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Abstract

Over three decades ago Aitchison and Aitken proposed a novel kernel function for estimating the density functions

of underlying distributions in discrete input spaces. To the best of our knowledge, it has not been shown whether

this kernel function is positive definite (i.e., a reproducing kernel function) on these spaces. Its positive definiteness

would have enriched and enlarged its applicability domain: a positive definite kernel function has an associated

Reproducing Kernel Hilbert Space, a framework on which a variety of powerful statistical and machine learning

schemes can be developed.

This paper aims to demonstrate that Aitchison and Aitken’s kernel function is indeed positive definite on discrete

metric spaces. We also touch on possible applications of the proposed theorem.
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1. Introduction

In a seminal paper Aitchison and Aitken (1976) proposed a kernel function defined on discrete descriptor/input

spaces. These authors introduced this kernel function, which is henceforth referred to as the AA-kernel, for es-

timating density functions in binary input spaces (Aitchison & Aitken, 1976). Its simple non-parametric nature

together with its consistency properties have made the AA-kernel a useful tool for generating discriminant func-

tions. For example, classifiers based on the AA-kernel have recently been widely employed in cheminformatics

classification problems where the molecules are represented by a zero-one (i.e., binary) variables (Harper et al.,

2001; Hert et al., 2004; Wilton et al., 2006; Lowe et al., 2011). Furthermore, in the past few years R-packages

featuring the AA-kernel have started to appear in the literature.

According to Aronszajn (1950), to every positive definite kernel function (PDKF)-in the sense defined below-on

X×X there corresponds a unique Reproducing Kernel Hilbert Space (RKHS) onX, whereX can be any non-empty

set (Wahba, 1998). RKHS provides a general framework on which a diverse set of powerful data analysis tools (the

so-called Reproducing Kernel Hilbert Space Methods) can be developed, whereby density function estimations,

the widely popular Support Vector Machines (Vapnik, 1995) and function approximations from finite data, to name

but a few, can be viewed as special cases (Poggio & Girosi, 1997; Wahba, 1990; Hofmann et al., 2008).

The AA-kernel, which is defined on a discrete metric space, is not a Gaussian function in this space, but it can

be viewed as the counterpart of a Gaussian kernel function defined on an Euclidean (“standard”) metric space

(Aitchison & Aitken, 1976). It is well documented that a Gaussian kernel function is PDKF on standard metric

spaces (Berg, 1998), but the same cannot be said for the AA-kernel on its discrete metric space. To the best

of the author’s knowledge, it has not been demonstrated whether (or not) the AA-kernel is positive definite-a

“positive result” would have significantly enlarged the applicability domain of the AA-kernel: As stated in the

preceding paragraph, for a positive definite kernel function there is a corresponding unique Reproducing Kernel

Hilbert Space. This means that if one proves the AA-kernel to be positive definite, then general probabilistic or

deterministic data analysis models based on Reproducing Kernel Hilbert Space defined on discrete metric input

spaces can be devised.

The following section gives the main definition and several important properties of PDKFs, which are relevant to

the topic addressed in this paper. Also in this section the AA-kernel is defined. In Section 3, we demonstrate that

the AA-kernel is positive definite. The final section gives our concluding remarks citing possible applications of
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the theorem proposed in this paper.

2. The AA-Kernel and Positive Definite Kernel Function (PDKF)

In the context of the work presented in this paper, a kernel function is a two-input symmetrical function (Shawe-

Taylor & Cristianini, 2004, Chapter 3).

The AA-kernel is a two-input symmetrical function given as (Aitchison & Aitken, 1976)

K(xi, x j; λ) = (λ)n−d(xi,x j)
(
1 − λ
c − 1

)d(xi,x j)

(1)

where xi and x j are binary variables ∈ X = Bn with B = {0, 1, ..., c − 1}; 0.5 ≤ λ ≤ 1, and n and c (≥ 2) refer to

the number of discrete entries that each variable has and the categories that an entry can assume, respectively; and

d(xi, x j) is a discrete metric defined on Bn, i.e., it denotes the number of disagreements in corresponding elements

of xi and x j.

In this work, for clarity and without loss of generality, we set c to 2, i.e., B = {0, 1}. The two λ values, λ = 1

and λ = 0.5, lead to two extreme forms of density estimations: uniform distribution and relative frequencies of

appearance of the given discrete data, respectively. Thus these two values of λ are ignored-that is, 0.5 ≤ λ ≤ 1

becomes 0.5 < λ < 1 (see Aitchison & Aitken, 1976).

Expressing d(xi, x j) as

d(xi, x j) = (xi − x j)
T (xi − x j) (2)

proffers a simple way to compute the value of d(xi, x j). It certainly does not imply that Bn is a normed space.

Instead, here (xi − x j)
T (xi − x j) merely represents a convenient scheme to calculate d(xi, x j).

Having defined and described the AA-kernel, for completeness we now briefly discuss what a positive definite

Kernel Function (PDKF) is. We also cite a number of useful properties of PDKFs, which we deem most relevant

for the purpose of this paper.

Definition (Wahba, 1998) A two-argument symmetric function K(xi, x j; λ) is said to be positive definite kernel
function on X × X if for any N and any N (data) points x1, ..., xN ∈ X the N × N matrix with elements K(xi, x j; λ),∑N

i, j αiα jK(xi, x j; λ) ≥ 0.

Where αi, α j ∈ R, λ is a real-valued tunable smoothing parameter and X being any non-empty set.

Note that in the case of the AA-kernel X is Bn, i.e., xi and x j can be considered as n-dimensional vectors.

Before proceeding further to show that the AA-kernel is a PDKF, which constitutes the core objective of this

paper, a highly useful proposition is provided. The proposition encapsulates several important closure properties

of PDKFs, which are relevant for the purpose of this paper. The proof of this proposition can be found in Shawe-

Taylor and Cristianini’s book (2004).

Proposition If g1, g2, and h are PDKFs over X × X, a, γ ∈ R+, f (.) is a real-valued function on X, and xi and
x j ∈ X, then so are the following PDKFs in the sense defined above:

A1 K(xi, x j) = g1(xi, x j) × g2(xi, x j).

A2 K(xi, x j) = a + γh(xi, x j).

A3 K(xi, x j) = a f (xi) f (x j).

A4 K(xi, x j) = xT
i x j is a linear kernel function.

3. AA-Kernel Function Is Positive Definite

This section constitutes the nub of the paper. First we formulate a theorem stating that the AA-kernel is positive

definite. We then provide the full proof of the theorem.

Theorem 1 If 0.5 < λ < 1, and xi and x j ∈ Bn with B = {0, 1}, then K(xi, x j; λ) = (λ)n−d(xi,x j)(1 − λ)d(xi,x j) is a
positive definite kernel function on Bn × Bn.

Proof. Given

K(xi, x j; λ) = (λ)n−d(xi,x j)(1 − λ)d(xi,x j) (3)

which-using Equation 2-can be rewritten as

K(xi, x j; λ) = λ
n−(xi−x j)

T (xi−x j)(1 − λ)(xi−x j)
T (xi−x j) (4)
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then after some simple algebraic manipulations, Equation 4 becomes

K(xi, x j; λ) = λn
(
1 − λ
λ

)xT
i xi[(1 − λ

λ

)−xT
i x j][(1 − λ

λ

)−xT
j xi](1 − λ

λ

)xT
j x j

(5)

Let f (xi) and f (x j) denote
(

1−λ
λ

)xT
i xi

and
(

1−λ
λ

)xT
j x j

, respectively. This gives

K(xi, x j; λ) = λn f (xi)
[(

1 − λ
λ

)−xT
i x j(1 − λ

λ

)−xT
j xi]

f (x j) (6)

= λn f (xi)
(
1 − 2λ − 1

λ

)−xT
i x j(

1 − 2λ − 1

λ

)−xT
j xi

f (x j)

= λn f (xi) f (x j)
[(

1 − 2λ − 1

λ

)−xT
i x j(

1 − 2λ − 1

λ

)−xT
j xi]

where
(
1 − 2λ−1

λ

)−xT
i x j

and
(
1 − 2λ−1

λ

)−xT
j xi

are
(

1−λ
λ

)−xT
i x j

and
(

1−λ
λ

)−xT
j xi

, respectively.

Based on A3., λn f (xi) f (x j) is PDKF. This means K(xi, x j; λ) is PDKF if and only if
(
1− 2λ−1

λ

)−xT
i x j

and
(
1− 2λ−1

λ

)−xT
j xi

are PDKFs.

One only requires to demonstrate that
(
1 − 2λ−1

λ

)−xT
i x j

is PDKF and then use the same argument for
(
1 − 2λ−1

λ

)−xT
j xi

.

By definition 0.5 < λ < 1; hence 0 < 2λ−1
λ
< 1. Then by invoking the binomial theorem, one can express(

1 − 2λ−1
λ

)−xT
i x j

as

(
1 − 2λ − 1

λ

)−xT
i x j

=

(
1 − 2λ − 1

λ

)−q
(7)

= 1 + (−q)(−β) + (−q)((−q) − 1)

2!
(−β)2 +

(−q)((−q) − 1)((−q) − 2)

3!
(−β)3 + ...

= 1 + qβ +
q(q + 1)

2!
β2 +

q(q + 1)(q + 2)

3!
β3 + ...

= 1 + γ1q + γ2q(q + 1) + γ3q(q + 1)(q + 2) + ...

where β, γm and q denote 2λ−1
λ

,
βm

m!
and q = q(xi, x j) = xT

i x j (a linear kernel function), respectively; with m being a

positive integer.

On the RHS of Equation 7, in the final expression, all coefficients γm ∈ R+. This means, based on A1, A2 and A4,

that 1+γ1q+γ2q(q+1)+γ3q(q+1)(q+2)+ ... is PDKF. In other words,
(
1− 2λ−1

λ

)−xT
i x j

is a positive definite kernel

function. Hence the AA-kernel, K(xi, x j; λ), that we started with is positive definite. This completes the proof of

Theorem 1.

4. Summary

Over three decades ago Aitchison and Aitken proposed a novel kernel function for estimating the density functions

of underlying distributions in discrete metric spaces. To the best of our knowledge, it has not been shown whether

this kernel function is positive definite on discrete metric spaces. The positive definiteness of this kernel function

would have enriched and enlarged its applicability domain, because a PDKF has an associated Reproducing Kernel

Hilbert Space (RKHS). A RKHS provides an excellent framework on which a variety of powerful statistical and

machine learning schemes can be developed as discussed at great length and detail in some of the references cited

in Section 1.

We therefore anticipate that the proposed and proven theorem in this paper can be applied wherever (in statistics

or machine learning) the application of models based on the RKHS concept deemed appropriate for the analysis of

discrete datasets.

24



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 5, No. 1; 2013

Acknowledgements

The author would like to thank Unilever for financial support.

References

Aitchison, J., & Aitken, C. G. G. (1976). Multivariate binary discrimination by the kernel method. Biometrika, 63,

413-420. http://dx.doi.org/10.1093/biomet/63.3.413

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68, 337-404. Retrieved from

http://www.ams.org/journals/tran/1950-068-03/S0002-9947-1950-0051437-7/

Berg, C., Christensen, J. P. R., & Ressel, P. J. (1984). A Classical Introduction to Modern Number Theory (Grad-
uate Texts in Mathematics) (1st ed.). New York, NY: Springer-Verlag.

Harper, G., Bradshaw, J., Gittins, J. C., Green, D. V. S., & Leach, A. R. (2001). Prediction of biological activity

for high-throughput screening using,binary kernel discrimination. J. Chem. Inf. Comput. Sci., 41, 1295-1300.

http://dx.doi.org/10.1021/ci000397q

Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., & Schuenhauer, A. (2004). A comparison

of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures.

Org. Biomol. Chem., 2, 3256-3266. http://dx.doi.org/10.1039/B409865J

Hofmann, T., Scholkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statistics, 36,

1171-1220. http://dx.doi.org/10.1214/009053607000000677

Lowe, R., Mussa, H. Y., Mitchell, J. B. O., & Glen, R. C. (2011). Classifying molecules using a sparse probabilistic

kernel binary classifier. J. Chem. Inf. Model., 51, 1539-1544. http://dx.doi.org/10.1214/10.1021/ci200128w

Poggio, T., & Girosi, F. (1988). A sparse representation for function approximation. Neural Computation, 10,

1445-1454. http://dx.doi.org/10.1162/089976698300017250

Shawe-Taylor, J., & Cristianini N. (2004). Kernel Methods for Pattern Analysis (1st ed., pp. 75-76). Cambridge,

UK: Cambridge University Press.

Vapnik, V. (1995). The Nature of Statistical Learning Theory (1st ed.). New York, NY: Springer-Verlag.

Wahba, G. (1990). Spline Models for Observational Data (1st ed.). SIAM.

Wahba, G. (1998). Support vector machines, reproducing kernel Hilbert spaces and randomized gacv. Tech. rep.
University of Wisconsin, Wisconsin.

Wilton, D. J., Harrison, R. F., Willett, P., Delaney, J., Lawson, K., & Mullier, G. (2006). Virtual screening using bi-

nary kernel discrimination: Analysis of pesticide data. J. Chem. Inf. Model., 46, 471-477.

http://dx.doi.org/10.1021/ci050397w

25


