(x) for |x| ≥ R0. (27)

By ( f1) ( f2), there exists δ0 > 0 such that for all (x, s) ∈ RN × (0, δ0),

0 ≤ f (x, s)

as
≤ p(x) +

ε0

2
. (28)

By Lemma 5, u(x)→ 0 as |x| → +∞, then there exists R1 > 0 such that

0 < u(x) ≤ δ0 for |x| ≥ R1. (29)

Set R = max{R0,R1}. Therefore, by (26)-(29) and ( f2), we see that

∫
RN (|∇u|2 + V(x)u2) ≤ ∫

|x|≥R

(
p(x) + ε0

2

)
u2 +
∫
|x|≤R q(x)u2

≤ ∫
|x|≥R

[
p(x) + ε0

2
− q(x)

]
u2 +
∫
RN q(x)u2

<
∫
RN q(x)u2,

i.e.

L
∫
RN

u2 ≤
∫
RN

(|∇u|2 − q(x)u2) < −
∫
RN

V(x)u2.

Hence V(x) < −L in R
N . Since |V(x)|∞ is attained at some point in R

N , |V(x)|∞ = max
x∈RN

V(x) < −L. So (1) has no

positive solution if L + |V(x)|∞ = 0.

(iii) Since |p(x)|∞ < Γ0, there exists ε > 0 such that

|p(x)|∞ + 2ε ≤ Γ0. (30)

By ( f1) ( f2), there exists C = C(|p(x)|∞,Γ0) > 1 such that

0 ≤ f (x, u)u ≤ (|p(x)|∞ + ε)u2 +Cu4. (31)
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Similarly to the argument in Lemma 2, for λ > 0, β̄ ∈ (0, 1) and all t ≥ 0, the following function

h̄λ(t) = t4
(
λ
2
‖u‖4 − λβ̄ ∫

RN u4
)
+ aε‖u‖2t2

≥ 0 if
∫
R3 |un|4 ≤ λ1−β̄

2
‖u‖4,

hence there exists λ2 =
(√

2C4

) 2
1−β̄ such that

λ

2
‖u‖4 ≥ λβ̄

∫
RN

u4 − aε‖u‖2 for λ > λ2, (32)

where C4 is given in (15). So by (V1) and (26) (30)-(32), for λ > λ2, we have that

0 = a
∫
RN (|∇u|2 + V(x)u2) + λ‖u‖4 − ∫

RN f (x, u)u

≥ a
(
1 − |p(x)|∞+2ε

Γ0

)
‖u‖2 + (λβ̄ −C)

∫
RN u4

≥ (λβ̄ −C)
∫
RN u4.

Therefore, let

λ∗ = max{λ2,C
1
β̄ },

u must be zero if λ > λ∗. �
Remark 3 By ( f1) ( f2), p(x), q(x) ∈ C(RN). For V(x) satisfying (V1) (V2), it easily see that ( f1) ( f2) are satisfied by

the following function:

f (x, s) =

⎧⎪⎪⎨⎪⎪⎩
p(x)+q(x)s

1+s , x ∈ RN , s > 0,

0, x ∈ RN , s ≤ 0,

where

q(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|V(x)|∞|x|, |x| ≤ 1,(
V(∞)

4
− |V(x)|∞

)
|x| + 2|V(x)|∞ − V(∞)

4
, 1 < |x| < 2,

V(∞)
2

1
1+|x| , |x| ≥ 2

and p(x) = Γ0

2|V(x)|∞ q(x).

Remark 4 Under assumptions in Theorem 5 (ii), q(x) � const. In fact, if q(x) ≡ b > 0 is a constant, then

L = −b = −q(∞), hence by Theorem 5 (i), problem (1) has no positive solution. So the case where q(x) ≡
const can not be contained in Theorem 5. However, we still can use a similar method to obtain the existence and

non-existence results for the case where q(x) ≡ const under simple conditions (V1) (V2) ( f1) and

( f2)′ lim
s→0

f (x, s)

as
= 0, and lim

s→+∞
f (x, s)

as
= b ∈ (Γ0,V(∞)) uniformly in x ∈ RN

and 0 ≤ f (x, s) ≤ bs2 for all x ∈ RN and s � 0, i.e. there exist λ̄∗, λ̄∗ > 0 such that (1) has a positive solution for

λ ∈ (0, λ̄∗) and has no positive solution for λ > λ̄∗.
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