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Abstract

Using distinct non zero diagonal elements of a Hermitian (or anti Hermitian) matrix as independent variables of the

characteristic polynomial function, a Newton’s algorithm is developed for the solution of the inverse eigenproblem

given distinct nonzero eigenvalues. It is found that if a 2×2 singular Hermitian (or singular anti Hermitian) matrix

of rank one is used as the initial matrix, convergence to an exact solution is achieved in only one step. This result

can be extended to n × n matrices provided the target eigenvalues are respectively of multiplicities p and q with

p + q = n and 1 ≤ p, q < n. Moreover, the initial matrix would be of rank one and would have only two distinct

corresponding nonzero diagonal elements, the rest being repeated. To illustrate the result, numerical examples are

given for the cases n = 2, 3 and 4.
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1. Introduction

The matrix inverse eigenvalue problem entails the reconstruction of a matrix from its eigenvalues. It has been of

interest not only to algebraists but also to numerical analysts, control theorists, statisticians and engineers. Most

research effort have been directed at solving the inverse eigenvalue problem for nonsingular symmetric matrices

(Chu & Golub, 2005; Gladwell, 2004; Deakin & Luke, 1992; Chu, 1995). Recently, however, the case of singular

symmetric matrices of arbitrary order and rank has been virtually solved provided linear dependency relations are

specified (Gyamfi, Oduro, & Aidoo, 2013; Aidoo, Gyamfi, Ackora-Prah, & Oduro, 2013). It is plausible to expect

solutions of the inverse eigenvalue problem in a sufficiently small neighborhood of any such Hermitian matrix. In

this paper, therefore, we develop a Newton’s method for the solution of the inverse eigenvalue problem for a (anti-)

Hermitian matrix using a singular (anti-) Hermitian matrix as the initial approximation. In the case of a 2 × 2

(anti-) Hermitian matrix with non-zero diagonal elements, we show that an exact solution is obtained in only one

step if the initial matrix is of rank one. This result is subsequently extended to n × n matrices provided the target

eigenvalues are respectively of multiplicities p and q with p + q = n and 1 ≤ p, q < n.

2. Preliminaries

In this section we review previous results obtained by Gyamfi et al. (2013) and Aidoo et al. (2013) in respect of

the inverse eigenvalue problem for singular symmetric matrices which are here extended to include singular (anti-)

Hermitian matrices as well.

Lemma 1 There exists a one-to-one correspondence between the elements of a Hermitian or anti Hermitian matrix
and its distinct nonzero eigenvalues if and only if the matrix is of rank 1 (Aidoo et al., 2013).

Proof. Let the given Hermitian or anti Hermitian matrix be of rank r, then, clearly, the number of independent

elements is r(r+1)
2

. Thus a one to one onto correspondence will exist between the elements of the matrix and its

distinct nonzero eigenvalues if and only if r(r+1)
2
= r. i.e., if and only if r = 1.

Proposition 1 If the row dependence relations for a Hermitian or anti Hermitian matrix of rank 1 are specified as
follows

Ri = ki−1R1, i = 2, . . . n − 1 (1)
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where Ri is the ith row and each ki is a nonzero scalar. Then the matrix can be generated from its nonzero
eigenvalue λ:

A = a11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 k̄1 k̄2 . . . k̄n−1

k1 |k1|2 k̄1k2 . . . . . .

k2 k1k̄2 |k2|2 . . . . . .

...
...

...
...

kn−1 k̄1kn−1 k̄2kn−1 . . . |kn−1|2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where
a11 =

λ

1 + |k1|2 + · · · + |kn−1|2
Proof. By induction on n. Similarly result has also been obtained for singular matrix of rank greater than 1. �
3. Main Results

3.1 Characteristic Function of Matrix Elements

Let X = (x1, x2, . . . , xn) ∈ Rn where x1, x2, . . . , xn are n elements of a Hermitian matrix A of order n× n . For given

distinct (target) eigenvalues λ1, λ2, . . . , λn, of another Hermitian matrix At, called the target matrix, we now define

a characteristic function as a function of n elements of A given by

fi(x1, x2, . . . , xn) =

n∑
k=0

(−1)2n−kIkλ
n−k
i (3)

Here, Ik the coefficient of λn−k
i is the kth principal invariant of the second order Hermitian tensor represented by A.

As is well-known Ik can be written in terms of the eigenvalues of A, which we denote here by μ1, μ2, . . . , μn.

Ik =
1

n!

∑
π∈S n

k∏
j=1

μπ( j) (4)

where π ∈ S n is a permutation of the natural numbers and S n is the symmetric group of order n. Moreover the Ik

may also be expressed in terms of the trace of A and its powers. For our purposes it suffices to write down the first

few terms:

I0 = 1

I1 = trA =
n∑

j=1

μ j

I2 =
1

2

[
(trA)2 − (trA2)

]
=
∑
i< j

μiμ j

Thus, In = det A =
n∏

j=1
μ j

Note that when A coincides with At then each characteristic function reduces to a characteristic equation in λi

fi(x1, x2, . . . , xn) = 0 i = 1, · · · , n (5)

For our purposes it is convenient to choose x1 = a11, x2 = a22, . . . , xn = ann as the n elements of the matrix A which

are also used as the n independent variables of each fi.

fi(a11, a22, . . . , ann) = 0 i = 1, · · · , n (6)

Definition 1 (An Inverse Eigenvalue Problem) An inverse eigenvalue problem can be formulated as follows: To

find the diagonal elements aii of the target (anti-) Hermitian matrix At, given its non-diagonal elements, as specified

in Equation (2) and its spectrum {λ1, . . . , λn}.
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Remark 1 The solution of the IEP stated above is then simply the solution of Equation (6). Now this equation is

clearly solvable by Newton’s method.

This will require the Jacobian matrix J of the smooth vector function with components fi which is given by

J =
[
∂ fi
∂a j j

]
(7)

The entries of J may be computed as follows.

Theorem 1
∂ fi
∂a j j

= −λn−1
i + tr(Mj)λ

n−2
i + · · · + (−1)ndet(Mj) (8)

where Mj is the (n − 1) × (n − 1) matrix obtained by deleting the jth row and the jth column of A.

Theorem 2
det J = −

∏
i< j

(aii − a j j)(λi − λ j) (9)

Proof. From the expression

∂ fi
∂a j j

= −λn−1
i + tr(Mj)λ

n−2
i + · · · + (−1)ndet(Mj)

It is clear that the Jacobian matrix will have the ith and the kth rows equal if λi is the same as λk. Also the Jacobian

matrix will have the jth and lth columns equal if the diagonal elements a j j and all are equal. The result follows

from the vanishing of a determinant with repeated rows or repeated columns as well as (up to multiplication by a

constant) from the factor theorem of elementary algebra. It is easily checked that by the definition of characteristic

polynomial adopted, the constant multiple is −1. �
Theorem 3 If the (anti-) Hermitian matrix A is of rank r, the characteristic polynomial functions reduce to the
forms:

fi(a11, a22, . . . , ann) =

r∑
k=0

(−1)2n−kIkλ
n−k
i i = 1, · · · , n (10)

Proof. If A is (anti-) Hermitian of rank r, then all the possible invariants of A for which k > r vanish (from

Equation (4)). �
Corollary 1 If the (anti-) Hermitian matrix A is of rank one, then the characteristic polynomial functions reduce
to the forms

fi(a11, a22, . . . , ann) = λn
i − (trA)λn−1

i (11)

with A being (anti-) Hermitian and of rank 1, all the invariants of A vanish except the trace and the fi become
linear functions of the diagonal elements of A.

Theorem 4 (Newton’s Algorithm) Let A(0) be (anti-) Hermitian and X(0) = (a(0)
11
, a(0)

22
, · · · , a(0)

nn ). Then, provided
the diagonal elements a(0)

ii of A(0) are distinct, the inverse eigenvalue problem stated above can be solved in a
sufficiently small neighbourhood of X(0) by the Newton’s method given by the scheme.

X(N+1) = X(N) − J−1 f (X(N)), N = 0, 1, 2, . . . (12)

Here, the Jacobian matrix J must be invertible.

Theorem 5 (Singularity of J for n > 2 and distinct eigenvalues) The Jacobian matrix corresponding to distinct
target eigenvalues λ1, λ2, . . . , λn, n > 2 is singular.

Proof. Clearly, it is sufficient to prove this result for the case n = 3. �

∂ fi
∂a j j

= −λn−1
i + tr(Mj) (13)
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|J| =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ2
1
+ (a22 + a33)λ1 −λ2

1
+ (a11 + a33)λ1 −λ2

1
+ (a11 + a22)λ1

−λ2
2 + (a22 + a33)λ2 −λ2

2 + (a11 + a33)λ2 −λ2
2 + (a11 + a22)λ2

−λ2
3 + (a22 + a33)λ3 −λ2

3 + (a11 + a33)λ3 −λ2
3 + (a11 + a22)λ3

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

−λ2
1 −λ2

1 + (a11 + a33)λ1 −λ2
1 + (a11 + a22)λ1

−λ2
2 −λ2

2 + (a11 + a33)λ2 −λ2
2 + (a11 + a22)λ2

−λ2
3 −λ2

3 + (a11 + a33)λ3 −λ2
3 + (a11 + a22)λ3

∣∣∣∣∣∣∣∣∣∣∣∣

+(a22 + a33)

∣∣∣∣∣∣∣∣∣∣∣∣

λ2
1 −λ2

1 + (a11 + a33)λ1 −λ2
1 + (a11 + a22)λ1

λ2
2 −λ2

2 + (a11 + a33)λ2 −λ2
2 + (a11 + a22)λ2

λ2
3 −λ2

3 + (a11 + a33)λ3 −λ2
3 + (a11 + a22)λ3

∣∣∣∣∣∣∣∣∣∣∣∣

= (a11 + a33)

∣∣∣∣∣∣∣∣∣∣∣∣

−λ2
1 λ2

1 −λ2
1

−λ2
2 λ2

2 −λ2
2

−λ2
3 λ2

3 −λ2
3

∣∣∣∣∣∣∣∣∣∣∣∣
+ (a11 + a33)(a11 + a22)

∣∣∣∣∣∣∣∣∣∣∣∣

−λ2
1 λ2

1 λ2
1

−λ2
2 λ2

2 λ2
2

−λ2
3 λ2

3 λ2
3

∣∣∣∣∣∣∣∣∣∣∣∣

+(a22 + a33)

∣∣∣∣∣∣∣∣∣∣∣∣

λ2
1 −λ2

1 −λ2
1

λ2
2 −λ2

2 −λ2
2

λ2
3 −λ2

3 −λ2
3

∣∣∣∣∣∣∣∣∣∣∣∣
+ (a22 + a33)(a11 + a22)

∣∣∣∣∣∣∣∣∣∣∣∣

λ2
1 −λ2

1 λ2
1

λ2
2 −λ2

2 λ2
2

λ2
3 −λ2

3 λ2
3

∣∣∣∣∣∣∣∣∣∣∣∣
Therefore

|J| = 0 (14)

Corollary 2 If A(0) is (anti-) Hermitian, singular and of rank 1 and with distinct nonzero diagonal element, then f
at X(0) is linear. Therefore, the solution of the IEP by Newton’s method is exact and in one step only. This is only
true for n = 2.

Example 1 (The case n = 2) From Equation (11), for n = 2, the characteristic functions of an (anti-) Hermitian

matrix A of rank one are given as,

f1(a11, a22) = λ2
1 − λ1(a11 + a22)

f2(a11, a22) = λ2
2 − λ2(a11 + a22)

From Equation (8), the corresponding Jacobian matrix is given as

J =
[
∂ fi
∂a j j

]
=

⎡⎢⎢⎢⎢⎢⎣a22 − λ1 a11 − λ1

a22 − λ2 a11 − λ2

⎤⎥⎥⎥⎥⎥⎦ (15)

The inverse of the Jacobian matrix is then computed as follows

J−1 =
1

(λ2 − λ1)(a11 − a22)

⎡⎢⎢⎢⎢⎢⎣a11 − λ2 λ1 − a11

λ2 − a22 a22 − λ1

⎤⎥⎥⎥⎥⎥⎦ (16)

Note that for J to be invertible, the target eigenvalues λ1 and λ2 must be distinct. So also must be the diagonal

elements of A.

Numerical Example 1 Let λ1 = −1 and λ2 = 3. Now suppose, initial matrix is given by the singular symmetric

matrix

A(0) =

⎡⎢⎢⎢⎢⎢⎣1 2

2 4

⎤⎥⎥⎥⎥⎥⎦
So that a11

(0) = 1, a22
(0) = 4, f1(a11

(0), a22
(0)) = 1 + 5 = 6 and f2(a11

(0), a22
(0)) = 9 − 15 = −6.

Thus ⎡⎢⎢⎢⎢⎢⎣ f1(a11
(0), a22

(0))

f2(a11
(0), a22

(0))

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ 6

−6

⎤⎥⎥⎥⎥⎥⎦
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and, Newton’s method then gives

⎡⎢⎢⎢⎢⎢⎣a11
(1)

a22
(1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣1
4

⎤⎥⎥⎥⎥⎥⎦ + 1

12

⎡⎢⎢⎢⎢⎢⎣−2 −2

−1 5

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ 6

−6

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣1
4

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣ 0

−3

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣1
1

⎤⎥⎥⎥⎥⎥⎦

Hence A(1) =

⎡⎢⎢⎢⎢⎢⎣1 2

2 1

⎤⎥⎥⎥⎥⎥⎦. It is easily checked the eigenvalues of A(1) are -1 and 3.

Note also that the Hermitian matrices,

⎡⎢⎢⎢⎢⎢⎣ 1 −2

−2 4

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣1 2i

2i 4

⎤⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎣ 1 −2i

−2i 4

⎤⎥⎥⎥⎥⎥⎦ also each yield the same solution of the

IEP as

⎡⎢⎢⎢⎢⎢⎣1 2

2 4

⎤⎥⎥⎥⎥⎥⎦.

Similarly, the (anti-) Hermitian matrices, i

⎡⎢⎢⎢⎢⎢⎣ 1 −2

−2 4

⎤⎥⎥⎥⎥⎥⎦ , i

⎡⎢⎢⎢⎢⎢⎣1 2i

2i 4

⎤⎥⎥⎥⎥⎥⎦ , i

⎡⎢⎢⎢⎢⎢⎣ 1 −2i

−2i 4

⎤⎥⎥⎥⎥⎥⎦ also each yield the same solution

of the IEP as i

⎡⎢⎢⎢⎢⎢⎣1 2

2 4

⎤⎥⎥⎥⎥⎥⎦, where −i and 3i are the target eigenvalues in this case.

Theorem 6 Let the target eigenvalues λ1, λ2, . . . , λn have multiplicities p and q, where p+ q = n and 1 ≤ p, q < n.
And let the initial matrix A possess corresponding diagonal elements repeated p times and q times respectively
with non diagonal elements as prescribed by equation 2. Then, the n characteristic polynomial functions may be
reduced to only two:

fi(a11, a22, . . . , ann) = fi(akk, akk, . . . , akk︸�������������︷︷�������������︸
p times

, amm, amm, . . . , amm︸�����������������︷︷�����������������︸
q times

) = φi(akk, amm) i = 1, 2

where

φ1(akk, amm) = (pλk)2 − pλk(pakk + qamm)

φ2(akk, amm) = (qλm)2 − qλm(pakk + qamm)

with corresponding Jacobian matrix:

Jφ =
[
∂φi

∂a j j

]
=

⎡⎢⎢⎢⎢⎢⎣qamm − pλk pakk − pλk

qamm − qλm pakk − qλm

⎤⎥⎥⎥⎥⎥⎦ (17)

Which may be used to solve the for the diagonal element a(1)
11
, a(1)

22
for the IEP by the Newtons method in only one

step. Subsequently, at least n − 1 non-diagonal elements may also be computed using Equation 4 as constraint.

Proof. The diagonal elements of the initial matrix a(0)
11
, a(0)

22
are, without loss of generality replaced respectively by

pakk, qamm in the Jacobian matrix in Equation (15), as well as in the corresponding characteristic functions. The

target eigenvalues λk, λm are also respectively replaced by pλk, qλm in the same expressions. Thus, the solution of

the IEP by Newton’s method is here also exact in only one step. Subsequently, at least n−1 non-diagonal elements

may also be computed using Equation 4 as constraint. �
Example 2 (The case of n = 3) Consider a 3 × 3 (anti-) Hermitian initial matrix of rank 1 with non diagonal

elements as precribed by Equation (2).

A = a11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 k̄1 k̄2

k1 |k1|2 k̄1k2

k2 k1k̄2 |k2|2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In order to have repeated diagonal elements of the initial matrix (say a(0)

22
= a(0)

33
), we can put k1 = −k2 or k1 = ±ik2.

Where A(0) is an (anti-) Hermitian matrix of rank 1.
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Numerical Example 2 In particular, for the matrix above with a11 = 1, k1 = 2, k2 = −2 or ±2i we have the following

possibilities.

A(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 −2

2 4 −4

−2 −4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ or A(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 −2i

2 4 −4i

2i 4i 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ or A(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 2i

2 4 4i

−2i −4i 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
All these initial Hermitian matrices together with their anti Hermitian counterparts should lead to the same solution

of the IEP given any target spectrum of multiplicity 2:

λ1 � λ2 = λ3

The characteristic functions of the problem is given as (p = 1 and q = 2):

φ1(a11, a22) = λ2
1 − λ1(a11 + 2a22)

φ2(a11, a22) = (2λ2)2 − 2λ2(a11 + 2a22)

The corresponding Jacobian matrix also is given as

Jφ =
[
∂φi

∂a j j

]
=

⎡⎢⎢⎢⎢⎢⎣ 2a22 − λ1 a11 − λ1

2a22 − 2λ2 a11 − 2λ2

⎤⎥⎥⎥⎥⎥⎦
The inverse of the Jacobian matrix is then computed as follows

J−1
φ =

1

(2λ2 − λ1)(a11 − 2a22)

⎡⎢⎢⎢⎢⎢⎣ a11 − 2λ2 λ1 − a11

2λ2 − 2a22 2a22 − λ1

⎤⎥⎥⎥⎥⎥⎦
Thus ⎡⎢⎢⎢⎢⎢⎢⎣ a(1)

11

2a(1)
22

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ a(0)

11

2a(0)
22

⎤⎥⎥⎥⎥⎥⎥⎦ − 1

(2λ2 − λ1)(a11 − 2a22)

⎡⎢⎢⎢⎢⎢⎣ a11 − 2λ2 λ1 − a11

2λ2 − 2a22 2a22 − λ1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣φ1(a(0)

11
, a(0)

22
)

φ2(a(0)
11
, a(0)

22
)

⎤⎥⎥⎥⎥⎥⎥⎦
As a numerical example we now solve the inverse eigenvalue problem for λ1 = −1, λ2 = λ3 = 3/2. φ1(a11, a22) =

1 + (1 + 2(4)) = 10, φ2(a11, a22) = 9 − 3(1 + 2(4)) = −18, so that a(0)
11
= 1 and a(0)

22
= 4 and

⎡⎢⎢⎢⎢⎢⎢⎣φ1(a(0)
11
, a(0)

22
)

φ2(a(0)
11
, a(0)

22
)

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ 10

−18

⎤⎥⎥⎥⎥⎥⎦
The Newton’s method gives the diagonal elements:

⎡⎢⎢⎢⎢⎢⎢⎣ a(1)
11

2a(1)
22

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣1
8

⎤⎥⎥⎥⎥⎥⎦ + 1

60

⎡⎢⎢⎢⎢⎢⎣ −2 −2

−13 17

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ 10

−18

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣1
8

⎤⎥⎥⎥⎥⎥⎦ + 1

60

⎡⎢⎢⎢⎢⎢⎣ 16

−436

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣1.2667

0.7333

⎤⎥⎥⎥⎥⎥⎦
Further two non-diagonal elements a12 and a23 ( putting a13 = a31 = 0) may be obtained by solving the constraints:

1

2

[
(trA)2 − (trA2)

]
= λ1λ2 + λ1λ3 + λ2λ3

det A = λ1λ2λ3

Thus, a symmetric solution of the IEP is obtained as follows:

A(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.2667 0.3700i 0

0.3700i 0.3667 1.3966

0 1.3966 0.3667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is easily checked that the eigenvalues of A(1) are (−1, 3/2, 3/2).
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Note that as in the previous example, certain 3×3 initial Hermitian matrices with their anti-Hermitian counterparts

should lead to the similar complex symmetric or (anti-) Hermitian solutions to the IEP, provided the non diagonal

elements are appropriately prescribed using Equations (2) and (4).

Example 3 (The case of n = 4) For the case n = 4, when the target eigenvalues λ1 and λ2 each have multiplicities

2, the characteristic functions of the (anti-) Hermitian matrix of rank one, reduce to the following forms:

φ1(a11, a22) = (2λ1)2 − 2λ1(2a11 + 2a22)

φ2(a11, a22) = (2λ2)2 − 2λ2(2a11 + 2a22)

Then, the corresponding Jacobian matrix is also given as

Jφ =
[
∂φi

∂a j j

]
=

⎡⎢⎢⎢⎢⎢⎣2a22 − 2λ1 2a11 − 2λ1

2a22 − 2λ2 2a11 − 2λ2

⎤⎥⎥⎥⎥⎥⎦
The inverse of the Jacobian matrix is then computed as follows

J−1 =
1

(2λ2 − 2λ1)((2a11 − 2a22)

⎡⎢⎢⎢⎢⎢⎣2a11 − 2λ2 2λ1 − 2a11

2λ2 − 2a22 2a22 − 2λ1

⎤⎥⎥⎥⎥⎥⎦
Numerical Example 3 As a numerical example we now solve the inverse eigenvalue problem for λ1 = λ3 =

−1/2 and λ2 = λ4 = 3/2. Then φ1(a11, a22) = 1 + (2 + 2(4)) = 11, φ2(a11, a22) = 9 − 3(2 + 2(4)) = −21, so that

a(0)
11
= 1 and a(0)

22
= 4 and ⎡⎢⎢⎢⎢⎢⎣φ1(a11

(0), a22
(0))

φ2(a11
(0), a22

(0))

⎤⎥⎥⎥⎥⎥⎦ =
[

11

−21

]

and, Newton’s method then gives the diagonal elements:

⎡⎢⎢⎢⎢⎢⎣2a11
(1)

2a22
(1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣2
8

⎤⎥⎥⎥⎥⎥⎦ + 1

48

⎡⎢⎢⎢⎢⎢⎣ 1 −5

−13 17

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ 11

−21

⎤⎥⎥⎥⎥⎥⎦ =
[
2

8

]
+

1

48

⎡⎢⎢⎢⎢⎢⎣ 116

−506

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ 4.41667

−2.41667

⎤⎥⎥⎥⎥⎥⎦
Further two distinct non-diagonal elements a12, a23 (putting a12 = a34, and : a14 = a41 = a13 = a31 = a24 = a42 =

0) may be obtained by solving the constraints:

1

2

[
(trA)2 − (trA2)

]
= λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

det A = λ1λ2λ3λ4

Thus, a symmetric solution of the IEP is obtained as follows:

A(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.20833 1.3851 0 0

1.3851 −1.20833 2.7701i 0

0 2.7701i 2.20833 1.3851

0 0 1.3851 −1.20833

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is easily checked that the eigenvalues of A(1) are (−1/2, 3/2,−1/2, 3/2).

Note that as in the previous examples, certain 4×4 initial Hermitian matrices with their anti-Hermitian counterparts

should lead to the similar complex symmetric or (anti-) Hermitian solutions to the IEP, provided the non diagonal

elements are appropriately prescribed using Equations (2) and (4).

4. Conclusion

We have obtained, in this study, a Newton’s algorithm for solving the inverse eigenvalue problem for certain (anti-)

Hermitian matrices and demonstrated that in the neighbourhood of certain singular (anti-) Hermitian matrices of

rank 1, the solution is in one step.
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