
Journal of Mathematics Research; Vol. 5, No. 3; 2013

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Shock-Formation Down a Non-Uniform Tube in Two Phase Flow

Kanti Pandey1 & Preeti Verma1

1 Department of Mathematics & Astronomy, Lucknow University, Lucknow, India

Correspondence: Kanti Pandey, Department of Mathematics & Astronomy, Lucknow University, Lucknow 226007,

India.

Received: July 22, 2012 Accepted: August 8, 2012 Online Published: June 28, 2013

doi:10.5539/jmr.v5n3p17 URL: http://dx.doi.org/10.5539/jmr.v5n3p17

Abstract

In present paper an attempt is made to study the one dimensional formulation of flow in a tube of varying cross-

sectional area for two phase flow when equilibrium is established eventually and particle volume fraction is taken

as one of the additional variable. Conservation laws and shock condition are obtained and using Whitham rule

(1974) of characteristic a relation between cross- sectional area and particle volume fraction is obtained and result

is discussed for different values of Mach number.
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1. Introduction

Flow in a pipe or artery are certain examples of flow in non-uniform tube. Shock waves propagating in a duct

of constant cross sectional area represent a particularly good example of relaxation in a gas particle mixture.

If a shock wave travels through a stationary equilibrium mixture, the gas temperature and pressure undergo a

practically instantaneous rise at the shock front, while the velocity decreases behind the shock front. The particles

thus suddenly find themselves in a gas of different velocity and temperature until their subsequent interaction with

the gas gradually establishes new equilibrium conditions.

The study of wave propagation in a mixture of gas and dust particles has received great attention during the last

several decades. There are many engineering applications for flow of a medium that consists of a suspension of

powdered material or liquid droplets in a gas. The mathematical analysis of such two phase flows is considerably

more difficult than that of pure gas flows, and one of the usual simplifying assumptions is that the volume occupied

by the particles can be neglected. In many important cases, the particles represent less than one half of the mass

of the gas particle mixture, and the density of the particle material is more than a thousand times larger than the

gas density. Under such conditions, the particle volume fraction is of the order of 10−4 only and the assumption

of a negligible particle volume is then well satisfied. One important consequence of this assumption is that the

equilibrium flow of the mixture of particles with a perfect gas can be analyzed like flow of a perfect gas that has

the density and specific heat of mixture. Carrier (1958) was first to study the motion of Shock wave in dusty gases.

Various aspects of two-phase flows were studied by Soo (1961). Kribel (1964) has analyzed normal shock-wave

in particle laden gas. Rudinger (1964) has studied the some properties of shock relaxation in gas flows carrying

small particles. Marble (1970) has discussed dynamics of dusty-gases, Mishra and Srivastava (1965) has studied

the three dimensional shock wave in a dusty medium. Sharma et al. (1992) have discussed propagation of rapid

pulses through a two-phase mixture of gas and dust particle, Pandey and Saxena (1989) has discussed growth and

decay of sonic waves in two phase flows. Pandey and Singh (2011) have discussed non self similar solution of

shock waves in gas particle mixture. They (2009) have also discussed strong explosions in two phase mixture of

radiating gases.

At high gas densities (high pressure) or at high particle mass fractions, the particle volume fraction may become

sufficiently large, so that it may be included into flow analysis without introducing significant errors. Since the

particles may be considered as incompressible in comparison with the gas, the particle volume fraction enters

into the basic flow equations as an additional variable. The interesting properties of such two phase flows is that

even equilibrium flows cannot be treated as perfect gas flows. Rudinger (1969) has discussed different aspect of
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two-phase flows with and without particle volume fraction. Steiner and Hirschler (2002) have studied self similar

solution of a shock propagation in a dusty gas. Jena and Sharma (1999), using Lie Group method have obtained

entire class of self similar solution in dusty gases. Pandey and Vaish (2007) have discussed certain features of

waves in two phase flows. Pandey and Saxena (1992) have discussed effects of finite volume fraction on curvature

of a reflected shock in gas mixture. Pandey and Shukla (1998) have discussed the effect of radiative heat transfer on

reflection of curved shock from straight rigid boundary through two phase mixture of gas and dust particle. There

are many engineering problem in which dilute phase of gas particles is a good approximation of actual conditions.

In such cases due to the existence of solid particles in the gas, properties of mixture differ significantly from

those of gas alone. Such types of studies have numerous applications in underground explosion (Lamb, Collen, &

Sullivan, 1992; Nagayama, 1993).

2. Basic Equations

We consider the nozzle flow of gas particle mixture when cross sectional area of duct is not constant but a prescribed

function A(x). We consider that the shock is to be produced by a piston moving with appropriate constant speed

far back in the uniform section. The piston is still providing the thrust to keep the shock moving, but there are no

changes due to this and the changes are entirely due to the cross-sectional area. Though the flow is not strictly

one-dimensional but if the cross-section A(x) does not vary too rapidly the equation are obtained by averaging

across the tube will provide a good approximation of one-dimensional flow. Bailey et al. (1961) have discussed

gas particle flow in an axisymmetric nozzle. In this connection work done by Gilbert et al. (1962) and Kliegel

(1963) is worth mentioning, as they have discussed dynamics of two phase flow in rocket nozzles and Gas particle

nozzle flow respectively.

Equations governing one-dimensional motion of two phase flows when particle volume fraction is taken into ac-

count are given by Rudinger (1969),

A(σ + σp),t +(σuA),x +(σpupA),x = 0, (1)

σ(u,t +uu,x ) + σp(up,t + uup,x) + p,x = 0, (2)

A
[
σ

(
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2
+CvT

)
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)]
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[
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(
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+CTp + ε
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σp

)]
,x
= 0 , (3)

Aε,t +(Aεu),x = 0. (4)

Equations (1-4) represents equation of mass, momentum, energy and conservation of particle mass fraction respec-

tively. The symbols σ, u, T, p,Cp,Cv denotes gas concentration, velocity, temperature, pressure, specific heat at

constant pressure and at constant volume respectively. σp, up,Tp,C, ε are particle concentration, velocity, temper-

ature, specific heat of particle and particle volume fraction respectively and A being duct area.

The equation of state in present case can be written as,

p =
ρmRmT
1 − ε ,

where ρm = (1 − ε)(1 + η)ρ is density of mixture and Rm = (1 − φ)R is effective gas constant for mixture, η, φ are

mass flow ratio and mass flow rate respectively.

Using above equation of state Equations (1-4) can be rewritten in the following form,

(1 − ε)ρ,t +u(1 − ε)ρ,x +ρu,x +(ρu/A)(1 − ε)A,x = 0, (5)

u,t +uu,x +{1/ρ(1 + η)(1 − ε)}p,x = 0, (6)

p,t +up,x −a2
e{ρ,t +uρ,x } = 0, (7)

ε,t +uε,x +εu,x +{εu/A}A,x = 0, (8)

where a2
e =

pγm
ρm(1−ε) and γm =

γ(1+ηξ)
(1+γηξ)

with ξ = C
Cp

, are equilibrium sound speed and ratio of specific heats for

mixture.

3. Conservation Laws and Shock Relations

Shock-Waves are the most important distinctive feature of supersonic flow, across which the medium undergoes

sudden and often considerable changes in velocity, pressure, density and temperature. When the quantities (ve-

locity, pressure, density and temperature) changes as we cross the surface it is called the surface of discontinuity
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or simply a shock. The occurrence of shock waves is commonly associated with supersonic flight, explosions and

electric discharges and underground explosions. During study of such surface of discontinuity the equation of

motion in front and behind are given by equations of motion given in section 2, but on surface of discontinuity

these equation are not valid and to study the properties of such surfaces following conservation laws are used.

Conservation of mass, momentum and energy for two phase flows when particle volume fraction is taken as an

additional variable are given by Rudinger (1969),

(1 − ε)ρuA = (1 − ε0)ρ0u0A = m, (9)

ερpupA = ε0ρpu0A = ηm, (10)

mu + ηmup + Ap = m(1 + η)u0 + Ap0, (11)

u2

2
+CpT + η
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u2

p

2
+CTp +

p
ρp

⎫⎪⎪⎬⎪⎪⎭ = (1 + η)
u2

0

2
+ (Cp + ηC)T0 + η

p0

ρp
. (12)

When equilibrium is eventually established, we can write u = up = ue and thus Equations (9-12) reduces in to

following set of equations,

(1 − εe)ρeueA = (1 − ε0)ρ0u0A = m, (13)

εeueA = ε0u0A = ηm, (14)

m(1 + η)ue + Ape = m(1 + η)u0 + Ap0, (15)

(1 + η)
u2

e

2
+ (Cp + ηC)Te + η

pe

ρe
= (1 + η)

u2
0

2
+ (Cp + ηC)T0 + η

p0

ρ0

, (16)

where subscripts e and 0 denotes the quantities in equilibrium and initial states respectively. Solving Equations

(13-16) we have following shock conditions,

ue
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=
(γm − 1)M2

e + 2 + 2ε0(M2
e − 1)

(γm + 1)M2
e

, (17)
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a2
0

= 1 +
2γm(M2
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Equations (17-20) can be written in following form also,

ue =
aoM0{(γm − 1)M2

e + 2 + 2ε0(M2
e − 1)}

(γm + 1)M2
e

, (21)
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e
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ρe =
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e
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pe = a2
oρ0

[
2M2

e

(γm + 1)
− (γm − 1)

γm(γm + 1)

]
, (24)

where Me is Mach number defined as M2
e =

u2
e

a2 , u is velocity of medium and a is speed of sound.

With help of Equations (21-24) and taking Me → ∞ we have following strong shock conditions,

ue = u0

(
γm − 1 + 2ε0

γm + 1

)
,
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εe = ε0

(
γm + 1

γm − 1 + 2ε0

)
,

ρe = ρ0

((
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1 − ε0

)
γm + 1
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)
,

pe = ρ0u2
e

(
2
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)
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4. Shock Propagation Down a Non-Uniform Tube

A detail investigation of propagation of shock-wave along ducts of varying cross-section is given by Chester (1954).

In this section using Whitham’s rule (Whitham, 1974) of characteristics propagation down a non-uniform tube of

variable cross sectional area is discussed. Vishwakama (2002) has applied Whitham’s rule (Whitham, 1974) of

characteristics for imploding cylindrical shock waves under the action of a magnetic field. In this connection work

done by Sharma and Madhumita (2004) is also worth mention.

Applying Whitham’s rule (Whitham, 1974) of characteristic equations for Equations (5-7) are given as follows ,

{
∂

∂t
+ (ue + ae)

∂

∂x

}
{p + uaeρe(1 − εe)(1 + η)} + uea2

eρe

A
A,x = 0, (25)

{
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eρe

A
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{
∂

∂t
+ ue

∂

∂x

}
{p − a2

eρ} = 0, (27)

where Equations (25) and (26) corresponds to the equations along the characteristics dx
dt = ue ± ae respectively.

Integrating above equations along characteristic the general solution of above equations are given by,

{pe − p0} + aeρe(1 − εe)(1 + η)(ue − uo) = − uea2
eρe

(ue + ae)

(
A(x) − Ao

Ao

)
+ F{x − (ue + ae)t}, (28)

{pe − p0} − aeρe(1 − εe)(1 + η)(ue − uo) = − uea2
eρe

(ue + ae)

(
A(x) − Ao

Ao

)
+G{x − (ue − ae)t}, (29)

{pe − p0} − a2
e(ρe − ρo) = H{x − uet}, (30)

where F, G and H are arbitrary functions. These solutions were obtained by Whitham (1974) and we have extended

it for two-phase flow which are applicable for blood flow in arteries, water flow in pipes and explosions in stars. In

terms of the change in Mach number (Me − M0) perturbations (pe − p0) , (ue − u0), are given by,

pe − p0 =
4a2

oρ0Me

(γm + 1)
(Me − M0), (31)

ue − u0 =
2a0

(γm + 1)

⎛⎜⎜⎜⎜⎝1 + 1
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When these are substituted in Equation (28) with (F = 0), we have,

⎡⎢⎢⎢⎢⎣ 4Mo

(γm + 1)
+

2

(γm + 1)

⎛⎜⎜⎜⎜⎝1 + 1

M2
0

⎞⎟⎟⎟⎟⎠ (1 − ε0)
ρeae

ρ0a0

⎤⎥⎥⎥⎥⎦ (Me − M0) = − uea2
eρe

a2
0
ρ0(ue + ae)

(
A(x) − Ao

Ao

)
, (33)

The expressions for ue, ρe in terms of M0 are given by Equations (21) and (23) with Me = M0. Equation (33) after

certain manipulation becomes, (
A(x) − Ao

Ao

)
= −g(M0)(Me − M0), (34)

where,

g(Me) =
Me

(M2
e − 1)

[
1 +
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μ

] [
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and

μ2 =
{(γm − 1)M2

e + 2 + 2ε0(M2
e − 1)}

2γmM2
e − (γm − 1)

. (36)

Now we are applying Whitham’s rule (1974) of characteristic to find change in area A(x) along characteristic
dx
dt = ue + ae.

For a tube which varies slowly but which accumulates large changes in A(x) over a sufficiently large length, we

might break down the problem into successive small lengths in each of which the change in A(x) is small. In

each such small length of tube it would be admissible to linearize about the local condition and develop a small

perturbation theory as in Equations (31) to (34). But it would no longer be strictly valid to take F = 0, because the

entry conditions into each of these subsections would not be a uniform state. As Equation (34) is the differential

form of a functional relation M = M(A),

1

A
dA
dM
= −g(M). (37)

The characteristic equation for the dx
dt = u + a characteristic in this case is,

dp
dx
+ ρ(1 − ε)(1 + η)adu

dx
+
ρa2u

(u + a)

1

A
dA
dx
= 0. (38)

Substituting shock conditions given as in Equations (21-24), we have,

g(M)
dM
dx
+

1

A
dA
dx
= 0, (39)

where g(M) is given by Equation (35). We can write Equation (39) as,

M
M2 − 1

λ(M)
dM
dx
+

1

A
dA
dx
= 0, (40)

where,

λ(M) =

[
1 +

2(1 − ε0)

(γm + 1)

(1 − μ2)

μ

] ⎡⎢⎢⎢⎢⎣1 + 2μ +
1

M2
0

⎤⎥⎥⎥⎥⎦ .
Equation (40) can be written as in the form,

1

A
dA =

−M
M2 − 1

λ(M)dM. (41)

If we consider the case when M → 1, λ → 4 which shows that particle does not contribute to this case but strong

shock case when M → ∞, μ2 =
{(γm−1)+2ε0}

2γm
, hence presence of particle effect μ2 and hence λ also.

5. Result and Discussion

For various values of particle volume fraction (ε = 0, 0.05, 0.15, 0.25) velocity, density, pressure are obtained on

shock surface from Equations (17- 20) and they are in agreement with well known results. Figure 1 shows that the

velocity decreases behind the shock waves a well known result but presence of particle volume fraction shows that

it is large as compared to pure gas case. Figure 3 shows that well known result conservation of mass is satisfied

and density increases behind the shock wave but it always less than to the pure gas case and as value of particle

volume fraction is increasing density is decreasing. Figure 5 shows variation of pressure behind the shock wave for

air, dry and wet stream which shows that pressure has increasing tendency but for dry and wet stream it is less than

that of air. From Equations (21) and (23) velocity and density are obtained for various values of equilibrium Mach

number (Me = 2.85, 3.85, 4.85). The nature of velocity and density are shown through Figures 2 and 4. With help

of Equation (41) variation of area is obtained and plotted for equilibrium Mach number (Me = 2.85, 3.85, 4.85) in

Figure 6. For strong shock case M → ∞, μ2 =
{(γm−1)+2ε0}

2γm
, which shows the effect of particle volume fraction on

μ2 and hence on λ also. Variation of λ for different values of ε is shown in Figure 7 which shows that as particle

volume faction is increasing λ is decreasing.
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Figure 1. A graph between Mach number ‘M’ and ratio of velocity ‘(ue/u0)’ for different values of particle

volume fraction ‘ε’

Figure 2. A graph between the particle volume fraction ‘ε’ and ratio of velocity ‘(ue/u0)’ for different values of

Mach number ‘M’

Figure 3. A graph between the Mach number ‘M’ and ratio of density ‘(ρe/ρ0)’ for different values of particle

volume fraction ‘ε’
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Figure 4. A graph between the particle volume fraction ‘ε’ and ratio of density ‘(ρe/ρ0)’ for different values of

Mach number ‘M’

Figure 5. A graph between the Mach number ‘M’ and ratio of pressure ‘(pe/p0)’ for different values of particle

volume fraction ‘ε’

Figure 6. A graph between the particle volume fraction ‘ε’ and area ‘A’ for different values of Mach number ‘M’
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Figure 7. A graph between ‘λ’ and shock relative to the flow ‘μ’ for different values of particle volume fraction ‘ε’
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