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Abstract

In this paper we extend the Hadamard’s type inequalities for convex functions defined on the modulus of integral

functions in complex field. Firstly, by using the Principal of maximum modulus theorem we show that M(r) and

lnM(r) are continuous and convex functions for any non-negative values of r. Finally we derive two inequalities

analogous to well known Hadamard’s inequality by using elementary analysis.
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1. Introduction

Let f : I ⊆ R → R is a convex mapping defined on the interval I ⊂ R. If a, b ∈ I, and a < b, then the following

double inequality

f
(

a + b
2

)
≤ 1

b − a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1.1)

holds. This is called the Hermite-Hadamard inequality. Since its discovery in 1893, Hadamard’s inequality

(Hadamard, 1893) has been proved to be one of the most useful inequalities in mathematical analysis. A num-

ber of papers have been written on this inequality providing new proofs, noteworthy extensions, generalization and

numerous applications (Hadamard, 1893; Heing & Maligranda, 1991/1992; Pachpatte, 2003; Mitrinovic, 1970;

Tunc, 2012; Dragomir, 1990b) and reference cited therein. The main purpose of this paper is to establish some

integral inequality involving the modulus of complex integral functions. Throughout this note, we write integral

functions for complex integral functions. Here some necessary definitions and theorem are mentioned which are

closely connected to our main result.

Definition 1.1 A function f (x) is said to be convex on the closed interval I ⊂ R if and only if f (λx + (1 − λ)y) ≤
λ f (x) + (1 − λ) f (y), for all x, y ∈ I and 0 ≤ λ ≤ 1.

Definition 1.2 If the derivative f ′(z) exists at all points z of a region R, then f (z) is said to be analytic in R
and referred to as an analytic function in R or a function analytic in R. The terms regular and holomorphic are

sometimes used as synonyms for analytic.

Definition 1.3 If AB and BC are two rectifiable arcs of lengths l and l′ respectively, which have only the point B
in common, the arc AC is evidently also rectifiable, its lengths being l + l′. From this it follows that a Jordan arc

which consists of a finite number of regular arcs is rectifiable, its length being the sum of the lengths of the regular

arcs forming it. Such an arc we call a contour. Also a closed contour means a simple closed Jordan curve which

consists of a finite number of regular arcs. Obviously a closed contour is rectifiable.

Definition 1.4 An integral function is a function which is analytic for all finite values of z. For example ez, cosz,

sinz, and all polynomials are integral functions.
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Definition 1.5 The maximum and minimum modulus of an integral function usually denoted by M(r) and m(r)

respectively, and defined by

M (r) = max
z∈D | f (z)| and m (r) = min

z∈D | f (z)| . (1.2)

Where D is a region bounded by a closed contour C.

Theorem 1.6 (The Principal of Maximum Modulus Theorem) Let f (z) is an analytic function, regular in a region
D and on its boundary C, where C is a simple closed contour. Then | f (z)| is continuous in D, since

|| f (z + h)| − | f (z)|| ≤ | f (z + h) − f (z)| ,
and | f (z + h) − f (z)| → 0 as h→ 0. Hence | f (z)| has a maximum value, which is obtained at one or more points.
In fact | f (z)| reaches its maximum on the boundary C, and not at any interior point of D. We may claim that if
| f (z)| ≤ M on C, then the same inequality holds at all points of D.

A more precise form of the theorem is as follows:

“Let f (z) be an analytic function, regular within and on the closed curve C. Let M be the upper bound of | f (z)|
on C. Then the inequality | f (z)| ≤ M holds everywhere within C. Moreover, | f (z)| = M, at a point within C if and
only if f (z) is constant”.

Theorem 1.7 (The Principal of Minimum Modulus Theorem) If f (z) is a non-constant integral function without
zeros within the region bounded by a closed contour C, then | f (z)| obtained its minimum value at a point on the
boundary of C, i.e. if m is the minimum value of | f (z)| on C, then the inequality holds | f (z)| ≥ m, for any z lies
inside C.

Theorem 1.8 (Hadamard’s Three Circle Theorem) Let f (z) is an analytic function, regular for any z lies inside
the annulus r1 ≤ |z| ≤ r3. If r1 < r2 < r3 and M1, M2, M3 are the maxima of | f (z)|, on the circle |z| = r1, r2, r3

respectively, then we get

M
ln
(

r3
r1

)
2

≤ M
ln
(

r3
r2

)
1

M
ln
(

r2
r1

)
3

. (1.3)

Proof. See (Titchmarsh, 1939, pp. 173) and (Copson, 1935, pp. 164). �
In Section 2, we are mentioned some necessary lemmas with proof, which are closely connected to our main results.

Mainly here we established that M(r) and lnM(r) are continuous and convex functions for any non-negative real

values of r. Finally in Section 3, we established two integral inequalities analogous to the well-known Hadamard’s

inequality (1.1).

2. Some Useful Lemmas

In order to establish the result, we need the following lemmas, some of them are discussed in (Titchmarsh, 1939;

Polya, 1926).

Lemma 2.1 If f (z) is an integral function, and M(r) denotes the maximum value of | f (z)|, on the region D: |z| ≤ R,
then M(r) is a steadily increasing continuous function of r.

Proof. Let 0 ≤ r1 ≤ r2 ≤ R and M(r1), M(r2) denote the maximum modulus of | f (z)| on the circles |z| = r1 and

|z| = r2 respectively. Here r1 < r2 implies that the circle |z| = r1 lies inside the circle |z| = r2. Say
∣∣∣∣ f (r1eiα1

)∣∣∣∣ =
M (r1), hence M(r1) obtained at z = r1eiα1 . Now z = r1eiα1 lies inside the circle |z| = r2. So, by using the principal

of maximum modulus theorem, we get

M(r1) =
∣∣∣∣ f (r1eiα1

)∣∣∣∣ ≤ M(r2). (2.1)

Therefore, M(r) is a steadily increasing function of r.

Now we show that M(r) is a continuous function of r. For any δ (> 0) there exits ε > 0 such that | f (z) − f (z0)| < ε,
whenever, |z − z0| < δ, since f (z) is a continuous function. Also, if |z − z0| < δ, then we get

|| f (z)| − | f (z0)|| ≤ | f (z) − f (z0)| < ε, (2.2)

which implies that | f (z)| is continuous in |z| ≤ R. Let 0 < z0 < r and z0 = r0eiα0 , i.e. z0 lies inside |z| ≤ R. Suppose

z = reiα be any point such that |z − z0| < δ, so this z satisfies the inequality (2.2). And for any values of θ, z0 = r0eiθ

93



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 3; 2013

and z = reiθ satisfies inequality (2.2), also z and z0 lies inside |z| = R, and lies on |z| = r, |z| = r0 respectively. Now

for the annulus D: r1 ≤ |z| ≤ r, the inequality (2.2) holds. So we get∣∣∣∣
∣∣∣∣ f (reiθ

)∣∣∣∣ −
∣∣∣∣ f (roeiθ0

)∣∣∣∣
∣∣∣∣ < ε, (2.3)

and |r − r0| =
∣∣∣∣∣∣reiθ
∣∣∣ − ∣∣∣roeiθ0

∣∣∣∣∣∣ ≤ ∣∣∣reiθ − roeiθ0
∣∣∣ < δ.

Case 1: If r > r0, from inequality (2.3), we get∣∣∣∣ f (reiθ
)∣∣∣∣ − ε <

∣∣∣∣ f (r0eiθ
)∣∣∣∣ <
∣∣∣∣ f (reiθ

)∣∣∣∣ + ε, (2.4)

which is true for any θ. Suppose M (r) =
∣∣∣∣ f (reiβ

)∣∣∣∣, by using the inequality (2.4), we get

∣∣∣∣ f (reiβ
)∣∣∣∣ − ε <

∣∣∣∣ f (r0eiβ
)∣∣∣∣ <
∣∣∣∣ f (reiβ

)∣∣∣∣ + ε,
⇒ M(r) − ε <

∣∣∣∣ f (r0eiβ
)∣∣∣∣ < M(r) + ε.

(2.5)

Also z = r0eiβ lies inside the circle |z| = r. So by using the principal of maximum modulus theorem, we get∣∣∣∣ f (r0eiβ
)∣∣∣∣ ≤ M (r0) ≤ M (r) < M (r) + ε, (2.6)

From inequalities (2.5) and (2.6), we get

M(r) − ε < M(r0) < M(r) + ε,

i.e. limr→r0
+ M(r) = M (r0) .

(2.7)

Case 2: If r < r0, then from inequality (2.3), we get∣∣∣∣ f (r0eiθ
)∣∣∣∣ − ε <

∣∣∣∣ f (reiθ
)∣∣∣∣ <
∣∣∣∣ f (r0eiθ

)∣∣∣∣ + ε, (2.11)

Consider M (r0) =
∣∣∣∣ f (roeiα0

)∣∣∣∣ , then from inequality (2.8), we get

∣∣∣∣ f (r0eiα0

)∣∣∣∣ − ε <
∣∣∣∣ f (reiα0

)∣∣∣∣ <
∣∣∣∣ f (r0eiα0

)∣∣∣∣ + ε,
⇒ M (r0) − ε <

∣∣∣∣ f (reiα0

)∣∣∣∣ < M (r0) + ε.

(2.9)

Also, z = reiα0 lies inside |z| = r0. Now by principal of maximum modulus theorem, we get∣∣∣∣ f (reiβ
)∣∣∣∣ ≤ M (r ) ≤ M (r0) < M (r0) + ε, (2.10)

From inequalities (2.9) and (2.10), we get

M (r0) − ε < M(r) < M (r0) + ε,

i.e. limr→r0
− M (r) = M(r0)

(2.11)

From equations (2.7) and (2.11), we get

lim
r→r0

M(r) = M(r0)

Therefore, M (r) is continuous at r0. Now r0 is arbitrary, so we say that M (r) is a continuous function for any

non-negative real values of r. �
Lemma 2.2 Let f (z) is an integral function, and M(r) is the maximum modulus of | f (z)| on the region D: |z| ≤ r.
Then | f (z)| ≤ M(r), and | f (r)| ≤ M(r).

Proof. By using the principal of maximum modulus theorem, we get | f (z)| ≤ M(r), for any z lies inside and on the

circle |z| = r. Also, if we take z = r + 0 × i = r, then this z lies on the circle |z| = r, hence for this z = r, we get

| f (r)| ≤ M(r). This completes the proof. �
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Lemma 2.3 Let f (z) is an integral function and M (r) be the maximum modulus of | f (z)| on the region D: |z| ≤ r.
Then M(r) is a convex function for any non-negative real values of r.

Proof. By using lemma, we say that M(r) is a increasing function for any non-negative real values of r. Choose,

r1 ≤ r ≤ r2, lies on line segment between the points r1 and r2. And for 0 < λ < 1, we get r = λr1 + (1 − λ) r2. Also

the value M(r) lies on the curve which is downward of the line segment between the points M(r1) and M(r2), and

λM(r1) + (1 − λ) M(r2) lies on this line segment. So we get M(r) ≤ λM(r1) + (1 − λ) M(r2). Therefore M(r) is a

convex function for any non-negative real values of r. This completes the proof. �
Lemma 2.4 Let f (z) is an analytic function in |z| ≤ R, f (0) � 0, and M (r) the maximum modulus of | f (z)| on the
region D: |z| ≤ r. Then lnM (r) is a convex function of lnr for any positive real values of r.

Proof. Let r1 < r2 < r3 ≤ R and Mi (ri) is the maximum modulus of | f (z)| on the region bounded by the circles

|z| = ri, for i = 1, 2, 3, respectively. Then by using Hadamard’s three circle theorem, we get

M
ln
(

r3
r1

)
2

≤ M
ln
(

r3
r2

)
1

M
ln
(

r2
r1

)
3
. (2.12)

The sign of equality will occur only if the function f (z) is constant multiple of a power of z. Excluding this case,

we get

M
ln
(

r3
r1

)
2

< M
ln
(

r3
r2

)
1

M
ln
(

r2
r1

)
3
.

Taking logarithm on the both sides, we get

ln
(

r3

r1

)
lnM2 < ln

(
r3

r2

)
lnM1 + ln

(
r2

r1

)
lnM3,

⇒ lnM2 <
lnr3−lnr2

lnr3−lnr1
lnM1 +

lnr2−lnr1

lnr3−lnr1
lnM3.

(2.13)

Now lnM (r) is a continuous function of lnr, and so if we put x = lnr, then we get, lnM (r) = ϕ (lnr ) = ϕ(x) . Also

consider, xi = lnri , for i = 1, 2, 3, then

lnMi = lnMi (ri) = ϕ (lnri ) = ϕ (xi) .

So we obtained the following inequality from (2.13)

ϕ (x2) <
x3 − x2

x3 − x1

ϕ (x1) +
x2 − x1

x3 − x1

ϕ (x3) = λϕ (x1) + (1 − λ)ϕ (x3) ,

where, λ = (x3 − x2)/(x3 − x1) < 1, since x1 < x2 < x3.

Also here we choose x2 arbitrarily. Hence we can say that ϕ (x) is a convex function of x, i.e. lnM (r) is a convex

function of lnr. This completes the proof. �
3. Main Results

Theorem 3.1 Let f (z) is a complex integral function defined on any finite region D: |z| = R, then for any a, b ∈ I ⊂
[0, ∞) with a < b, we get the following inequalities

∣∣∣∣∣ f (
a + b

2
)

∣∣∣∣∣ ≤ M
(

a + b
2

)
≤ 1

b − a

∫ b

a
M (r) dr ≤ M (a) + M (b)

2
,

and
| f (a)| + | f (b)|

2
≤ M (a) + M (b)

2
.

Proof. By using lemma, we get M: I ⊂ [0,∞)→ R is a convex mapping defined on the interval I of real numbers,

and a, b ∈ I with a < b. Now by using the Hermite-Hadamard inequality on convex function, we derive the

following double inequality

M
(

a + b
2

)
≤ 1

b − a

∫ b

a
M (r) dr ≤ M (a) + M (b)

2
, (3.1)

Also, by using Lemma 2.2, we get

∣∣∣∣∣ f (
a + b

2
)

∣∣∣∣∣ ≤ M
(

a + b
2

)
, and

| f (a)| + | f (b)|
2

≤ M (a) + M (b)

2
. (3.2)
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The proof of this theorem is completed. �
Theorem 3.2 Let f (z) a complex integral function defined on any finite region D: |z| ≤ R, f (0) � 0. Now for any
a, b ∈ I ⊂ [0, ∞), with a < b, we get the following inequalities

ln
∣∣∣∣∣ f (

a + b
2

)

∣∣∣∣∣ ≤ lnM(
a + b

2
) ≤ 1

b − a

∫ b

a
lnM (r)dr ≤ lnM (a) + lnM (b)

2
,

and
ln | f (a)| + ln | f (b)|

2
≤ lnM (a) + lnM (b)

2
.

Proof. By using lemma, we get lnM: I ⊆ [0,∞) → R is a convex mapping defined on the interval I of real

numbers, and a, b ∈ I with a < b. Now by using the Hermite-Hadamard inequality, we derive the following double

inequality

lnM(
a + b

2
) ≤ 1

b − a

∫ b

a
lnM (r)dr ≤ lnM (a) + lnM (b)

2
. (3.3)

Also, by using Lemma 2.2, we get

ln
∣∣∣∣∣ f (

a + b
2

)

∣∣∣∣∣ ≤ lnM
(

a + b
2

)
,

and
ln | f (a)| + ln | f (b)|

2
≤ lnM (a) + lnM (b)

2
. (3.4)

The proof of this theorem is completed. �
4. Conclusion

Inequalities (3.1) to (3.4) indicated our final results. These are the extension of the Hadamard’s type inequalities

(1.1) for the functions M(r) and lnM(r). In the next paper we will give the applications on these results by

obtaining some Hadamard’s-type inequality for Meromorphic functions in complex field. Specially we will try to

obtain Hadamard’s-type inequalities for n(r, f ) and T (r, f ), defined on Meromorphic functions.
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