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Abstract

Radiation and heat transfer effects on a MHD non-Newtonian unsteady flow in a porous medium with slip condition

are investigated. The fluid is assumed not to absorb its own emitted radiation but that of the boundaries. The

resulted governing equations are non-dimensionalised, simplified and solved using Crank Nicolson type of finite

difference method. The numerical results for the velocity and temperature are illustrated graphically and discussed

while the skin friction and Nusselt number were also calculated.
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1. Introduction

Although, the non-Newtonian behaviour of many fluids has been recognised for a long time, the science of rheology

is still in its infancy in many respects. As such, new phenomena are being discovered on a constant basis with

new theories propounded. Advancement in computational techniques are making possible much more detailed

analyses of complex flow and complicated simulations of the structural and molecular behaviour that give rise to

non-Newtonian behaviours. Engineers, Chemists, Physicists and Mathematicians are actively pursuing research in

rheology. The large volume of research work on Newtonian fluid is due to the simplified (linear) relation between

the shear stress and the velocity gradient in the flow field. However the analysis of non-Newtonian fluid flow field

is more complicated because the relationship between the stress and the velocity gradient is non-linear. This fact

accounts for the scarce publication on non-Newtonian fluid flow. However a number of industrial fluids exhibit

non-Newtonian behaviour such as coal water or coal oil, paints, various polymer solution, slurries, ink soap, food

products, suspension of various solid and so on. Moreover, the vast number of fluid flow in a porous media exhibits

the non-Newtonian fluid flow behaviour. These important reasons and many other have led some researchers to

carry out investigations on the non-Newtonian fluid. For example, Okoya (2008) investigated the transition for a

generalised couette flow of a reactive third-grade fluid with viscous dissipation. The disappearance of criticality

for a reactive third-grade fluid with Reynold’s model viscosity in a flat channel was also studied later by Okoya

(2011). An analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching

sheet with energy dissipation, internal heat source and thermal radiation was obtained by Chen (2010).

H. T. Chen and C. K. Chen (1988) carried out an investigation on free convection of non-Newtonian fluids along

a vertical plate embedded in a porous medium. Mehta and Rao (1994) have considered the buoyancy-induced

flow of non-Newtonian fluids in porous medium past a vertical plate with non-uniform surface heat flux. A more

comprehensive review of the work on non-Newtonian fluid flow in a porous medium can be found in Chamkha

(2007).

In addition, the study of thermal convection in porous media has been the subject of many investigations during

the past several decades. This is due to the facts that a wide range of geophysical and engineering application

of interest consist of porous media. Ranganathan and Viskanta (1984) have studied mixed connection boundary

layer flow along a vertical surface in porous medium. Hsieh and Chen (1993) and Armaly presented non-similarity

solution for mixed surfaces in a porous medium while Chamkha (2007) studied heat and mass transfer for a non

Newtonian fluid flow along a surface embedded in a porous medium with uniform wall heat and mass fluxes and

heat generation or absorption. The fluid is assumed to be non-Newtonian power-law and implicit iterative finite
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difference method was employed to solve the problem.

The study of an electrically conducting fluid flow of non-Newtonian fluid has also gained increasing research inter-

est due to its applications in many biological and engineering problems such as in plasma studies, nuclear reactors,

geothermal energy extraction and blood flow problems to mention but a few. Eldabe, Hassan, and Mohammed

(2003) carred out an analysis of the effects of couple stresses on the MHD of a non-Newtonian unsteady fiow be-

tween two parallel porous plates using the Eyring Powell model of the first and second order approximations. The

effects of radiation and heat transfer were neglected. However, radiation and heat transfer effects are significant in

some industrial applications such as glass production, furnace design in space technology application etc.

The modelling of radiative fluid flow is also significant from the points of view of geophysics, engineering and

astrophysics. It has several physical applications such as in some matters at high temperature. Chamkha, Tarkar,

and Soundalgekar (2001) analyzed the effects of radiation on free convection flow past a semi-infinite vertical

plate with mass transfer. Mehta and Rao (1994) considered the effects of radiation on free convection past a

horizontal plate with variable wall temperature and embedded in a non-Newtonian fluid saturated porous medium.

Mohanmmadein and El-Amin (2000) studied mixed convection flow over a horizontal plate in a porous medium.

Each of the above studies centres on either non-Newtonian fluid without considering the influence of heat transfer

or on Newtonian fluid with radiation and heat transfer considered. Resently, Adesanya, and Gbadeyan (2011)

studied heat transfer in steady, MHD visco-elastric oscillatory flow with slip through a porous medium using

Eyring Powell model with first approximation thereby linearizing the governing equation. Most recently, the

problem of free convection in a non-Newtonian fluid along a horizontal plate embedded in a porous medium with

internal heat generation was studied by Shobba and Chendrashakkar (2012).

In this present paper, we are interested in the radiation and heat transfer of an unsteady MHD non-Newtonian fluid

flow in a porous medium with slip condition using the Eyring Powell model of higher order approximation thereby

solving the unsteady non-linear problem. The analysis of the porous medium is based on a Darcian type of model

and the fluid slip condition is at the lower wall. The radiation in the fluid is restricted to optically thin limit case.

The rest of the paper is organised as follow: Section 2 deals with the formulation of the problem. In section 3

the numerical method and their discussions are presented. Section 4 contains results and discussion. Finally, in

Section 5 some concluding remarks are presented.

2. Mathematical Formulation

Consider a non-Newtonian viscous incompressible and electrically conducting fluid bounded by two stationary

parallel plates separated by a distance h apart. The flow is assumed to be unsteady and the channel is filled with

saturated porous medium. The Eyring-powell model for describing the shear of a non-Newtonian flow can be used

in some cases to describe the viscous behaviours of polymer solutions and the viscoelastic suspensions over a wide

range of shear rates (couple stress). The x′-axis is taken along the plate in the vertical upward direction and the y′
-axis is normal to the plate in the direction of the applied uniform magnetic field. Then, the fully developed flow

is governed by the following set of equations:

∂u′

∂t′
= −1

ρ

(
∂P′

∂x′
− ∂τi j

∂y′

)
− νu

′

κ
+ gβ(T ′ − T ′0) − σB2

0
u′

ρ
(1)

ρcp
∂T ′

∂t′
= κ
∂2T ′

∂y′2
− ∂qr

∂y′
(2)

with associated boundary conditions

u′ = 0, T ′ = T ′0, y ∈ (0, h), t′ = 0

u′ = λ∂u
′
∂y′ , T ′ = T ′0, y′ = 0, t′ > 0

u′ = 0, T ′ = T ′w, y′ = h, t′ > 0

where u′ is a velocity component in x-direction, ρ is the density, g is the acceleration due to gravity, T ′ is the

temperature of the fluid, cp is the specific heat at constant pressure, P′ is the pressure inside the fluid, β is the

coefficient of thermal expansion, κ is the thermal conductivity, qr is the radiative flux and σ is the electrical

conductivity. ν is kinematic viscosity, μ is the viscosity of the fluid, h is the heat transfer coefficient, B0 is the

strength of the magnetic field and the stress tensor in the Eyring-powell model for non-Newtonian fluid is of the
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form

τi j = μ
∂u′

∂y′
+

1

α
sinh−1

(
1

c
∂u′

∂y′

)

μ is the viscosity coefficient, α and c are the characteristics of the Eyring-powell model. The velocity and tem-

perature distributions of the fluid are to be determined for some values of the fluid parameters. The Eyring-powell

model in its second order approximation takes the form

τi j = μ
∂u′

∂y′
+

1

αc

⎛⎜⎜⎜⎜⎜⎝∂u
′

∂y′
− 1

6c2

(
∂u′

∂y′

)3⎞⎟⎟⎟⎟⎟⎠ , (3)

In the optically thin limit case, the fluid does not absorb its own emitted radiation which implies that there is no

self-absorption but rather the fluid absorbs radiation emitted by the boundaries. For non-grey gas near equilibrium

in the optically thin limit case, Cogley, Vincenti, and Gillies (1968) showed that

∂qr

∂ŷ
= 4L(T ′ − T ′0) (4)

where L =
∫ ∞

0
kλw( debλ

dT̂
)wdλ, kλw is the absorption coefficient, ebλ is the planck function and the subscript w indi-

cates the values at the wall.

The following non-dimensional quantities are adopted:

x =
x′

h
, y =

y′

h
, t =

t′u′
0

h
, θ =

T ′ − T ′
0

T ′w − T ′
0

, P =
P′

ρu′2
0

, u =
u′

u′
0

(5)

Using Equations (3), (4) and the set of the non-dimensional quantities (5), Equations (1) and (2) respectively yields

Re
∂u
∂t
= −Re

∂P
∂x
+

⎛⎜⎜⎜⎜⎜⎝1 + M − N
(
∂u
∂y

)2⎞⎟⎟⎟⎟⎟⎠ ∂
2u
∂y2
+Grθ −

(
H2 + Km

)
u (6)

RePr
∂θ

∂t
=

1

Pr
∂2θ

∂y2
−Cθ (7)

where M = 1
αμc , N = u′20

2c3αμh2 , Km =
h2

κ
, ν = μ

ρ
, Pr = cpνρ

κ
is the Prandtl number, C = 4Lh2

κ
is the radiation parameter,

Re = hu′
0

ν
is the Reynold number, H = B0h

√
σ
ρν

is the Hartman number and Gr = h2gβ
U′

0
ν

(T ′w − T ′0) is the Grashof

number as in Devika, Narayana, and Venkataramana (2013). Equations (6) and (7) subjected to the following

corresponding dimensionless boundary conditions.

u = 0, θ = 0, y ∈ (0, 1), t = 0

u = s ∂u
∂y , θ = 0, y = 0, t > 0

u = 0, θ = 1, y = 1, t > 0

where s = λh .

The skin friction and Nusselt number are respectively expressed in dimensionless forms as

τ = − ∂u
∂y
|y=0 (8)

Nu = − ∂θ
∂y
|y=0 (9)

3. Numerical Method

In other to solve the unsteady non-linear coupled partial differential Equations (6) and (7) with the associated

boundary conditions, an implicit finite difference technique of Crank-Nicolson type which is known to converge

rapidly and unconditionally stable is employed. The discretized finite difference equations corresponding to Equa-

tions (6) and (7) using the method are as follows:

un+1
i − un

i

Δt
= −kp +

Di

Re
un+1

i−1
− 2un+1

i + un+1
i+1
+ un

i−1
− 2un

i + un
i+1

2(Δy)2
+

Gr
Re

⎛⎜⎜⎜⎜⎝θ
n+1
i + θni

2

⎞⎟⎟⎟⎟⎠ − H2 + Km

Re

⎛⎜⎜⎜⎜⎝u
n+1
i + un

i

2

⎞⎟⎟⎟⎟⎠ (10)
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RePr
θn+1

i − θni
Δt

=
θn+1

i−1
− 2θn+1

i + θn+1
i+1
+ θni−1

− 2θni + θ
n
i+1

2(Δy)2
−C
⎛⎜⎜⎜⎜⎝θ

n+1
i + θni

2

⎞⎟⎟⎟⎟⎠ (11)

where the pressure gradient (kp) is assumed to be constant and Di =
(
1 + M − N(

un
i+1
−un

i−1

2Δy )2
)
.

The associated boundary conditions may be expressed as

un+1
i = 0, θn+1

i = 0, un
i = 0, θni = 0, f or all i, t = 0

un+1
i−1
= −2sΔyun+1

i + un+1
i+1
, θn+1

i−1
= 0, i = 1, t > 0

un
i−1
= −2sΔyun

i + un
i+1
, θni−i = 0, i = 1, t > 0

un+1
i = 0, θn+1

i = 1, un
i = 0, θni = 1, i = m, t > 0

where u0 and θ0 are the velocity and temperature respectively at y = 0, um and θm are the velocity and temperature

respectively at y = 1 and the interval Δy = 1
m .

Equations (10) and (11) may be written respectively as follows:

−riun+1
i−1
+
(
1 + 2ri + (H2 + Km)v)

)
un+1

i − riun+1
i+1

= vGr(θn+1
i + θni ) + riun

i−1
+
(
1 − 2ri − (H2 + Km)v)

)
un

i + riun
i+1
− Δtkp

(12)

−R2θ
n+1
i−1 + (1 + 2R2 +C1) θn+1

i − R2θ
n+1
i+1 = R2θ

n
i−1 + (1 − 2R −C1) θni − R2θ

n
i+1 (13)

where ri =
ΔtDi

2(Δy)2Re , v = Δt
2Re , C1 =

CΔt
2PrRe , R2 =

Δt
2(Δy)2PrRe .

The subscript i and superscript n denote the grid points along the y- and t-directions respectively. The values of u
and θ are known at all grid points at t = 0 from the initial conditions. The computation of u and θ at the (n+1)th

time using the values at previous (n)th time are carried out as follows:

At all grid points, the values of θ and u at time t = 0 from the initial conditions are known. The values of θ
at next time step’s lenght are calculated using the already known values at previous time as follows: The finite

difference Equation (13) forms a tri-diagonal system of equations where the values of θ at every nodal point at next

time step length are determined using the known values at previous time. Thomas algorithm is used to solve this

tri-diagonal system of equations. As such, the values of θ at every nodal point at this particular time are known.

The known values of θ at this particular time are used in Equation (12). Similarly, the values of u are computed at

that particular time. The values of u and θ are obtained for the required time following this procedure.

4. Results and Discussion

In order to report on the analysis of the fluid flow, the numerical computations are carried out for various values

of Prandtl number (Pr), Hartman number (H), Radiation parameter (C), Grashof number (Gr), the non-Newtonian

parameters (M) and (N). Figures 1 and 2 show the velocity distribution profiles with variation of non-Newtonian

parameters N and M respectively with other parameters being kept constant. It is observed that as parameter N

decreases, the velocity profile decreases slightly. However, the velocity profile decreases appreciably as the value

of parameter M increases. It is clear that the parameter M accounts for the low rate of flow of Non-Newtonian fluid

when compared with Newtonian fluid flow since the parameter M significantly reduces the velocity of the flow.

It also shows that the presence of permeability parameter Km increases the resistance of the porous medium, thus

decreasing the velocity of the flow.

Figures 3, 4 and 5 depict the velocity distribution profiles with variation of Hartman (H), Grashof (Gr) numbers

and the porosity parameter Km respectively. An increase in either Km or the Hartman number causes a drop in the

velocity of the fluid as shown in Figures 3 and 5. It can be seen in Figure 4 that reducing the value of Grashof (Gr)

number causes a fall in the velocity the fluid. The effect of transverse magnetic field on an electrically conducting

fluid slows down the motion of the fluid. It agrees with the fact that the effect of increasing the Grashof number is

to increase the values of velocity profiles.

Figures 6 and 7 show the velocity distribution and thermal profiles with variation of time respectively keeping

all other parameters constant. It can be seen that the velocity and temperature of the fluid increases as the time

increases towards a steady state.

Figures 8 and 9 illustrate the thermal distribution profiles with the variation of Prandtl number (Pr) and radiation

parameter (C) respectively. It is observed that reducing either the Prandtl number or radiation parameter produces
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significant increase in the thermal condition of the fluid. Thermal conductivity is accelerated with small values of

prandtl number thus causing rapid diffusion of heat for smaller Prandtl number than for higher values of Prandtl

number.

Figure 1. The velocity distribution profiles with variation of parameter N at time t = 1 and for fixed parameters

Pr = 1.0, C = 1, Gr = 10, H = 1, Re = 1, Km = 0.1 and M = 20

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

y

u

M=2, 4, 6, 8.

Figure 2. The velocity distribution profiles with variation of parameter M at time t = 1 and for fixed parameters

Pr = 1.0, C = 1, Gr = 10, H = 1, Re = 1, Km = 0.1 and N = 0.05
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Figure 3. The velocity distribution profiles with variation of Hartman number H at time t = 1 and for fixed

parameters Pr = 1.0, C = 1, Gr = 10, M = 20, Re = 1, Km = 0.5 and N = 0.05
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Figure 4. The velocity distribution profiles with variation of Grashof number Gr at time t = 1 and for fixed

parameters Pr = 1.0, C = 1, M = 20, H = 1, Re = 1, Km = 0.1 and N = 0.05
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Figure 5. The velocity distribution profiles with variation of parameter Km at time t = 1.0 and for fixed parameters

Pr = 1.0, C = 1, M = 20, H = 1, Re = 1, Gr = 10 and N = 0.05

Figure 6. The velocity distribution profiles with variation of time for fixed parameters

Pr = 1.0, C = 1, M = 20, H = 1, Km = 0.1, Re = 1, Gr = 10 and N = 0.05
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Figure 7. The thermal distribution profiles with variation of time for fixed parameters

Pr = 1.0, C = 1, M = 20, H = 1, Km = 0.1, Re = 1, Gr = 10 and N = 0.05

Figure 8. The thermal distribution profiles with variation of praditl number Pr at time t = 1.0 and for fixed

parameters C = 1, Km = 0.1, M = 20, H = 1, Re = 1, Gr = 10 and N = 0.05
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Figure 9. The thermal distribution profiles with variation of radiation parameter C at time t = 1.0 and for fixed

parameters Pr = 1.0, Km = 0.1, M = 20, H = 1, Re = 1, Gr = 10 and N = 0.05

Table 1. The Skin friction coefficients for various values of Km, Gr, C, M, Pr, H and N

t = 0.5 t = 1.0 t = 1.5

Km = 0.1 -0.0079489 -0.0082421 -0.0082495

Km = 0.5 -0.0077783 -0.0080687 -0.00807611

Km = 1.0 -0.0075694 -0.0078563 -0.0078636

Gr = 2.0 0.010130 0.010008 0.010004

Gr = 4.0 -0.0019226 -0.0021587 -0.002165

Gr = 8.0 -0.026028 -0.026493 -0.026503

C = 2.0 -0.0045465 -0.004719 -0.0047253

C = 3.0 -0.0016936 -0.0017991 -0.0018051

C = 4.0 0.00072379 0.00065565 0.00064985

M = 1.0 -0.031931 -0.034702 -0.034719

M = 3.0 -0.019532 -0.02047 -0.020476

M = 5.0 -0.013828 -0.014403 -0.014408

Pr = 1.0 -0.0079489 -0.0082421 -0.0082495

Pr = 5.0 0.0072287 -0.0022123 -0.0055739

Pr = 10.0 0.015887 0.0071173 0.0013746

H = 2.0 -0.0067398 -0.007013 -0.0070202

H = 4.0 -0.0031324 -0.0033469 -0.0033539

H = 8.0 0.0030386 0.002922 0.0029157

N = 1.0 -0.0079503 -0.0082436 -0.008251

N = 10.0 -0.007964 -0.0082577 -0.0082651

N = 20.0 -0.0079793 -0.0082736 -0.008281
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Table 2. The Nusselt numbers for various values of C and Pr
t = 0.5 t = 1.0 t = 1.5

C = 2.0 -1.9748 -1.9905 -1.9906

C = 3.0 -1.7018 -1.7106 -1.7106

C = 4.0 -1.4761 -1.4810 -1.4811

Pr = 1.0 -2.3081 -2.3367 -2.3368

Pr = 5.0 -0.49401 -1.2048 -1.4751

Pr = 10.0 -0.049676 -0.4135 -0.76718

The skin friction coefficient and Nusselt number, as expressed in Equations (8) and (9), are negative of dimension-

less velocity and temperature gradients respectively and are shown in Table 1 and Table 2 for various values of

fluid parameters. In order to highlight the contributions of each parameter, one parameter is varied while the rest

take default fixed values which are pr = 1.0; cc = 1; Gr = 5; M = 10; H = 1; N = 0.05; Km = 0.1; re = 1. It is

observed from Table 1 that an increase in any of the parameters Gr and N causes reduction in the skin friction while

increasing any of parameters C,M, Pr,Km and H resulted in coresponding increase in the skin friction coefficient.

Practically, the increase in Prandtl number results in an increase in the viscosity of the fluid and thereby decreases

the velocity of the fluid. Hence, the dimensionless velocity gradient at the wall decreases with an increase in

Prandtl number. Also, increasing buoyancy serves to accelerate the flow which increases the velocity gradient

(i.e decrease the skin friction coefficient) in the boundary layer. The rise in radiation parameter reduces velocity

gradient at the wall and thereby increasing the coefficient of the skin friction. As for the Nusselt number shown

in Table 2, increasing Prandtl number and radiation parameter serve to increase the Nusselt number.It implies that

the temperature gradient reduces with a rise in the thermal radiation parameter or Prandtl number Also, The values

of the Nusselt number give negative values throughout the time variation as shown in the Table 2. It shows that the

temperature inside the fluid is higher than the wall temperature.

5. Conclusion

The effects of radiation and heat transfer on a MHD non-Newtonian unsteady flow in a porous medium with

slip condition is presented. The resulting governing equations from the mathematical model of the problem are

non-dimensionalised, simplified and solved using Crank Nicolson type of implicit finite difference method. It

reveals that temperature increases with a reduction in either the Prandtl number or radiation parameter and that the

velocity profile decreases as parameter N, or Grashof number decreases. However, the velocity profile decreases

as the value of parameter M, Hartman number or porous parameter increases. Also, it is observed that the velocity

and temperature of the fluid increased with the time.

Furthermore, there is a rise in the skin friction due to an increase in Prandtl number, parameter M, magnetic field

parameter or radiation parameter while a fall is observed in skin friction with increase in Grashof number or porous

parameter Km.
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