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Abstract

In this paper, consideration is given to the problem of independent/uncertain claim pricing using distribution oper-

ators. This method was earlier studied in Insurance Pricing where the original operator was described in relation

to normal distribution. We apply the Meixner process to financial pricing since the normal distribution is a very

poor model to fit log-returns of financial assets like stocks or indices. For us to realize a better fit, we substitute

the normal distribution by Meixner process. Hence, we generalize this approach by using an operator based on the

density Meixner distribution. We further show how Meixner operator function can be used to derive the formular

for asset pricing of independent/uncertain future returns of a risky asset.
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1. Introduction

Of recent, Mathematics of Finance has gained huge respect on the bases of its effect on the financial industry. The

foundation of financial mathematics as it is known today has its origin in the seminal papers by Black and Scholes

(1973) and by Merton (1973), where the Ito’s formula has been used for deriving a compact pricing formula for

a standard European call option by formulating explicitly the model on the risk-neutral measure, under a set of

assumptions.

Option valuation is one of the most important topics in financial mathematics. The exact modeling of financial

price series is significant for the pricing and hedging of financial derivatives such as option. To price and hedge

derivatives securities, it is vital to have a good modeling of the probability distribution of the underlying product.

The most well-known continuous time model used is the calibrated Black-Scholes model. It uses the normal

distribution to fit the log-returns of the underlying; the price process of the underlying is given by the geometric

Brownian motion

S t = S 0exp
(
(μ − σ

2

2
)t + σBt

)
. (1.1)

Where {Bt, t ≥ 0} is a standard Brownian motion, i.e. Bt follow a Normal distribution with mean 0 and variance t.
It is known however that the log-returns of most financial assets have an actual kurtosis that is higher than that of

the Normal distribution.

Empirical evidence has shown that the normal distribution is a very poor model to fit log-returns of financial

asset such as stocks. In order to achieve a better fit we replace the Brownian motion by a special Levy process

called the Meixner process. Several authors have proposed similar process models. Notable contributions were

made, for instance, Luscher (2005) used the Normal Inverse Gaussian (NIG) to price synthetic Collateralized

Debt Obligations (CDO), Barndorff-Nielsen (1995) proposed the NIG Levy process, Eberling and Keller (1995)

proposed the Hyperbolic models and their generalizations, Wang (2000) proposed pricing based on a normal-based

distribution operator for a form of insurance risk, Osu and Achi (2012) price contingent claim using distortion

operators by Cauchy distribution under a simple transformation.
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In this paper, we show how Meixner operator function can be used to derive the formula for asset pricing of

uncertain future returns of a risky asset. More so, we generalize this approach by using an operator based on the

density Meixner distribution.

1.1 Meixner Process

The Meixner process is a Levy process {X(t)}t≥0 that has Meixner distributed increments. Specifically, X(t) has a

Meixner (x : a, b, dt,mt)-distributed with parameters a > 0, −π < b < π, d > 0 and m ∈ R. The density of the

Meixner distribution Meixner (a, b, d,m) is given by

fmeixner (x; ; a, b, d,m) =
(2cos (b/2))2d

2aπΓ (2d)
exp

{
b (x − m)

a

} ∣∣∣∣∣∣Γ
(
d +

i (x − m)

a

)∣∣∣∣∣∣
2

where Γ denotes the Gamma function.

The characteristic function of Meixner (a, b, d,m) is given by

∅meixner (x; a, b, d,m) = E
[
exp (iuX)

]
=

⎛⎜⎜⎜⎜⎜⎝ cos (b/2)

cosh au−ib
2

⎞⎟⎟⎟⎟⎟⎠
2d

exp (imu) .

A Meixner (x: a, b, dt,mt)-distributed random variable has the following stylized features (and compared to the

Normal distribution):

Meixner(a, b, d,m) Normal
(
μ, σ2

)
Meixner(a, 0, d,m)

Mean m + adtan (b/2) μ m
Variance a2d

2

(
cos−2 (b/2)

)
σ2 a2d

2

Skewness sin (b/2)
√

2/d 0 0

Kurtosis 3 + 3−2cos2(b/2)
d 3 3 + 1

d

See (Schoutens, 2002) on more information about Meixner process.

2. Time Changed Levy Process

Let (Ω, f , p) be a probability space in this work; a random variable representing net income or profit after some time

and h be a constant. We presume that for any random variable described on the probability space, its characteristic

function exists. That is, for any random variable

E
[
eihx

]
< ∞ (2.1)

For the cumulative distribution, (cdf), FX(·) with differential dFX(·), corresponding to a given random variable X,

we define by

dF(ih)
X (x) =

eihxdFX(x)

E[eihX]
. (2.2)

where the characteristic function of X under

pES S MM = pES S
X[0.T ]h∗ (2.3)

∅ES S MM
t (u) , is defined by

∅ES S MM
t (u) = Ep(ES S MM)[eiuXt ] =

Ep

[
eiuXt eh∗Xt

]
Ep

[
eh∗XT

] . (2.4)

The Levy-Khintchine formula for the characteristic function of Xt is;

∅X(t)(u) ≡ E[eiuXt ] = e−tϕx(u)t ≥ 0, u ∈ Rd. (2.5)

Where the characteristic exponent, ϕX (u) , u ∈ Rd is given by

ϕx (u) = −iμT u +
1

2
uTΣu −

∫
Rd−{0}

(
eiuT x − 1 − iuT x1|x|<1

)
π(dx). (2.6)
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The characteristic function of the time changed Levy-process Yt ≡ Xt is

∅y (u) ≡ EeiuT Xt = E
[
E[eiuT XT / f v

t ]
]
= E

[
E[eiuT XT

/Tt = θ
]
= Ee−T t�x (u) = LT (�x(u). (2.7)

That is the Laplace transform of the stochastic time Tt =
∫ t

0
(v(s−)ds evaluated at the characteristic exponent of X.

2.1 The General Case of Correlated Time Changed

More generally, the general Fourier transform, CF, of Yt ≡ XTt under measure can be represented as the “Laplace

Transform” of Tt under a new complex-valued measure ∅(u), calculated at the characteristic-exponent ϕx (u) of Xt.

∅Yt (u) ≡ E[eiuT Yt ] = Eu[e−Tt�x(u)] ≡ Lu
Tt

(�x(u)). (2.8)

For each u ∈ D, ∅(u) is absolutely with respect to p and is defined by

E
d∅(u)

dp
/ ft ≡ Mt (u) ≡ esp(iuT Yt + Tt�x (u) u ∈ D (2.9)

which is a complex valued p-Martingale with respect to
{
fTt t≥0

}
for each u ∈ D.

Why is Mt (u) ≡ E d∅(u)
dp / f Tt

= exp
(
iuT Yt + Tt�x (u) , u(t)

)
a p-Martingale?

Remark 1 The familiar Wald Martingale defined on a Levy process

Zt (u) ≡ exp
(
iuT Xt + t�x(u)

)

Time changed (ie replacing t by Tt) preserves the Martingality.

Proof.
E

[
eiuT Yt

]
= E

[
eiuT Yt+Ttx(u)−Ttx

]
= E

[
Mt(u)e−T tx(u)

]
= Eu

[
e−T tx(u)

]
≡ Lu

Ttx
((u) .

While the validity of mathematical operation is constant, the multi-rated measure loses whatever could be its merit.

3. Existence Theorem of Esscher Martingale Measure (ESSMM) for Geometric Levy Process

We believe in the existence of what that follows, since the Martingale condition for an Esscher changed expectation

measure ∅ = PES S
Z[0,T ]

, h is

E∅
[
e−r Xt

]
= e−rX0E∅

[
ezt

]
= e−rX0

Ep[e(h+1)zt

Ep[ehzt ]
= X0. (3.1)

This state equals the situation as follows

Ep

[
e(h+1)Zt

]
= erEp

[
ehZt

]
(3.2)

and this equals also the following statement

∅ (−i (h + 1) = er∅ (−ih) ,

∅ (u) = Ep

[
eiuZt

]
. (3.3)

where ∅ (u) is the characteristic function of Zt.

To develop the existence theorem, setting

f ES S MM (h) = b +
(

1

2
+ h

)
δ2 +

∫
|x|≤1

[(ex − 1) ehx − x]V(dx) +

∫
|x|>1

(ex − 1)ehxVdx. (3.4)

Then we have

Theorem 1 Existence Condition For ESSMM.

If the equation

f ES S MM = r, (3.5)
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has a solution h∗, then the ESSMM of Xt, PES S MM , exists and

PES S MM = PES S MM
z[0,T ]′h∗ = PES S

ZT ,h∗ . (3.6)

The process ZT same as a Levy process under PES S MM and the generating triplet of Zt under PES S MM , (δ(ES S MM)2

,

VES S MM(dx), bES S MM) is

δ(ES S MM)2

= δ2, (3.7)

VES S MM (dx) = eh∗xV(dx) (3.8)

bES S MM = h + h∗δ2 +
∫
|x≤1|

x
(
eh∗x − 1

)
Vdx. (3.9)

Proof. The Equation (3.5) is equivalent to (3.3). Therefore, PES S MM
Z[0,T ],h∗ is a Martingale measure of Xt. The character-

istic function of Zt under PES S MM
z[0,T ],h∗ = ∅ES S MM

t is by definition

∅ES S MM
t (u) = Ep(ES S MM)[eiuzt ] =

Ep[eiuzt eh∗zT ]

Ep[eh∗zT ]

. (3.10)

and this is equal to

Ep[e(iu+h∗)zt ]

Ep[eh∗zt ]
=
∅t(u − ih∗)
∅t(−ih∗)

. (3.11)

By simple calculation, we obtain;

∅ES S MM
t (u) = exp{t(− 1

2
δ2 + i(b + h∗δ2 +

∫
|x|≤1

x
(
eh∗x − 1

)
V (dx)

+
∫
|x|≤1

(eiux − 1 − iux)eh∗V (dx) +
∫
|x>1| (e

iux − 1)eh∗xV(x) }.
(3.12)

This formula proves the result of the theorem.

3.1 Price of a European Call Option

Theorem 2 For a probability space (Ω, f , P), a random variable XT which is the net income or profit at after some
time. And for any XT defined on the probability space, its characteristic function exits, i.e, for any random variable
X: Ω→ Cd, E[eihX] < ∞, ih ∈ Cd.

Where C is the complex plane and the characteristic function of XT has the form

∅Xt (h) ≡ E[e(ihT Xt)] = e(tΨX (h)), t ≥ 0

with the option price

C = e(−r)XoN
(
(iμ − ln(

K
Xo

))/δ

)
+ ((1 + h) x) eiμ+ 1

2
δ2h+δ2θ −

(
e(−r) K(iμ − ln(K/Xo)

)
/δ.

Proof. Assuming that the stock prices are log-normally distributed and that the stochastic process

C = e−rt
∫ ∞

−∞
maz(S t − K, 0) f (x, t; ih) dx (3.13a)

Let the stochastic process {Xt} be a Weiner process with mean per unit time μ and variance per unit time δ2. Then

F (x, t) = N(x; iμt, δ2t)

and

m (z, t) = e(iμz+ 1
2
δ2 x2)t,

m (z, t; h) = e[(iμ+hδ2)Z+ 1
2
δ2 x2]t,

F (x, t; h) = N(x; (iμ + hδ2)t, δ2t),
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C = e−rt
∫ ∞

−∞
(S 0ex − K)

eihx

m (ih, t)
f (x, t) dx,

m (ih, t) = E[eihx] = eht(−iμx+ 1
2
δ2 x2),

C =
e−rt

e(−iμθ+ 1
2
θ2)

[
X0

∫ ∞

−∞
e(1+h)x f (x, t) dx − K

∫ ∞

−∞
ehx f (x, t) dt

]
.

Using Equation (3.13a) to find the value of x which determines the region of integration,

δe(1+h)xe−ht(−iμθ+ 1
2
θ2) ≥ 0. (3.13b)

We have

(i + h) x − 1

2
δ2θ2h + iμθ = ln(

K
S 0

) (3.14)

which is equivalent to the well-known Kolmogorov Backward Equation in (Goovaerts & Laeven, 2008) with the

drift function modified for the change of probability measure as proved by the Esscher transform.

Thus,

C = e−rX0N

⎛⎜⎜⎜⎜⎜⎝ iμ − ln( K
X0

)

δ

⎞⎟⎟⎟⎟⎟⎠ + (1 + h)xeiμ+ 1
2
δ2h+δ2θ − e−rK

⎛⎜⎜⎜⎜⎜⎝ iμ − ln( K
X0

)

δ
+ (1 + h)x

⎞⎟⎟⎟⎟⎟⎠ . (3.15)

From Equations (3.11) and (3.13b), we can find h∗ for a random variable normally distributed X2
t ,

h∗ =
r − iμ
δ2
− 1

2
.

Replacing in (3.15) we obtain,

C = X0N

⎛⎜⎜⎜⎜⎜⎜⎝
(
−ln

(
K
X0

)
+ (r + 1

2
δ2)

)
δ

⎞⎟⎟⎟⎟⎟⎟⎠ − e−rKN

⎛⎜⎜⎜⎜⎜⎜⎝
(
−ln

(
K
X0

)
+ (r − 1

2
δ2)

)
δ

⎞⎟⎟⎟⎟⎟⎟⎠ (3.16)

Thus from the characteristic function of the time changed Levy process, we obtained the traditional Black-Scholes

formula for pricing a European call option. Note that the expected rate of return iμ, which represents the prefer-

ences of investors, does not appear in the last formula.

4. Meixner and Option Pricing

Let ∅m denotes the Meixner distribution function

∅m =
(2cos (b/2))2d

2aπΓ (2d)
exp

{
b (x − m)

a

} ∣∣∣∣∣∣Γ
(
d +

i (x − m)

a

)∣∣∣∣∣∣
2

(4.1)

We define the Meixner operator as H (x, λm) =
∫ ∞

0
hxS x (x) dx = ∅m [(k) + λm].

Proposition 3 Consider the Meixner operator
∫

hx;a,b,m,d (S x (X)) dx. Let z be a variable and let X = h (z) be a
transformation through a continuous function h, then ∅m = f (x; ; a, b,m, d) = mex (x; a, b,m, d) => f (x) and S (x)

is the decumulative function of f (x).

Proof. Given

S (x) = 1 − f (x) = P (x > t)

S (x) = 1 − mex (x; a, b,m, k) = 1 − ∅m (x; a, b,m, k)

By definition, we have

H (x, λm) =

∫ ∞

0

hxS x (x) dx = ∅m [
(k) + λm]

for every m ∈ R

Where
S X (t) = P[x > t] = P[h(z) > t]

= P[ h(z)
h > t/h] = P[z > h−1(t)]

= 1 − ∅m[h−1(t)]
= ∅m[−h−1(t)] = d
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If we apply now the operator function h(x,a,b,m,k) on S x, we have

h(x,a,b,m,k)S x (t) = ∅m [
(k) + λm]

∅m[([−h−1(t)]) + λm] = ∅m[−h−1(t) + λm] = 1 − ∅m(h−1(t) − λm)

Applying the probability again we have that P
[
z > h−1 (t) − λm

]
, normalizing

P
[
z − b

a
>

h−1 (t) − λm − b
a

]
= p

[
z − b

a
>

h−1 (t) − λm − b
a

]

P(x >
h−1 (t ) − b − λm

a
)

P(xa > h−1 (t) − b − λma)

Note: If x = z−b
a = xa = z − b⇒ z = xa + b

P(xa + b + λma > h−1 (t))

P[z + λma > h−1 (t)]

Multiplying through by h, we have

P[h(z + λma) > h−1 (t) · h] = P[h(z + λma > t]⇒ En[h(z + λma)

En
x = En(h (z + λma) =

∫
hxS x (x) dx = E

[
S 0e2+λma

]
(4.2)

Where En denotes the expectation under the density measure n, then

H (S T ,−λ) = E
[
S 0e2+λmaT

]
for every m ∈ R.

This result shows that under a hx,a,b,m,d operator, a meixner random variable is translated by a factor λma. This

generalizes the equivalent result found in NIG.

The reason for every m ∈ R, is that, stochastically, the market is changing over time by making business time more

stochastic. The m incorporates the stochastic volatility effect and the resulting option prices can be determined

very similarly to empirical prices. S T evolves like a risk neutral asset as λm is calliberated to verify the risk neutral

condition even as m tends to nor∞.
- Then the expression for H [S T ,−λ] simplifies to H (S T − λm) = S 0erT .

Here, under meixner operator with value λm gives ∅m [(u) + λm], the price at S T evolves like a risk neutral asset

because λm is calibrated to verify the risk neutral condition.

Hence

H (S T ,−λ) = S 0erT =

∫
hx,a,b,m,k(S x (t))dt = ∅m [

(u) + λm]
= E

[
S 0e2+λma

]
= E

[
h (z + λma)

]

⇒ H [S T ,−λ] = E
[
S 0e2t−λmaT

]
. (4.3)

- More generally, the proposition can be extended to the case when the security price is a function of a symmet-

rically distributed random variable.

- If we apply the price E[z + λma], the capital required for the standard European call payoff is

H[F (S T , k) ; λ] = E
[
h(2T + λma

]
=

[
S 0e2t+λma − k

]
=

∫ ∞

−∞

(
S 0e2 − k

)
mex (x : a, b,m, k + λma) dt. (4.4)

Having known the density function H (F (S T )) of the stock price at the expiring time, S T under the risk neutral

measure λma we can easily prize European call and put option by simply calculating the expected value (Schoutens,

2003).
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4.1 Contingent Claim Pricing

Let us look at the Meixner asset price model ∅m [(U) + λm] and a standard European call option pay-off at maturity

time T given by f (S T ,K) = (S T ,−K). This is purely a function of the ( fT , p)-random variable S T that becomes

the change for the security offered at the time T . It can be stated as S T = h (zT ) for a function h (z) = (S 0ez − K),

the value at time zero is therefore given by the expectation of the payoff under the Martingale measure.

C (k,T ) = EQ[exp(−rT )max (S T − k) , 0]

exp(−rT )

∫ ∞

0

gQ (S ,T ) max (S ,−K) ds

e−rT
∫ 0

k
gQ (S ,T ) (S − k) ds

exp(−rT )

∫ ∞

0

gQ (S T ) s ds − k(exp−rT )π (4.5)

Where π is the probability under ∅ of the future prize of the risky asset
∫ ∞

Qb (S 0ez − k) k
a zk−1e−zk + λma)dz. Then

H[F (S T , k) − λm] becomes ∫ ∞

Qb
(S 0ez − k)kzk−1e−zk − λm)dz

∫ ∞

Qb
S 0ez.kzk−1e−zk − λmdz − k

∫ ∞

Qα
kzk−1e−z − λmdz

If we set λm to be the one that make S T evolve like a risk neutral asset i.e. λm = π−rc
a T .

This shows that the price assessed with the pricing function related to the Meixner operator with parameter λm is

given by

S 0ez
∫ ∞

Qb [x, k, aT (b + λm) T dz − k
∫

mex(x, k, aT (b + λm) Tdz

= S 0ez
(
1 − ∅m

b − λm
)
−

(
1 − ∅m

b − λm
)

= S 0ez
(
∅m

b + λ
m
)
− k

(
∅m

b + λ
m
)

e−rT H (F (S T , k) ,−λm) = S 0mex
[∅b, x, k, a (b + λm)

]
T − ke−rT mex[∅b : x, k, aT (b + λm) T

which is the prize at time zero i.e. the price at S t. Therefore

H (X; λm) =

∫ ∞

0

P
[
h(Z + λm) > t

]
dt = E

[
h(z + λm)

]
= S 0ezT + a. (4.6)

If S t is the price of a security at time t, following a geometric Brownian motion

S t = S 0e
(
μ− σ2

2

)
t+σWt

(4.7)

where Wt is a Brownian motion under p then S T can be written as a function of the standard normal random

variable Z. Here,

S T = h (Z) (4.8)

where

h (x) = S 0e
(
μ− σ2

2

)
T+σ

√
T x

Applying the function we have

H (S T , λ
m) = E

[
h(z − λm)

]

E(S 0e
(
μ− σ2

2

)
T+σ

√
Tλma−σ√T x

) = S 0e
(
μ− σ2

2

)
T−σ√Tλma+ σ

2

2 (4.9)

for b = π−rc
σ

√
T = λmaT = λ.

Simplifies to

H (S T ,−λ) = S 0e−λ
maT (4.10)
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then the current price becomes

e−λ
mbT H (S T , λ

m) = e−λ
maTS 0e−λ

maT = S 0. (4.11)

Therefor, the parameter λm measure the obvious discount equals the for seen security charge to the substantive se-

curity charge considering the continual market price variations in order to make business time more stochastic. The

option price result incorporates these stochastic volatility effects which is determined very similarly to empirical

prices. If we consider the pay-off of an European call option (with maturity T and strike price k) we have

S T = C (S T ,K) = (S T ,−K) . (4.12)

Where S T is a lognormal random variable. Applying the function to this payoff with

b =
π − rc

σ

√
T = λmaT. (4.13)

We can show that

e−λ
mT H [C (XT , k) : −λ] = S 0φ

(
ln(

x0

k
) + (
λm + θ2

2
) T − θ√T

)

e−λ
mT kφ

ln
(

x0

k

)
+

(
λm+θ2

2

)
T

σ
√

T
= S 0φ

⎡⎢⎢⎢⎢⎢⎣ln(
x0

k
) + (
λm + θ2

2
) − e−rT kφ

ln( x0

k ) + ( λ
m+θ2

2
) T − σ√T

σ
√

T

⎤⎥⎥⎥⎥⎥⎦ . (4.14)

5. Conclusion

λm is the risk free rate for every m ∈ R, which shows that as market changes over time, it becomes more stochastic

and the parameter m incorporates these stochastic volatility effect making the option price determine very similarly

to empirical prices as it fit log-returns of financial assets like stock or indices.

In other words, under meixner operator with value λm =
μ−rc

a T ln∅w[(k) + λm] the prize at S T evolves like a risk

neutral asset because λm is calibrated to verify the risk neutral condition.

Consequently, we assumed that the prize of return at S T follows a meixner distribution in place of normal dis-

tribution this is because for us to achieve a better fit we replace the normal distribution by meixner distribution.

Hence, we generalize this approach by using an operator based on the density meixner distribution. The meixner

family allows for heavier and skewed tail, as the kurtosis of normal distribution is always less than that of meixner

distribution kurtosis.
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