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Abstract

We introduce poly-Bergman type spaces on the Siegel domain Dn ⊂ C
n, and we prove that they are isomorphic

to tensorial products of one-dimensional spaces generated by orthogonal polynomials of two kinds: Laguerre

polynomials and Hermite type polynomials. The linear span of all poly-Bergman type spaces is dense in the

Hilbert space L2(Dn, dμλ), where dμλ = (Im zn − |z1|2 − · · · − |zn−1|2)λdx1dy1 · · · dxndyn, with λ > −1.
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1. Introduction

In this paper we generalized the concept of polyanalytic function on the Siegel domain Dn ⊂ C
n, which is the

unbounded realisation of the unit ball Bn ⊂ C
n.

The spaces of polyanalytic functions on the unit disc D, or the upper half-plane as its unbounded realisation, were

introduced and studied in Balk (1997), Balk and Zuev (1970), Dzhuraev (1985) and Dzhuraev (1992). Recall

some preliminaries known facts. Let Π ⊂ C be the upper half-plane and let l ∈ N. We denote by A2
l (Π) [Ã2

l (Π)]

the subspace of L2(Π) consisting of all l-analytic functions [l-anti-analytic functions], i.e., the functions satisfying

the equation (∂/∂z̄)lϕ = 0 [(∂/∂z)lϕ = 0]. The function space A2
l (Π) is called poly-Bergman space of Π. Let

A2
(l)(Π) = A2

l (Π) � A2
l−1

(Π) and Ã2
(l)(Π) = Ã2

l (Π) � Ã2
l−1

(Π) be the spaces of true-l-analytic functions and true-l-
anti-analytic functions, respectively. Let χ± stand for the characteristic function of R± = R±1 = {x ∈ R : ±x ≥ 0}.
The main result of Vasilevski (1999) says that the space L2(Π) admits the decomposition

L2(Π) =

∞⊕
l=1

A2
(l)(Π) ⊕

∞⊕
l=1

Ã2
(l)(Π),

and that there exists an unitary operator W : L2(Π)→ L2(Π) such that the restriction mappings

W : A2
(l)(Π)→ L2(R+) ⊗ Ll−1,

W : Ã2
(l)(Π)→ L2(R−) ⊗ Ll−1,

are isometric isomorphisms, where Ll is the one-dimensional space generated by �λl (y) = (−1)lclLλl (y)e−y/2χ+(y),

with Lλl (y) the Laguerre polynomial of order λ and degree l. Note that the above restriction mappings from poly-

Bergman spaces and anti-poly-Bergman spaces are the analogue of the Bargmann type transform.

For the Bergman spaceA2
λ(Dn) of the Siegel domain Dn, the analogues of the classical Bargmann transform and its

inverse for five different types of commutative subgroups of biholomorphisms of Dn were constructed in Quiroga-

Barranco and Vasilevski (2007). In particular, for the parabolic case they found an isometric isomorphisms

U : A2
λ(Dn)→ l2(Zn−1

+ , L
2(R+)),

which is the Bargmann type transform, where Z+ = {0} ∪ N and Z− = Z \ N.
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In this work polyanalytic function spaces are defined via the complex structure of Cn induced by the tangential

Cauchy-Riemann equations given for the Heisenberg group Boggess (1991). Let L be (l1, . . . , ln) ∈ Nn. The poly-

Bergman type space of Dn, denote by A2
λL(Dn) or simply by A2

λL, is the subspace of L2(Dn, dμλ) consisting of all

L-analytic functions, i.e., functions that satisfy the equations

(
∂

∂zk
− 2izk

∂

∂zn

)lk
f = 0, 1 ≤ k ≤ n − 1

(
∂

∂zn

)ln
f = 0,

where, as usual, ∂
∂zk
= 1

2

(
∂
∂xk
− 1

i
∂
∂yk

)
and ∂

∂zk
= 1

2

(
∂
∂xk
+ 1

i
∂
∂yk

)
. In particular, a function f is analytic in the Siegel

domain if it satisfies

∂ f
∂zk
− 2izk

∂ f
∂zn

= 0, 1 ≤ k ≤ n − 1

∂ f
∂zn

= 0.

Functions inA2
λL will be also called polyanalytic functions.

Anti-polyanalytic functions are just complex conjugation of polyanalytic functions, but they constitute a linearly

independent space. For L = (l1, ..., ln) ∈ Nn, we define the anti-poly-Bergman type space Ã2
λL(Dn) (or simply Ã2

λL)

as the subspace of L2(Dn, dμλ) consisting of all L-anti-analytic functions, i.e., functions satisfying the equations

(
∂

∂zk
+ 2izk

∂

∂zn

)lk
f = 0, k = 1, ..., n − 1

(
∂

∂zn

)ln
f = 0.

We define the spaces of true-L-analytic and true-L-anti-analytic functions as

A2
λ(L) = A2

λL �
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

A2
λ,L−e j

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ã2
λ(L) = Ã2

λL �
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

Ã2
λ,L−e j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
whereA2

λS = Ã2
λS = {0} if S � Nn, and {ek}nk=1

stand for the canonical basis of Rn.

The main results obtained in this work go as follows:

1) The space L2(Dn, dμλ) admits the decomposition

L2(Dn, dμλ) =

⎛⎜⎜⎜⎜⎜⎝
⊕
L∈Nn

A2
λ(L)

⎞⎟⎟⎟⎟⎟⎠
⊕⎛⎜⎜⎜⎜⎜⎝

⊕
L∈Nn

Ã2
λ(L)

⎞⎟⎟⎟⎟⎟⎠ .

2) There exists an unitary operator

W : L2(Dn, dμλ) −→ H = l2(Zn−1) ⊗ L2(Rn−1
+ , rdr) ⊗ L2(R) ⊗ L2(R+, yλdy)

for which

A2
λ(L) � K+(L) ⊗ L2(R+) ⊗ Lln−1

and

Ã2
λ(L) � K−(L) ⊗ L2(R−) ⊗ Lln−1,

where Lln−1 is the one-dimensional space generated by the Laguerre function of degree ln−1 and order λ, andK±(L)

is the subspace of l2(Zn−1) ⊗ L2(Rn−1
+ , rdr) consisting of all sequences {cm(r)}Zn−1 such that cm belongs to a finite

dimensional space generated by Hermite type functions.

54



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 6; 2012

2. CR Manifolds

For a smooth submanifold M of Cn, recall that Tp(M) is the real tangent space of M at the point p. In general,

Tp(M) is not invariant under the complex structure map J for Tp(Cn). For a point p ∈ M, the complex tangent

space of M at p is the vector space

Hp(M) = Tp(M) ∩ J{Tp(M)}.
This space is sometimes called the holomorphic tangent space. Using the Euclidian inner product on Tp(R2n),

denote by Xp(M) the totally real part of the tangent space of M which is the orthogonal complement of Hp(M) in

Tp(M). We have that Tp(M) = Hp(M) ⊕ Xp(M) and J(Xp(M)) is trasversal to Tp(M). A submanifold M of Cn is

called a CR submanifold of Cn if dimR Hp(M) is independient of p ∈ M. The complexifications of Tp(M), Hp(M)

and Xp(M) are denoted by Tp(M) ⊗ C, Hp(M) ⊗ C and Xp(M) ⊗ C, respectively. The complex structure map J on

Tp(R2n)⊗C restrict to a complex structure map on Hp(M)⊗C because Hp(M) is J-invariant. Moreover Hp(M)⊗C
is the direct sum of the +i and −i eigenspace of J which are denoted by H1,0

p (M) and H0,1
p (M), respectively.

The following result establishes the form of the basis of Hp(M). It also provides an expression for the generators

of Hp(M). We refer to Boggess (1991) for its proof.

Theorem 2.1 Suppose M = {(x + iy,w) ∈ C
d × C

n−d : y = h(x,w)}, where h : Rd × C
n−d → R

d is of class Cm

(m ≥ 2) with h(0) and Dh(0) = 0. A basis for H1,0
p (M) near of the origin is given by

Λk =
∂

∂wk
+ 2i

d∑
l=1

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

m=1

μlm
∂hm

∂wk

∂

∂zl

⎞⎟⎟⎟⎟⎟⎟⎠ , 1 ≤ k ≤ n − d

where μlm is the (l,m)th element of the d × d matrix
(
I − i ∂h

∂x

)−1
. A basis for H0,1

p near the origin is given by

Λ1, . . . ,Λn−d.

If the graphing function h of M is independient of the variable x, then the local basis of H1,0
p (M) has the following

simple form

Λk =
∂

∂wk
+ 2i

d∑
l=1

∂hl

∂wk

∂

∂zl
, 1 ≤ k ≤ n − d. (1)

We refer to Example 7.3-1 of Boggess (1991) for the details on the following construction of the Heisenberg group,

which use the Equation (1). For the real hypersurface in C
n defined by

M = {(z′, zn) ∈ Cn−1 × C : Im zn = |z′|2},
the generators for H1,0(M) are given by

Λk = Λ
−
k− =

∂

∂zk
+ 2izk

∂

∂zn
, 1 ≤ k ≤ n − 1 (2)

and the generators for H0,1(M) are given by

Λk = Λ
+
k+ =

∂

∂zk
− 2izk

∂

∂zn
, 1 ≤ k ≤ n − 1. (3)

3. Cauchy-Riemann Equations for the Siegel Domain

Let dμ(z) = dx1dy1 · · · dxndyn stand for the usual Lebesgue measure in C
n, where z = (z1, ..., zn) ∈ C

n and

zk = xk + iyk. We often rewrite z as (z′, zn), where z′ = (z1, ..., zn−1). On the other hand, the usual norm in C
n is

denoted by | · |. In the Siegel domain

Dn =
{
z = (z′, zn) ∈ Cn−1 × C : Im zn − |z′|2 > 0

}
we consider the weighted Lebesgue measure

dμλ(z) = (Im zn − |z′|2)λdμ(z), λ > −1.

Recall now the well known weighted Bergman spaceA2
λ(Dn), defined as the space of all holomorphic functions in

L2(Dn, dμλ). Thus, for f ∈ A2
λ(Dn),

∂ f
∂zk
= 0, k = 1, ..., n.
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LetD be the subset Cn−1 × R × R+ ⊂ C
n. Consider the mapping

κ : w = (z′, u, v) ∈ D �−→ z = (z′, u + iv + i|z′|2) ∈ Dn

and the unitary operator U0 : L2(Dn, dμλ)→ L2(D, dηλ) given by

(U0 f )(w) = f (κ(w)),

where

dηλ(w) = vλdμ(w).

Our aim is to introduce poly-Bergman type spaces in the Siegel domain, and then realize them in the space

L2(D, dηλ) in order to apply Fourier transform techniques for their study. We start with the image spaceA0(D) =

U0(A2
λ), which consists of all functions ϕ(z′, u, v) = (U0 f )(w) satisfying the equations

U0

∂

∂zk
U−1

0 ϕ =

(
∂

∂zk
− zk
∂

∂v

)
ϕ = 0, 0 ≤ k ≤ n − 1

U0

∂

∂zn
U−1

0 ϕ =
1

2

(
∂

∂u
+ i
∂

∂v

)
ϕ = 0.

(4)

For functions satisfying this last equation, the first type equation in (4) can be rewritten as

U0

∂

∂zk
U−1

0 ϕ =

(
∂

∂zk
− izk

∂

∂u

)
ϕ = 0, k = 1, ..., n − 1. (5)

These kind of equations were used in Quiroga-Barranco and Vasilevski (2007), and without any restriction on ϕ,

they proved to be more usefull than the first type of equations in (4), as explained right now. At first stage, our

aim was to introduce poly-Bergman type spaces such that they densely fill the space L2(Dn, dμλ), we additionaly

required that such poly-Bergman type spaces be isomorphic to tensorial products of L2-spaces. Thus, following the

techniques given in Quiroga-Barranco and Vasilevski (2007), equations (5) gave positive results for our porpuse.

In this way the differential operators given in (3) were found, and they certainly satisfy

U0ΛkU−1
0 =

∂

∂zk
− izk

∂

∂u
, k = 1, ..., n − 1.

Obviously, a continuous function f is holomorphic in Dn if and only if

Λk f = 0, k = 1, ..., n − 1

∂

∂zn
f = 0.

We will use the operators Λk’s to define the first class of poly-Bergman type spaces, i.e., a certain class of polyan-

alytic function spaces.

On the other hand, the differential operators ∂/∂zk (k = 1, ..., n− 1) are used to define anti-analytic function spaces,

but they can be replaced by the operators given in (2). By the way,

U0ΛkU−1
0 =

∂

∂zk
+ izk

∂

∂u
, k = 1, ..., n − 1.

In addition we must consider

U0

∂

∂zn
U−1

0 =
1

2

(
∂

∂u
− i
∂

∂v

)
.

As expected, we use the operators Λk’s to define anti-polyanalytic function spaces.

4. Orthogonal Polynomials Required

We will prove that poly-Bergman type spaces are isomorphic to tensorial products of one-dimensional spaces

generated by orthogonal polynomials of two kinds. The first one is the set of Laguerre polynomials of order λ:

Lλj (y) := ey y−λ

j!
d j

dy j (e−yy j+λ), j = 0, 1, 2, ...
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Laguerre polynomials constitute an orthogonal basis for the space L2(R+, yλe−ydy), thus the set of functions

�λj (y) = (−1) jc jLλj (y)e−y/2, j = 0, 1, 2, ...

is an orthonormal basis of L2(R+, yλdy), where c j =
√

j!/Γ( j + λ + 1) and Γ is the gamma function. Consider the

one-dimensional space

L j = gen{�λj (y)} ⊂ L2(R+, yλdy).

On the other hand, for each ν ≥ −1/2, the second kind of polynomials consists of an orthonormal family of Hermite

type polynomials in the space L2(R+, τ
2ν+1e−τ2

dτ). These polynomials are denoted by Qνj(τ), j = 0, 1, 2, ..., and they

are defined via the Gram-Schmidt procedure using the linearly independent set {1, τ, τ2, ...}. Thus, deg Qνj(τ) = j
and ∫ ∞

0

Qνj(τ)Q
ν
k(τ)τ2ν+1e−τ

2

dτ = δ jk.

Actually {Qνj(τ)}∞j=0 is an orthonormal basis of L2(R+, τ
2ν+1e−τ2

dτ). Let’s prove it. Let f in {1, τ, τ2, ...}⊥ ⊂
L2(R+, τ

2ν+1e−τ2

), that is, ∫ ∞
0

f (τ)τ j τ2ν+1e−τ
2

dτ = 0, ∀ j ≥ 0

or ∫ ∞
0

g(τ)h(τ)τ je−τ/2 = 0, ∀ j ≥ 0

where g(τ) = f (τ)τν+1/2e−τ2/2 belongs to L2(R+), and h(τ) = τν+1/2e−(τ2−τ)/2 is bounded. Therefore gh ∈ L2(R+)

and is orthogonal to the orthonormal basis {�λj (y)}. Thus gh = 0, i.e., f = 0.

We have proved that the Hermite type functions

Hνj (τ) = Qνj(τ)τ
νe−τ

2/2, j = 0, 1, ...

form an orthonormal basis for L2(R+, τdτ). We will refer to τν as the potential weight of both the polynomials and

Hermite type functions.

All the polynomials Qνj(τ) come out in our computations but we can work instead with the polynomials Q0
j (τ) via

the unitary operator Tν : L2(R+, τdτ)→ L2(R+, τdτ) defined by

Tν : Qνj(τ)τ
νe−τ

2/2 �−→ Q0
j (τ)e

−τ2/2, ν ≥ −1/2. (6)

Let rdr denote the product measure
∏n−1

k=1 rkdrk on R
n−1
+ , so that

L2(Rn−1
+ , rdr) = L2(R+, r1dr1) ⊗ · · · ⊗ L2(R+, rn−1drn−1).

For m = (m1, ...,mn−1), J′ = ( j1, ..., jn−1) ∈ Z
n−1
+ , we introduce the following Hermite type functions of several

variables:

Hm
J′ (r) = Hm1

j1
(r1) · · ·Hmn−1

jn−1
(rn−1)

= Qm1

j1
(r1) · · ·Qmn−1

jn−1
(rn−1)rme−r2/2,

where r = (r1, ..., rn−1), r2 = r2
1 + · · · + r2

n−1, and rm = rm1

1
· · · rmn−1

n−1
. Introduce the one-dimensional space

Hm
J′ = gen{Hm

J′(r)} ⊂ L2(Rn−1
+ , rdr).

For each m ∈ Zn−1
+ , the set {Hm

J′ (r)}J′∈Zn−1
+

is an orthonormal basis for L2(Rn−1
+ , rdr). We can now define an unitary

operator

Tm : L2(Rn−1
+ , rdr)→ L2(Rn−1

+ , rdr)

by

Tm = Tm1
⊗ · · · ⊗ Tmn−1

: Hm
J′ (r) �−→ H0

J′ (r). (7)

57



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 6; 2012

We need a partial order in Z
N . We say that 0 ≤ J ≤ L if 0 ≤ jk ≤ lk for k = 1, ...,N, where J = ( j1, ..., jN), L =

(l1, ..., lN).

5. Poly-Bergman Type Spaces

For L = (l1, ..., ln) ∈ Nn, we define the poly-Bergman type spaceA2
λL as the subspace of L2(Dn, dμλ) consisting of

all functions f satisfying the equations

(
∂

∂zk
− 2izk

∂

∂zn

)lk
f = 0, k = 1, ..., n − 1

(
∂

∂zn

)ln
f = 0.

Let {e j}nj=1
be the canonical basis of Rn. We define the space of true-L-analytic functions as

A2
λ(L) = A2

λL �
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

A2
λ,L−e j

⎞⎟⎟⎟⎟⎟⎟⎠ ,

whereA2
λS = {0} if S � Nn.

It is much more convenient to deal withA0,λL(D) = U0(A2
λL) ⊂ L2(D, dηλ) in order to apply Fourier techniques in

the study of the poly-Bergman type space. For ϕ = U0 f ∈ A0,λL(D) we have then

U0

(
Λk

)lk
U−1

0 ϕ =

(
∂

∂zk
− izk

∂

∂u

)lk
ϕ = 0, k = 1, ..., n − 1

U0

(
∂

∂zn

)ln
U−1

0 ϕ =
1

2ln

(
∂

∂u
+ i
∂

∂v

)ln
ϕ = 0.

Once and for all we introduce all the operators to be considered. Fourier transforms on L2(R) and L2(T) play a very

important role in this work, where T = S 1 is the unit circumference. We begin with the tensorial decomposition

L2(D, dηλ) = L2(Cn−1) ⊗ L2(R) ⊗ L2(R+, vλdv).

We use now polar coordinates for the first tensorial factor space. For z′ = (z1, ..., zn−1) ∈ Cn−1, we write zk = rktk
with rk ≥ 0 and tk ∈ T. For t = (t1, ..., tn−1) and r = (r1, ..., rn−1), we often write rt to mean z′, and we identify z′
with (t, r). Then

L2(Cn−1) = L2(Tn−1, dΘ) ⊗ L2(Rn−1
+ , rdr),

where

dΘ = dΘn−1 =
1

(2π)(n−1)/2

n−1∏
k=1

dtk
itk
.

Obviously

L2(D, dηλ) = L2(Tn−1, dΘ) ⊗ L2(Rn−1
+ , rdr) ⊗ L2(R) ⊗ L2(R+, vλdv). (8)

Let F denote the Fourier transform on L2(R), and let F be the discrete Fourier transform on L2(T, dt/(it)):

(F f )(ξ) =
1√
2π

∫
R

f (u)e−iξudu,

(F g)(k) =
1√
2π

∫
T

g(t)tk dt
it
.

Let F(n−1) be the tensorial product of F with itself taken n − 1 times. Now, according to the decomposition (8) we

introduce the unitary operators

U1 = I ⊗ I ⊗ F ⊗ I,

U2 = F(n−1) ⊗ I ⊗ I ⊗ I.

Of course, the operator U2 acts from L2(D, dηλ) onto the Hilbert space

H = l2(Zn−1) ⊗ L2(Rn−1
+ , rdr) ⊗ L2(R) ⊗ L2(R+, vλdv). (9)
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Consider now the decomposition

H = H+ ⊕H−,
where

H± = l2(Zn−1) ⊗ L2(Rn−1
+ , rdr) ⊗ L2(R±) ⊗ L2(R+, vλdv).

We introduce the unitary operator

U3 = [T+ ⊗ I ⊗ I] ⊕ [T− ⊗ I ⊗ I] : H+ ⊕H− −→ H+ ⊕H−,
where T± is the operator on l2(Zn−1) ⊗ L2(Rn−1

+ , rdr) given by

T± : {cm(r)}m∈Zn−1 �→ {Tm± (cm(r))}m∈Zn−1

with Tm given by (7), m± = (m±1 , ...,m
±
n−1), m+j = max{mj, 0} and m−j = m+j − mj.

Finally, according to the tensorial product (8), we consider the following unitary operators on L2(D, dηλ):

V1 : φ(z′, ξ, v) �−→ ψ(z′, x, y) =
1

(2|x|)(λ+1)/2
φ(z′, x,

y
2|x| ),

V2 : ψ(t, r, x, y) �−→ Ψ(t, ρ, x, y) =
1

(
√

2|x|)n−1
ψ(t,

1√
2|x|ρ, x, y), ρ =

√
2|x|r.

Let K+L be the subspace of l2(Zn−1) ⊗ L2(Rn−1
+ , ρdρ) consisting of all sequences

{cm(ρ)}m∈Zn−1

such that
cm = 0 for L′ + m − e � Zn−1

+

cm ∈
⊕

0≤J′≤L′−m−−e

H0
J′ for L′ + m − e ∈ Zn−1

+

where e = (1, ..., 1) ∈ Zn−1.

Theorem 5.1 The unitary operator W = U3U2V2V1U1U0 maps L2(Dn, dμλ) onto

H = l2(Zn−1) ⊗ L2(Rn−1
+ , rdr) ⊗ L2(R) ⊗ L2(R+, yλdy).

The poly-Bergman type spaceA2
λL is isomorphic to the subspace

H+L = K+L ⊗ L2(R+) ⊗
⎛⎜⎜⎜⎜⎜⎜⎝

ln−1⊕
jn=0

L jn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Let K+(L) be the subspace of l2(Zn−1) ⊗ L2(Rn−1
+ , ρdρ) consisting of all sequences

{cm(ρ)}m∈Zn−1

such that
cm = 0 for L′ + m − e � Zn−1

+

cm ∈ H0
L′−m−−e for L′ + m − e ∈ Zn−1

+ .

Corollary 5.2 The restriction of W to the spaceA2
λ(L) given by

W : A2
λ(L) −→ H+(L) = K+(L) ⊗ L2(R+) ⊗ Lln−1

is an isomorphisms. Furthermore ⊕
L∈Nn

A2
λ(L) � H+.
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Proof of Theorem 5.1. IfA1,λL = U1(A0,λL(D)), then φ = U1ϕ belongs toA1,λL if and only if

(
∂

∂zk
+ ξzk

)lk
φ = 0, (k = 1, ..., n − 1)

iln

2ln

(
ξ +
∂

∂v

)ln
φ = 0.

LetA′
1,λL denote the image space V1(A1,λL). Then ψ = V1φ belongs toA′

1,λL if and only if

V1

(
∂

∂zk
+ ξzk

)lk
V−1

1 ψ =

(
∂

∂zk
+ xzk

)lk
ψ = 0, k = 1, ..., n − 1

iln

2ln
V1

(
ξ +
∂

∂v

)ln
V−1

1 ψ =
iln |x|ln

2ln

(
sign(x) + 2

∂

∂y

)ln
ψ = 0.

(10)

The last equation in (10) separates the variable y from the rest of variables; this means that certain independent

solutions for it can be expressed in the form f (x, z′)g(y) as shown below. But we must do the corresponding part

for the first kind of equation in (10). In polar coordinates, the first kind of equation in (10) takes the form

[
tk
2

(
∂

∂rk
− tk

rk

∂

∂tk
+ 2xrk

)]lk
ψ = 0.

Define nowA′2,λL = V2(A′1,λL). Then Ψ = V2ψ belongs toA′2,λL if and only if

[ √
2|x| tk

2

(
∂

∂ρk
− tk
ρk

∂

∂tk
+ sign(x)ρk

)]lk
Ψ = 0, k = 1, ..., n − 1

iln |x|ln
2ln

(
sign(x) + 2

∂

∂y

)ln
Ψ = 0.

(11)

The general solution of the last equation in (11) is given by

Ψ(t, ρ, x, y) =

ln−1∑
jn=0

ψ0 jn (t, ρ, x)y jn e−(sgn x)y/2.

Since Ψ(t, ρ, x, y) has to be in L2(D, dηλ), we must take only positive values of x. Morever, by rearranging polyno-

mial terms we can express Ψ(t, ρ, x, y) as

Ψ(t, ρ, x, y) = χ+(x)

ln−1∑
jn=0

ψ jn (t, ρ, x)�λjn (y). (12)

LetA2,λL denote the space U2(A′2,λL). In order to simplify our computations let’s consider the function

Ψ jn = χ+(x)ψ jn (t, ρ, x)�λjn (y)

instead of the whole function Ψ given in (12). Then

{dm jn }m∈Zn−1 := U2Ψ jn = χ+(x)�λjn (y){cm jn (ρ, x)}m∈Zn−1 , (13)

where cm jn ∈ L2(Rn−1
+ , ρdρ) ⊗ L2(R+) is given by

cm jn (ρ, x) =

∫
Tn−1

ψ jn (t, ρ, x)t−mdΘ. (14)

Obviously

Ψ jn = U∗2{dm jn }m∈Zn−1 = χ+(x)�λjn (y)
∑

m∈Zn−1

cm jn (ρ, x)tm.
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Thus {dm jn }m∈Zn−1 , as in (13), belongs toA2,λL if and only if

U2

[ √
2|x| tk

2

(
∂

∂ρk
− tk
ρk

∂

∂tk
+ sign(x)ρk

)]lk
U−1

2 {dm jn } = 0.

Let R denote the left hand side of this equation for the particular case lk = 1, and let G(x, y) be the function

χ+(x)�λjn (y). We have

P := U−1
2 R

=
√

2|x| tk
2

(
∂

∂ρk
− tk
ρk

∂

∂tk
+ sign(x)ρk

) ∑
m∈Zn−1

G(x, y)cm jn (ρ, x)tm

=
√

2|x|G(x, y)
∑ tk

2

(
tm ∂cm jn

∂ρk
− mk

ρk
cm jn tm + sign(x)ρkcm jn tm

)

=
√

2|x|G(x, y)
∑

tm tk
2

(
∂

∂ρk
− mk

ρk
+ sign(x)ρk

)
cm jn ,

that is,

R = χ+(x)
√

2|x|�λjn (y)

{
1

2

(
∂

∂ρk
− mk − 1

ρk
+ sign(x)ρk

)
cm−ek , jn

}
m∈Zn−1

.

Thus, the function {dm jn }m∈Zn−1 = U2Ψ jn belongs toA2,λL if and only if for each m and k = 1, ..., n − 1:

(
∂

∂ρk
− mk

ρk
+ sign(x)ρk

)lk
cm jn = 0, with cm jn ∈ L2. (15)

Fixed m ∈ Zn−1
+ , the general solution of this system of equations has the form

cm jn =
∑

0≤J′≤L′−e

gmJ(x)ρJ′ρme−sign(x) ρ2/2, (x > 0) (16)

where J′ = ( j1, ..., jn−1) and J = (J′, jn). Alternately, the general solution is given by

cm jn =
∑

0≤J′≤L′−e

χ+(x) fmJ(x)Hm
J′ (ρ), m ∈ Zn−1

+ . (17)

For arbitrary m ∈ Zn−1, the general solution of the system of differential equations (15) can also be written as

cm jn = χ+(x)p1(ρ1) · · · pn−1(ρn−1)ρme−ρ
2/2, (18)

where pk(ρk) is a polynomial of degree at most lk − 1 and whose coeficients are functions in x. Suppose that

m = (m1, ...,mn−1) � Zn−1
+ . Take mk < 0. Since cm jn must be in L2(Rn−1

+ , ρdρ), the polynomial pk(ρk) is necessarily

divisible by ρ|mk |
k . Thus, if lk ≤ |mk |, then pk(ρk) = 0; but if |mk | ≤ lk − 1 then pk(ρk)ρmk is a polynomial of degree

at most lk − 1 − |mk |. Thus, the potential weight ρmk
k is canceled in (18), and the set of solutions is reduced by the

L2-condition. We have non-trivial solutions for L′ + m − e ≥ 0, they are given by

cm jn =
∑

0≤J′≤L′−m−−e

χ+(x) fmJ(x)Hm+
J′ (ρ). (19)

Then the function U2Ψ jn belongs toA2,λL if and only if

U2Ψ jn = χ+(x)�λjn (y)

⎧⎪⎪⎨⎪⎪⎩
∑

0≤J′≤L′−m−−e

Hm+
J′ (ρ) fmJ(x)

⎫⎪⎪⎬⎪⎪⎭
m∈Zn−1

,

where fmJ = 0 for L′ + m − e � Zn−1
+ . Therefore

U3U2Ψ jn = �
λ
jn (y)

⎧⎪⎪⎨⎪⎪⎩
∑

0≤J′≤L′−m−−e

H0
J′ (ρ)χ+(x) fmJ(x)

⎫⎪⎪⎬⎪⎪⎭
m∈Zn−1

+

.
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Finally U3U2Ψ =
∑ln−1

jn=0
U3U2Ψ jn belongs toH+L , and it is easy to see that W mapsA2

λL(Dn) ontoH+L .

6. Anti-poly-Bergman Type Spaces

Anti-polyanalytic functions are just complex conjugation of polyanalytic functions, but they constitute a linearly

independent space. For L = (l1, ..., ln) ∈ N
n, we define the anti-poly-Bergman type space Ã2

λL as the subspace of

L2(Dn, dμλ) consisting of all functions f satisfying the equations

(
∂

∂zk
+ 2izk

∂

∂zn

)lk
f = 0, k = 1, ..., n − 1

(
∂

∂zn

)ln
f = 0.

We define the space of true-L-anti-analytic functions as

Ã2
λ(L) = Ã2

λL �
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

Ã2
λ,L−e j

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where Ã2
λS = {0} if S � Nn.

The following theorem is the main result of this work.

Theorem 6.1 The Hilbert space L2(Dn, dμλ) admits the decomposition

L2(Dn, dμλ) =

⎛⎜⎜⎜⎜⎜⎝
⊕
L∈Nn

A2
λ(L)

⎞⎟⎟⎟⎟⎟⎠
⊕⎛⎜⎜⎜⎜⎜⎝

⊕
L∈Nn

Ã2
λ(L)

⎞⎟⎟⎟⎟⎟⎠ .

Proof. Follows from Corollary 5.2 and Corollary 6.3 below.

Let K−L be the subspace of l2(Zn−1) ⊗ L2(Rn−1
+ , ρdρ) consisting of all sequences

{cm(ρ)}m∈Zn−1

such that
cm = 0 for L′ − m − e � Zn−1

+

cm ∈
⊕

0≤J′≤L′−m+−e

H0
J′ for L′ − m − e ∈ Zn−1

+ .

Let K−(L) be the subspace of l2(Zn−1) ⊗ L2(Rn−1
+ , ρdρ) consisting of all sequences

{cm(ρ)}m∈Zn−1

such that
cm = 0 for L′ − m − e � Zn−1

+

cm ∈ H0
L′−m+−e for L′ − m − e ∈ Zn−1

+

Theorem 6.2 Under the unitary operator W = U3U2V2V1U1U0 acting on L2(Dn, dμλ), the anti-poly-Bergman type
space Ã2

λL is isomorphic to the subspace

H−L = K−L ⊗ L2(R−) ⊗
⎛⎜⎜⎜⎜⎜⎜⎝

ln−1⊕
jn=0

L jn

⎞⎟⎟⎟⎟⎟⎟⎠ .

Corollary 6.3 The restriction of W to the space Ã2
λ(L) given by

W : Ã2
λ(L) −→ H−(L) = K−(L) ⊗ L2(R−) ⊗ Lln−1

is an isomorphisms. Furthermore ⊕
L∈Nn

Ã2
λ(L) � H−.
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Proof of Theorem 6.2. The image space Ã0,λL(D) = U0(Ã2
λL(Dn)) ⊂ L2(D, dηλ) consists of all functions ϕ = U0 f

satisfying the equations

U0 (Λk)lk U−1
0 ϕ =

(
∂

∂zk
+ izk

∂

∂u

)lk
ϕ = 0, (k = 1, ..., n − 1)

U0

(
∂

∂zn

)ln
U−1

0 ϕ =
1

2ln

(
∂

∂u
− i
∂

∂v

)ln
ϕ = 0.

Now if Ã1,λL = U1(Ã0,λL(D)), then φ = U1ϕ belongs to Ã1,λL if and only if(
∂

∂zk
− ξzk

)lk
φ = 0, (k = 1, ..., n − 1)

iln

2ln

(
ξ − ∂
∂v

)ln
φ = 0.

(20)

In polar coordinates, the first type equation in (20) takes the form[
tk

2

(
∂

∂rk
+

tk
rk

∂

∂tk
− 2ξrk

)]lk
φ = 0. (21)

Under the transformation Ψ = V2V1φ, the system of equations (20) is now equivalent to[ √
2|x| tk

2

(
∂

∂ρk
+

tk
ρk

∂

∂tk
− sign(x)ρk

)]lk
Ψ = 0,

iln |x|ln
2ln

(
sign(x) − 2

∂

∂y

)ln
Ψ = 0.

(22)

Thus the general solution of the this last equation has the form

Ψ(t, ρ, x, y) =

ln−1∑
jn=0

ψ0 jn (t, ρ, x)y jn e(sgn x)y/2.

Since Ψ(t, ρ, x, y) has to be in L2(D, dηλ), we must take only negative values of x. Morever, by rearranging poly-

nomial terms we can take

Ψ(t, ρ, x, y) = χ−(x)

ln−1∑
jn=0

ψ jn (t, ρ, x)�λjn (y). (23)

For the function Ψ jn = χ−(x)ψ jn (t, ρ, x)�λjn (y) we have

{dm jn }m∈Zn−1 := U2Ψ jn = χ−(x)�λjn (y){cm jn (ρ, x)}m∈Zn−1 , (24)

where cm jn (ρ, x) ∈ L2(Rn−1
+ , ρdρ) is given by formula (14).

Define Ã2,λL = U2V2V1(Ã1,λL). Thus {dm jn }m∈Zn−1 , as in (24), belongs to Ã2,λL if and only if

U2

[ √
2|x| tk

2

(
∂

∂ρk
+

tk
ρk

∂

∂tk
− sign(x)ρk

)]lk
U−1

2 {dm jn } = 0, x < 0.

Again, let P denote the left hand side of this equation for lk = 1, and let G(x, y) be the function χ−(x)�λjn (y). We

have

R := U−1
2 P

=
√

2|x| tk

2

(
∂

∂ρk
+

tk
ρk

∂

∂tk
− sign(x)ρk

) ∑
m∈Zn−1

G(x, y)cm jn (ρ, x)tm

=
√

2|x|G(x, y)
∑ tk

2

(
tm ∂cm jn

∂ρk
+

mk

ρk
cm jn tm − sign(x)ρkcm jn tm

)

=
√

2|x|G(x, y)
∑

tm tk

2

(
∂

∂ρk
+

mk

ρk
− sign(x)ρk

)
cm jn ,
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that is,

P = χ−(x)
√

2|x|�λjn (y)

{
1

2

(
∂

∂ρk
+

mk + 1

ρk
− sign(x)ρk

)
cm+ek , jn

}
m∈Zn−1

.

The function {dm jn } = U2Ψ jn belongs to Ã2,λL if and only if for each m and k = 1, ..., n − 1

(
∂

∂ρk
+

mk

ρk
− sign(x)ρk

)lk
cmsn = 0, (cmsn ∈ L2).

Fixed m, the general solution of this system of differential equations has the form

cm jn =
∑

0≤J′≤L′−e

gmJ(x)ρJ′ρ−mesign(x) ρ2/2, (x < 0).

Adding the L2-condition we get non-trivial solutions for L′ − m − e ≥ 0, they are given by

cm jn =
∑

0≤J′≤L′−m+−e

χ−(x) fmJ(x)Hm−
J′ (ρ). (25)

Then the function U2Ψ jn belongs toA2,λL if and only if

U2Ψ jn = χ−(x)�λjn (y)

⎧⎪⎪⎨⎪⎪⎩
∑

0≤J′≤L′−m+−e

Hm−
J′ (ρ) fmJ(x)

⎫⎪⎪⎬⎪⎪⎭
m∈Zn−1

,

where fmJ = 0 for L′ − m − e � Zn−1
+ . Therefore

U3U2Ψ jn = �
λ
jn (y)

⎧⎪⎪⎨⎪⎪⎩
∑

0≤J′≤L′−m+−e

H0
J′ (ρ)χ−(x) fmJ(x)

⎫⎪⎪⎬⎪⎪⎭
m∈Zn−1

+

.

Finally U3U2Ψ =
∑ln−1

jn=0
U3U2Ψ jn belongs toH−L , and it is easy to see that W maps Ã2

λL(Dn) ontoH−L .
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