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Abstract

We present in this paper a new proof of a theorem by Wolf-Masur stipulating that Teichmüller space of surface

with genus g ≥ 2 equipped with the Teichmüller metric is not hyperbolic in the sense of Gromov, by constructing

a family of points that converge to the Bers boundary contradicting a property proved by Bers in 1983. To our

knowledge, there are several different proofs of this result, besides the original of Masur-Wolf (1975) available in

the literature, see MacCarthy-Papadopoulos (1999a, 1999b), and Ivanov (2001).
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1. Introduction

The notion of negative curvature of Teichmüller space has a long history. It starts in the late 50’s of the last century

with Kravetz (1959), who claimed that the Teichmüller space was negatively curved in the Busemann sense. It was

thought so, until Linch exhibited in her Columbia thesis a flaw in the Kravetz’s argument, reopening the question

of negative curvature of the Teichmüller space. Masur, in 1975, answered in the negative this old-new question,

by constructing two geodesic rays emanating from the same point staying at a bounded distance apart. Recently,

Gromov in 1987, introduced his revolutionary notion of hyperbolicity for groups and more generally, for metric

spaces. It is well known that even with this less restrictive notion of negative curvature, the Teichmüller space is

not Gromov hyperbolic (Masur-Wolf Theorem). In this paper, we will present a new proof (by contradiction) of

the Masur-Wolf Theorem by constructing a family of points that converges to the Bers boundary that contradicts a

result proved by Bers in 1983, if we assume that Teichmüller space is Gromov hyperbolic.

We organize our discussion as follows. In section 2, we recall the background information we will need, and set

the notation. In section 3 we state and prove our main result (Masur-Wolf Theorem).

2. Background and Notation

2.1 Teichmüller Space, Metric

Let M be a closed, connected, orientable surface of genus g ≥ 2; we consider the Teichmüller space Tg with

the Teichüller metric d(·, ·). The points in Tg are equivalence classes of conformal (complex) structures on M,

where two conformal structures S 1 and S 2 on M are declared equivalent if there is a conformal homeomorphism h:

S 1 → S 2 which is homotopic to the identity map of the underlying topological surface M. The Teichmüller distance

is defined as d(S 1, S 2) = 1
2

log inf K( f ) where the infimum is taken over all quasiconformal homeomorphisms f :

S 1 → S 2 which are homotopic to the identity on M and K( f ) is the maximal dilatation of f .

An amazing fact about the extremal maps, known as Teichmüller map, that they admit an explicit description, as

does the family of maps which describe a geodesic (isometric image of R).

This description is expressed in terms of quadratic differentials. Let q ∈ QD(S 1) denote a holomorphic quadratic

differential on S 1. If z is a local parameter near p ∈ S 1 with q(p) � 0 and z(p) = z0, then w =
∫ z

z0
(q(z))

1
2 dz is the

natural parameter of q near the point p.

Teichmüller’s theorem asserts that if S 1, S 2 are distinct points in Tg, then there is unique quasiconformal h: S 1 →
S 2 with h isotopic to the identity which minimizes the maximal dilatation of all such h. The complex dilatation of
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h may be written μ(h) = kq̄/|q| for some non trivial quadratic q ∈ QD(S 1) and some k, 0 < k < 1, and then

d(S 1, S 2) =
1

2
log

(
1 + k
1 − k

)
. (1)

Conversely, for each |k| < 1 and a non-zero q ∈ QD(S 1), the quasiconformal homeomorphism hk of S 1 onto

hk(S 1), with complex dilatation kq̄/|q|, is extremal in its isotopy class. Each extremal map hk induces a quadratic

differential qk on hk(S 1) so that

Rewk = K1/2Rew Imwk = K−1/2Imw,

where K = (1 + k)/(1 − k).

The map hk is called the Teichmüller extremal map determined by q and k.

The Teichmüller geodesic segment between S 1 and S 2 consists of all points hs(S 1) where the hs are Teichmüller

maps on S 1 determined by the quadratic differential q ∈ QD(S 1) corresponding to the Teichmüller map h: S 1 → S 2

and s ∈ [0, k].

We recall now a very well known result, that we will use in the proof of the main result. According to the

Uniformization Theorem, each point x in Techmüller space Tg can be represented as the quotient of the upper

half plane H
2 by a Fuchsian group G (i.e., a discrete subgroup of PS L(2,R).) Therefore we can write x = H

2/G.

Since we assumed the topological surface M compact, then any element A of the Fuchsian group G is hyperbolic.

(i.e., trace(A)2 > 4.) If we denote by π the natural projection H
2 → H

2/G then the projection of the axis of the

hyperbolic element A (i.e., a geodesic in H
2 invariant by A) is closed geodesic in x ∈ Tg. We have the following

useful relation between the trace of A and the hyperbolic length of the closed geodesic α (i.e., lh(α)). Needless to

say the metric used in the measure of the length of α is nothing but, the unique hyperbolic metric h in the conformal

structure x. We have:

Proposition 1 Let x be a conformal structure defined on the underlying topological surface M, and h be the unique
hyperbolic structure on x. Then

trace(A) = 2 cosh (lh(α)/2) . (2)

For a proof, the reader can consult Fathi, Laudenbach, and Poénaru (1979, Lemma 1, p. 135).

2.2 Modulus, Extremal Length

The modulus of a flat cylinder C of circumference l and height h is

Mod(C) = h/l.

For a simple closed curve γ ⊂ S , we define the modulus ModS (γ) of γ to be the supremum of the moduli of all

cylinders embedded in S with core curve isotopic to γ.

The extremal length extS 0
(γ) of a curve γ on a surface S 0 is defined to be

sup
(
lρ([γ])

)2
/Aρ,

where ρ ranges over all conformal metrics on S 0 with area Aρ satisfying 0 < Aρ < ∞, and where lρ([γ]) denotes

the infimum of lengths of simple closed curves homotopic to γ. One can show that

extS 0
(γ) = 1/ModS 0

(γ) (3)

2.3 Maskit’s Estimates

Maskit (1985) has compared the extremal and hyperbolic lengths of closed curves on any compact orientable

surface M with genus g ≥ 2.

Theorem 1 Let x be a conformal structure defined on the underlying topological surface M, and h be the unique
hyperbolic structure on x. Then

lh(γ) ≤ πextx(γ) (4)

extx(γ) ≤ 1

2
lh(γ) exp

(
lh(γ)

2

)
(5)
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2.4 Extremal Quasiconformal Map in the Homotopy Class of Dehn Twist

Jenkins (1957) and Strebel (1984) proved the existence of quadratic differentials q ∈ QD(S ) with some topological

conditions on the trajectories. More precisely, they proved that one could choose p disjoint simple closed curves

γ1 . . . γp with 1 ≤ p ≤ 3g−3, on the surface M representing an admissible system of curves, and p positive numbers

m1 . . .mp, and one could find a unique (up to scalar multiplication) quadratic differentials Q = Q(z)dz2 ∈ QD(S )

with the following property: if S ′ is the surface after removing the critical trajectories of Q(z)dz2, then S ′ is the

union of annuli A1 . . . Ap with Aj homotopically equivalent to γ j and the modulus of the annulus Aj is Mj, up to

some fixed (independent of j) scalar multiple. Further, S − S ′ is the union of finite number of analytic arcs, the

smooth pieces of the critical trajectories.

The mapping class group Γg of M is the group of isotopy classes of orientation preserving homeomorphism M →
M. Γg acts on Tg by pulling back conformal structures S on M. It follows that the action of Γg on Tg is by

isometries. It is a well known fact that this action is properly discontinuous on Tg.

Fix an arbitrarily point S ∈ Tg and consider the effect of Dehn twists τα1
; about the curve α1, on M. It is legitimate

to characterize the Teichmüller map h: S → τα1
(S ), in terms of: τα1

, S and n ∈ Z. Let q[α1] denote the Jenkins-

Strebel differential determined as above and suppose that α1 ⊂ S has modulus R. Set

m = log R/2π,

and

σn = tan−1 (2m/n) ,

kn =
|n|/2m

(1 +
(
n/2m)2

)1/2
. (6)

Marden-Masur in 1975 gave the following description of the extremal map hn: S → τα1
· S is the Teichmüller map

determined by exp (−i(σn + π)) · qα1
and the multiplier kn.

2.5 Gromov Hyperbolicity

A geodesic metric space (X, d) is a metric space where every couple of points x, y ∈ X can be connected by the

isometric image of the segment [0, d(x, y)], we call such path geodesic segment and we denote it by [x, y]. In such

space, it is natural to define the notion of a triangle having any three points x, y, and z ∈ X as vertices, to be the

union of geodesic segments [xy], [xz] and [yz]. It is very well known, that Teichmüller space equipped with its

natural Teichmüller metric is a geodesic metric space. Gromov in 1987, introduced a notion of negatively curved

geodesic metric space that recuperates a number of qualitative features of a hyperbolic space. Nowadays, this

definition is commonly called Gromov hyperbolicity. We will say that

Definition 1 A geodesic metric space (X, d) is Gromov hyperbolic if: There exists a constant δ such that for every

triangle Δ = [xy] ∪ [yz] ∪ [xz] and every u ∈ [xy], we have:

d(u, [yz] ∪ [zx]) ≤ δ. (7)

3. Main Result

The purpose of this section is to present a proof of the following result (Masur-Wolf Theorem):

Main Theorem The Teichmüller space of a hyperbolic surface equipped with the Teichmüller metric is not Gromov
hyperbolic.

Proof of the main theorem. We consider a sequence of triangles Tn, having a common vertex x0 ∈ Tg, chosen

arbitrarily. The other vertices of the triangle Tn are the points y2n = τ
2n
α1

(x0) and z2n = τ
−2n
α2

(x0), where α1 and α2

are disjoint simple closed curves on the surface M of genus g ≥ 2.

Let q[α1] and q[α2] be Jenkins-strebel with core curves homotopic to α1 respectively to α2 and assume that its regular

trajectories determine an annulus with modulus R. Let m, σn and k2n be as in section (2.4), then the Teichmüller

maps from x0 to y2n and from x0 to z2n are determined by exp (−i(σ2n + π)) ·q[α1] and k2n and exp (−i(σ2n + π)) ·q[α2]

and k2n.

We consider now the Teichmüller geodesic segment [y2n, z2n]. The Teichmüller map from y2n to z2n is given by

taking a negative twist 2n times about α1 and about α2. Consider the Jenkins-strebel q[α1,α2] with two annuli with

equal moduli R. then the Teichmüller map from y2n to z2n is determined by exp (−i(σ2n + π)) · q[α1,α2] and k2n.
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We denote by wn the midpoint of the geodesic segment [y2n, z2n]; and by yn (respectively zn) the point on the

geodesic segment [x0, y2n], (respectively [x0, z2n]) such that

d(wn, yn) = d(wn, [x0, y2n]) resp. d(wn, zn) = d(wn, [x0, z2n]).

Now if we assume that the Teichmüller space is hyperbolic then we have:

d(wn, yn) ≤ δ or d(wn, zn) ≤ δ. (8)

We have the following claim

Lemma 1 If we assume that d(wn, yn) ≤ δ, then the sequence (yn) ⊂ Tg does not stay in any compact subset of Tg.

Proof of Lemma 1. Using the triangle inequality we have

d(x0, y2n) ≤ d(x0,wn) + d(wn, y2n),

we may easily conclude that,

d(x0,wn) ≥ d(x0, y2n) − d(wn, y2n).

By construction of the point wn

d(x0,wn) ≥ d(x0, y2n) − 1

2
d(z2n, y2n).

Using formula 7, we obtain

d(x0,wn) ≥ 1

2
log

(
1 + k2n

1 − k2n

)
− 1

4
log

(
1 + k2n

1 − k2n

)
=

1

4
log

(
1 + k2n

1 − k2n

)
.

Combining formula (1) and letting n go to∞, we may conclude that

lim
n→∞ d(x0,wn) = ∞, (9)

in the other hand, we have:

d(x0,wn) ≤ d(x0, yn) + d(yn,wn) ≤ d(x0, yn) + δ

thus

d(x0,wn) − δ ≤ d(x0, yn),

therefore, using formula (9), we may conclude that d(x0, yn) becomes very large whenever the order of the Dehn

twist n becomes in its turn large too. Which means that the sequence (yn) does not stay in any compact subset of

the Teichmüller space Tg.

Remark The previous lemma holds for (zn) if we assume that the second inequality in (8) is true, and by inter-

changing the notations.

Conclusion of the proof of the main Theorem. Consider now, an alternative description of the Teichmüller map

from x0 to yn, respectively from x0 to zn, by the same techniques of proof as that of Lemma 2.1 in Marden and

Masur (1975), we can represent the Teichmüller map between x0 to yn, (respectively x0 to zn) as τθ ◦ Ta where τθ
is Dehn twist of the initial Jenkins-Strebel annulus Aα1

, (respectively Aα2
), having α1, (respectively α2), as core

curves by an angle 2π · θ and Ta is a radial expansion or possibly contraction of these annuli, but we can see that

in fact Ta is an expansion by adopting the same technique to establish the inequality (3.3) p. 265 in Masur and

Wolf (1995) for each annulus. The modulus of α1, (respectively α2) is increasing indefinitely along the geodesic

segment connecting x0 to yn (respectively x0 to zn). Therefore, by the formula (3), the extremal length of α1,

(respectively α2,) is decreasing indefinitely, along the geodesic segment connecting x0 to yn (respectively x0 to zn).

By the Maskit’s inequality (7), we may conclude that the hyperbolic length lyn (α1), (respectively lzn (α2),) becomes

arbitrarily small whenever n becomes arbitrarily large. Therefore, according to the equality (2), the square of the

trace of the hyperbolic element A1 ∈ Gyn (respectively A2 ∈ Gzn ) belonging to the Fuchsian group Gwn (respectively

Gzn ), that uniformize the Riemann surface yn, (respectively zn) covering the closed geodesic freely homotopic to α1

over yn (respectively α2 over zn) has limit 4 when n goes to infinity. Therefore Gyn and Gzn converge to B-groups

Gy∞ and Gz∞ respectively in the Bers boundary ∂Tg of Tg, each of them contains one and only one accidental

parabolic transformation χy∞ (A1) (respectively χz∞(A2)).
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We denote by Gwn the Fuchsian group uniformizing the Riemann surface wn. By the same argument as in the

previous paragraph, we may conclude that the square of the trace of the hyperbolic elements B1, B2 ∈ Gwn , covering

the closed geodesic freely homotopic to α1, α2 respectively over wn tend to 4 when n goes to infinity. Therefore

the hyperbolic elements B1, B2 ∈ Gwn tend to an accidental parabolic transformations χw∞(B1) and χw∞ (B2) in the

Bers boundary ∂Tg. For more details, the reader is referred to Bers (1983).

Using inequality (8) and Lemma 4, p. 7 in Bers (1983), we may conclude that in the Bers boundary the B-group Gy∞
or Gz∞ for which yn respectively zn tend to; contains two accidental parabolic transformations, which contradicts

the result that we denoted by (*), in the previous paragraph. Therefore the inequalities (8) are not true, thus (Tg, d)

is not Gromov hyperbolic.
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