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Abstract

This paper proves several extended theoretical results of transitive Cayley digraphs. Several generalization of
transitive Cayley digraphs also have been provided. Moreover, various graph properties have been expressed in
terms of algebraic properties. This did not attract much attention in the literature.
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1. Introduction

A binary relation on a set V is a subset E of V X V. A digraph is a pair (V, E) where V is a nonempty set (called
vertex set) and E is a binary relation on V. The elements of E are the edges of the digraph. An edge of the
form (x, x) is called a loop. Through out this paper we assume that G is a digraph without loops. A k- chain
or a path of length k, is a sequence (xo, X, ..., X;) of vertices, each adjacent to its successor, and all the internal
vertices xi, X, ..., X are distinct. A digraph G is said to be transitive if E? C E, that is, (x, y), (v,2) € E implies
(x,z) € E. A digraph is quasi-transitive if (x,y),(y,z) € E implies (x,z) € E or (z,x) € E (Galeana-Sanchez &
Cesar Hernandez-Cruz, 2011). Observe that every transitive digraph is quasi-transitive.

Let G be a group and let S be a subset of G. The Cayley digraph of G with respect to S is defined as the digraph
X = (G,E), where E is a subset of G x G, such that (x,y) € E if and only if x™'y € S (Dobson, 2006). The
Cayley digraph of G with respect to S is denoted by Cay(G,S). The subset S is called the connection set of
X. That is, Cayley digraph Cay(G,S) has as its vertex-set and edge-set, respectively, V = G and E = {(x,y) :
y = xz for some z € §}. Observe that transitive/quasi-transitive Cayley digraphs are special classes of Cayley
digraphs and these Cayley digraphs play an import role in algebraic graph theory. In this paper, we introduce
some generalization of transitive/quasi-transitive Cayley digraphs. Moreover, we express various graph properties
in terms of algebraic properties.

2. k-(quasi-) Transitive Cayley Digraphs

The concepts of k-transitive and k-quasi transitive digraphs were first introduced by Galeana-Sanchez and Cesar
Hernandez-Cruz (2011). Observe that the above concepts are generalizations of transitive and quasi-transitive
digraphs respectively. The aim of this section is to characterize k-transitive/k-quasi-transitive Cayley digraphs. We
start with the following definitions due to Galeana-Sanchez and Cesar Hernandez-Cruz (2011).

Definition 2.1 A digraph G is k- transitive if the existence of a directed path (xg, x1, ..., x;) of length k in G implies
that (xg, x;) € E.

Definition 2.2 A digraph G is k-quasi-transitive if, whenever (xg, x1, ..., x) is a directed path of length k, then
(x0, xx) € E or (xx, x9) € E.

Here we prove that Cay(G, S) is k-transitive if and only if S¥ C S and k-quasi-transitive if and only if S¥ € S US .
We also provide examples of k-transitive/k-quasi-transitive Cayley digraphs.

Theorem 2.3 Cay(G, S) is k-transitive if and only if S¥ C S .
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Proof. Assume that Cay(G, S) is k-transitive. Let x € S*. Then there exists x, x2, ..., x; € S such that
X = XX ... X (D
Letzo = 1,21 = x1,22 = X1 X2, ..., 2k-1 = X1X2 ... Xx—1. Consider the following ordered pairs of elements in G:
(20,21), (21, 22), (22, 23)5 - - - » (Zh=1, ).
We see that

'z =1"x €S = (z,21) €E,

-1 -1
L =X xx0n=x€S8 =(,2) €L,

-1 1
Z X = (qxp X)) (X X)) = X €8 = (-1, %) € E.

Hence (29,21, 22, - - - » 2k—1, X) is a directed path of length k from 1 to x. Since Cay(G, S) is k- transitive, (1, x) is an
edge in Cay(G, S). In other words x € S. Hence S¥ C §..

Conversely, assume that S k' §. Let (xg, x1,...,x) be a directed path of length k in Cay(G, §). This implies that
xg xp, x7 x, x5 s, ., x ! X € S Equivalently,

o x5 xs) L (i ) € SE

In other words x; 'x; € S. This implies that (xo, x;) is an edge in Cay(G, S ). Hence Cay(G, S) is k-transitive.
Corollary 2.4 Cay(G, S) is 2-transitive(that is, transitive) if and only if S* C S.
Theorem 2.5 Cay(G, S) is k-quasi-transitive if and only if S* € S U S~

Proof. Assume that Cay(G, S) is k-quasi-transitive. Let x € § K Then there exists xi, xa, ..., x; such that x =
X1X> ...x;. Note that

(I, X1, X1 X2, .o, X1 X2+ o Xp—1, X)
is a directed path of length k from 1 to x. Since Cay(G,S) is k- transitive, either (1, x) or (x, 1) is an edge in
Cay(G, S). In other words x € S US~!'. Hence S¥ ¢ S uS~.

Conversely, assume that S ko s usSl. Let (xp,xi,...,x) be a directed path of length k in Cay(G, S). Then,
xgtox, x o, x5 s, L x ! i € S Equivalently,

o ) ) (5 s L (i ) € SE

In other words x; "X, € S US~'. This implies that either (xg, x;) or (xi, Xo) is an edge in Cay(G,S). Hence
Cay(G, §) is k-quasi-transitive.

Corollary 2.6 Cay(G, S) is 2-quasi transitive(that is, quasi-transitive) if and only if S> € S U S~
The following are some examples of k- transitive/ k-quasi transitive Cayley digraphs.

Example 2.7 Let k be any positive integer greater than or equal to 2. Let S = {k, k%, 2k*> — k,3k* — 2k, ...}. Then
the Cayley digraph, Cay(Z, S) is an infinite k-transitive Cayley digraph.

Example 2.8 Let Zg denotes the cyclic group of order 6. Then Cay(Zg, {2, 5}) and Cay(Ze, {4, 1}) are 4-transitive
Cayley digraphs (see Figure 1).

Example 2.9 Consider the permutation group S3 = {(1),(123), (132),(23), (12),(13)}. Let S = {(23),(12),(13)}.
Then Cay(S'3, S) is a 3-transitive Cayley digraph.

Example 2.10 Let Zg denotes the cyclic group of order 8. Then the Cayley digraphs, Cay(Zs, {1, 3}) and Cay(Zs, {1, 5})
are 3-quasi-transitive Cayley digraphs (see Figure 2).
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Figure 1. Cay(Ze, {2,5}) and Cay(Ze, {4, 1})

Figure 3. A portion of Cay(Z, {3,9, 15,21, ...})
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Remark 2.11

1) Any 2- transitive(that is, transitive) Cayley digraph is k-transitive for any positive integer k greater than equal
to 3. But the converse need not be true. For example, Cay(Zg, {2, 5}) is 4-transitive but not 2-transitive.

2) Cay(Z,{3,9,15,21,...}) is 2n + 1-transitive for each n € N.

3) Cay(Z,{3,9, 15,21, ...}) is the disjoint union of three copies of the Cayley digraph: Cay(3%Z, {3,9, 15,21,...})
(see Figure 3).

4) Let k be any positive integer greater than or equal to 2. Let S = {k, k%, 2k*> — k, 3k> — 2k, .. .}. Then the Cayley
digraph, Cay(Z, S) is a disjoint union of k, k-transitive digraphs.

Theorem 2.12 Any infinite k-transitive Cayley digraph Cay(G, S) is n(k — 1) + k-transitive for every n € N.

Proof. Assume that Cay(G, S) be k-transitive. We will prove the result by induction on n. For n = 1, consider
Sk+=1_Observe that S¥**~! can be written as:

gl =ghgtt c gg+1 = sk s,

Next, assume that the theorem is true for n = r. Hence S"* Dk ¢ §. We will show that the result is true for
n = r+ 1. For, it suffices to show that § "*D*=D+k ¢ § Note that S "+D*=D+E can be written as:

§reDk=D+k _ g [r=1+k1+(k=1)
— S[r(k—l)+k]sk—1 g Ssk—l — Sk g S
Hence the result follows by mathematical induction.
Theorem 2.13 Cay(G, S) is k-(quasi-) transitive if and only if Cay(G,S ") is k-(quasi-) transitive.

Proof. First, assume that Cay(G, S) is k-transitive. Let (xg, x1, . . ., xx) be a directed path of length & in Cay(G, S -h.
This implies that

-1 -1 -1 -1 -1
Xo X1, X] X2, X5 X3,...,X_ X €S .
Equivalently, x;'xo, x5 x1, x3'x2, ..., x;'x,y € S. This tells us that
(Xt X1, -+ - » X1, X0)

is a path of length & in Cay(G, S). Since Cay(G, S) is k-transitive, x; 'xo € S. That is x;'x; € S~'. Hence (xo, x;)
is an edge in Cay(G, S !). The converse is straightforward.

Definition 2.14 Let G be a digraph. The least positive integer k such that G is k-transitive is called the k-transitivity
number of G, denoted by 27 (G). That is,

2/ (G) := min{k € N : G is k - transitive}.

If no such k exists, we define <7(G) = 0. In a similar manner we can define the k-quasi- transitivity number of G
as follows:
HA(G) = minfk € N : G is k - quasi- transitive}.

We define Z(G) = 0, if no such k exists.
Theorem 2.15 The k-transitivity number of Cay(G,S) is the least positive integer k such that S* C S. That is,

o/ (Cay(G,S)) = mintk e N: S¥ C §}.

Theorem 2.16 The k-quasi-transitivity number of Cay(G, S) is the least positive integer k such that S¥ € S U S~
That is,
B(Cay(G,S)) =minfke N:S*csusy

The transitivity/quasi-transitivity numbers of some Cayley digraphs are given below:
(D7 (Cay(Z,{2,5))) = 4, «/((Cay(Z,{3,9,15,21,...}) = 3,

(i) A (Cay(Zs, {1,3}) = 3, B(Cay(Zs,{1,5}) = 3.
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Theorem 2.17 Let Cay(G, S) be a cayley digraph with connection set S. Then we have the following:

(i) &/ (Cay(G,S)) = &/ (Cay(G,S™"))
(it) B(Cay(G,S)) = B(Cay(G,S™1)).

3. k-path-(quasi-) Transitive Cayley Digraphs
Galeana-Sanchez and Cesar Hernandez-Cruz (2011) generalized the definition of transitive digraphs as follows:

Definition 3.18 A digraph G is called k-path transitive if whenever there is a xy directed path of length less than or
equal to k and a yz directed path of length less than or equal to k, then there exists a xz-directed path of length less
than or equal to k.

We define the k-path transitivity number of a digraph G as follows:
% (G) := min{k € N : G is k path transitive}.

We define 4’ (G) = 0, if no such k exists.
Theorem 3.19 Cay(G, S) is k-path-transitive if and only if (S US> U ---SK)? c S US?-.. U Sk,

Proof. First assume that Cay(G,S) is k-path-transitive. Let x € (S U S? U ---S%)2. Then x = z,z, for some
721,22 € (S US2U---S%). This implies that there exists a path of length less than or equal to k from 1 to z; and a
path of length less than or equal to k from z; to x. Since Cay(G, §) is k-path-transitive there exists a path of length
less than or equal to k from 1 to x. This implies that x € (S US?U--- S¥). Hence (S US2U---S¥)? c SUS?...USk,

Converse is straight forward.
Corollary 3.20 Cay(G, S) is 1-path-transitive (that is, transitive) if and only if S*> C S.

Theorem 3.21 For any Cayley digraph Cay(G,S), we have € (Cay(G,S)) = min{k € N : (S US> U ---§%)? C
SuUS?...uSh.

We define the following:

Definition 3.22 A digraph G is called k-path-quasi-transitive if whenever there is a xy directed path of length less
than or equal to k and a yz directed path of length less than or equal to k, then there exists a xz-directed path
of length less than or equal to k or there exists a zx-directed path of length less than or equal to k. We define
k-path-quasi-transitivity number of G as:

2(G) = minfk € N : G is k — quasi-path- transitive}.

Theorem 3.23 Cay(G, S) is k-path-quasi-transitive if and only if (S US?U---S*)? c (SUSHUS?UEH?)---U
(SkU(S~hHk.

Corollary 3.24 Cay(G, S) is 1-path-quasi-transitive(that is, quasi-transitive) if and only if S> €S U S 1.
Theorem 3.25 Cay(G, S) is k-path-quasi-transitive if and only if Cay(G, S ") is k-path-quasi-transitive.
Theorem 3.26 For any Cayley digraph Cay(G, S), 2(Cay(G, S)) is given by

P(Cay(G,8)) =minfk e N: (SUS*U---SH? c(SuUS™HUE?uE™HH)---uEcuEhHh).
Theorem 3.27 Let Cay(G, S) be a Cayley digraph with connection set S. Then we have the following:

(i) €(Cay(G.,S)) = €(Cay(G,5™"))
(ii) 2(Cay(G,S)) = D(Cay(G,S ).

4. (m, n)-(quasi-) Transitive Cayley Digraphs
In this section we generalize the definition of k-transitive and k-quasi-transitive digraphs as follows:

Definition 4.28 Let m and n be two positive integers such that m > n. A digraph G is (m, n)-transitive whenever
there is a directed path of length m from x to y there is a directed path of length n from x to y. We define the
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(m, n)-transitivity number of a digraph as the least positive integers m and n such that G is (m, n)-transitive. That
is,
&(G) = %f{}{(m,n) e NxN,m>n:Gis(m,n)— transitive}.

We define, &(G) = (0, 0), if no such m and n exist.

Definition 4.29 Let m and n be two positive integers such that m > n. A digraph G is (m, n)-quasi-transitive
whenever there is a directed path of length m from x to y there is a directed path of length n from x to y or a
directed path of length n from y to x. We define the (m, n)-quasi-transitivity number of a digraph as the least
positive integers m and n such that G is (m, n)-quasi-transitive. That is,

F(G) = ‘,fq‘f,‘;{(m, n) e NxN,m > n:Gis (m,n) — quasi transitive}.

If no such m and n exist, we define .7 (G) = (0, 0).
Theorem 4.30 Cay(G, S) is (m, n)-transitive if and only if S™ C S".
Proof. First assume that Cay(G, S) is (m, n)-transitive. Let x € S™. Then

X =212 -z, forsome z1,20,...,2n €S.

Let xo = 1,x; = 21, X = 2122, .., Xy = x. This implies that the sequence of vertices: (xg, X, X2, ..., X;,) is a path
of length m from xj to x. Since Cay(G, S) is (m, n)- transitive, there is a path of length n, say, (1, y1,y2, ..., Vn-1,X)
from 1 to x. This implies that x € S”. Hence S C S".

Conversely, assume that S c §”. We will show that Cay(G, S) is (m, n)-transitive. Let (xo, X1, x2,...,X,) be a

path of length m from xj to x,,. This implies that xalxl, xl‘lxz, e x;ll_lxm € §. That is

-1 -1 -1 -1
(g x0)(X] x2) (X, Xm) = X5 X €S™CS"
This implies that
xalxm =titr...t, forsomet; € S

This implies that (1,#,#t,...,1f> ...1,) is a path of length n form 1 to 7,1, ... 1,. That is,
(X0, Xot1, Xot112, ..., Xotit2 .. . 1y)

is a path of length of n from x; to x,,. Hence Cay(G, §S) is (m, n)-transitive.

Corollary 4.31 Cay(G, S) is (k, 1)-transitive (that is, k-transitive) if and only if S¥ C §.

Corollary 4.32 Cay(G, S) is (2, 1)-transitive (that is, transitive) if and only if S*> C S .

Theorem 4.33 Cay(G, S) is (m, n)-quasi-transitive if and only if S™ € S™ U (S~ )™

Corollary 4.34 Cay(G, S) is (k, 1)-quasi-transitive (that is, k-quasi-transitive) if and only if S* € S U S~
Corollary 4.35 Cay(G, S) is (2, 1)-quasi-transitive (that is, quasi-transitive) if and only if S> € S U S~

Theorem 4.36 The (m, n)-transitivity number of Cay(G,S) is the least positive integers m,n(m > n) such that
S™C S" That is,
F(Cay(G,S)) =mn{(m,n) e NxN,m>n:S" C S"}.

Theorem 4.37 The (m, n)-quasi-transitivity number of Cay(G, S) is the least positive integers m,n(m > n) such
that S™ C S" U (S~1Y". That is,

F(Cay(G,S)) = ""{(m,n) e NXN,m>n:S" 8" U(S 1Y),

5. (m, n)-path-(quasi-) Transitive Cayley Digraphs

Definition 5.38 Let m and n be two positive integers such that m > n. A digraph G is called (m, n)-path-transitive
if whenever there is a xy directed path of length less than or equal to m and a yz directed path of length less than
or equal to m, then there exists a xz-directed path of length less than or equal to n. We define the (m, n)-path-
transitivity number of G as:

4(G) = Minf(m,n) € Nx N,m > n : G is (m, n) path transitive}.
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Also, define 4(G) = (0, 0), if no such numbers m and n exist.
Theorem 5.39 Cay(G, S) is (m, n)-path-transitive if and only if (S US?> U ---S™?> C (S US?U---8").
Corollary 5.40 Cay(G, S) is (k, k)-path-transitive if and only if (S US? U ---SK> c (S US2U---55).
Corollary 5.41 Cay(G, S) is (k, 1)-path-transitive if and only if (S US?> U ---S%)? C S.
Corollary 5.42 Cay(G,S) is (1, 1)-path-transitive if and only if S> C §..
Theorem 5.43 The (m, n)-path-transitivity number of the (m,n)-path-transitive Cayley digraph Cay(G,S) is the
least positive integers m,n(m > n) such that (S U S2U---S™2C(SUS2U---S™). That is,
G(Cay(G,S)) = 1n(m,n) e NxN,m>n: (SUS?U---S™? C(SUS?U---SM).

Definition 5.44 Let m and n be two positive integers such that m > n. A digraph G is called (m, n)-path-quasi-
transitive if whenever there is a xy directed path of length less than or equal to m and a yz directed path of length less
than or equal to m, then there exists a xz-directed path of length less than or equal to n or there exists a zx-directed
path of length less than or equal to n. We define the (m, n)-quasi-transitive number of G as:

H(G) ="M m,n) e Nx N, m >n:Gis (m,n) -quasi-path transitive}.

Theorem 5.45 Cay(G, S) is (m, n)-path-quasi-transitive if and only if

SUSZU---S™?cSUSTHUGZUGS™HHU---(S"UE .

Corollary 5.46 Cay(G, S) is (k, k)-path-quasi-transitive if and only if

SUS*U---SH?cEuUSTHUGBPUE™HH U (S"UETHY.

Corollary 5.47 Cay(G, S) is (k, 1)-path-quasi-transitive if and only if (S US> U ---S*)? c S UuS~.
Corollary 5.48 Cay(G, S) is (1, 1)-path-transitive if and only if > € S U S,

Theorem 5.49 The (m, n)-path-quasi-transitivity number of the digraph Cay(G,S) is the least positive integers
m,n(m > n) such that (S US> U---S™2 C(SUS HUGEZUES™H)U---(S"US™H). That is, #(Cay(G,S)) is
given by

S (Cay(G,S)) =""(m,n) e NxN,m>n:(SU---US"2C(SUSHU---UE UG HYL

m,n

6. m-n-(quasi)-transitive Transitive Cayley Digraphs
In this section we define the following:

Definition 6.50 Let m and n be positive integers such that m > n. A digraph G is m-n transitive whenever there is
a directed path of length m from x to y there is a directed path of length almost n from x to y. We define the m-n
transitivity number of G as:

J(G) =min{(m,n) e Nx N,m > n : G is m — n transitive}.

Also, define _# (G) = (0,0), if no such numbers m and n exist.

Theorem 6.51 Cay(G, S) is m-n transitive if and only if S € S US?--- U S™.
Corollary 6.52 Cay(G,S) is k-1 transitive(that is, k-transitive) if and only if S¥ C S.
Corollary 6.53 Cay(G,S) is 2-1 transitive (that is, transitive) if and only if S*> C S.

Definition 6.54 A digraph G is m-n-quasi-transitive whenever there is a directed directed path of length m from x
to y there is a directed path of length almost n from x to y or there is a directed path of length almost n from y to x.
We define the m-n-quasi-transitivity number of G as:

H(G) = "n{(m,n) e NXN,m > n : G is m — n quasi- transitive}.

m,n
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Also, define Z°(G) = (0,0), if no such numbers m and n exist.

Theorem 6.55 Cay(G, S) is m-n transitive if and only if S C (S US HU(S2U (S ---uS* U (S~
Corollary 6.56 Cay(G,S) is k-1 quasi-transitive(that is, k-quasi-transitive) if and only if S ¢ S U S~
Corollary 6.57 Cay(G, S) is 2-1-transitive (that is, quasi-transitive) if and only if S> C S.

7. k-(quasi-)hasse Diagrams

We define the following:

Definition 7.58 A digraph G is a k-hasse diagram if the existence of a directed path (xo, x1, ..., x;) of length & in
G implies that (xo, x;) € E.

We prove the following:
Theorem 7.59 Cay(G,S) is a k-hasse diagram if and only if S* N S = 0.

Proof. First, assume that S*NS = 0. Let (xo, X1, . . ., x;) be path of length k in G. Then we have x;'xy, x7'xo, ..., X1, €
S. This implies that
(xalxl)(xl_lxz) e (o1 ) = xalxk e sk

This implies that x;; "X ¢ S. Hence (xo, x;) is not an edge in Cay(G, S).

Conversely, suppose that Cay(G,S) is a k-hasse diagram. Assume that x € S*. Then x = z;z,-- -z for some
21,22,---,2x € S. This implies that (1,z;,2122,...,x) is a path of length k in Cay(G, S). Since Cay(G,S) is a
k-Hasse diagram, we have (1, x) ¢ S. This implies that x ¢ S. Hence S kns =0.

Definition 7.60 A digraph G is called a hasse diagram if and only if G is a k-hasse diagram for every k > 2.
Theorem 7.61 Cay(G, S) is a hasse diagram if and only if S* NS = 0 for every k > 2.

Definition 7.62 A digraph G is a k-strong-hasse diagram if the existence of a directed path (xo, x1, . .., x;) of length
kin G implies that (xo, xx) ¢ E and (x¢, xo) ¢ E.

Theorem 7.63 Cay(G, S) is a k-strong-hasse diagram if and only if S NS =0 and 1 ¢ S*.

Definition 7.64 A digraph G is called a strong-hasse diagram if and only if it is k-strong-hasse diagram for every
k>2.

Theorem 7.65 Cay(G, S) is a strong-hasse diagram if and only if S* NS = O and 1 ¢ S* for every k > 2.
We define the following:

Definition 7.66 A digraph G is called an anti-k-hasse diagram if the existence of a directed path (xo, x1, .. ., x) of
length k in G implies that there exists some i (2 < i < k) such that (xo, x;) € E. We define the anti-k-hasse index of
G as:

Z(G) = min{k € N : G is an k anti-hasse diagram}.

Sampathkumarachar et al. (2010) generalized the definition of transitive digraphs as follows:

Definition 7.67 A digraph G is said to be k- transitive if whenever (xo, x1, ..., X) is a directed path of length k,
then there exists an integer i, 2 < i < k such that (xg, x;) € E.

This definition is obviously, a generalization of transitive graphs. Observe that the definitions due to Sampathku-
marachar et al. (2010) and Galeana-Sanchez and Cesar Hernandez-Cruz (2011), are entirely different even though
they used the same term “k- transitive digraph”. In this paper, we use the term “anti-k-hasse diagram” instead of
k-transitive in the definition due to Sampathkumarachar et al. to avoid confusion.

We define the following:

Definition 7.68 A digraph G is anti-k-quasi-hasse diagram if the existence of a directed path (xo, xy, ..., x;) of
length k in G implies that there exists some i (2 < i < k) such that or (x, x;) € E or (x;,x9) € E. We define the
anti-k-quasi-hasse index of G as:

A (G) = min{k € N : G is an anti k -quasi-hasse diagram}.
Theorem 7.69 Cay(G, S) is an anti-k-hasse diagram if and only if there exists an integer i (2 < i < k), such that

Sics.
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Proof. Assume that St C S for some i. Let (x, x;, X2, . .. ,y) be a directed path of length k from x to y. Then we
have the following sets of equations:

X1 = xty,
X2 = X1lp,
X3 = Xa13, )
Y = Xp—1lk.
for some t1,1,...,1 € S. From Equation (2), x; can be written as
X =xttr...1; 3)

Let =11ty ...t;. Then we have x; = xt where t € S* C S. This implies that (x, x;) is an edge in Cay(G, S ). Hence
Cay(G, S) is an anti k-hasse diagram.

Conversely, assume that Cay(G, S) is an anti k-hasse diagram. For i = 1,2,...k, let x; be an arbitrary element in
S’ Then x; = tit...t; for some t; € S. Let x = t;f4_; ... tt;. Then x is an arbitrary element in S*. Note that
(1, x1, x2, ..., x) is a directed path leading from 1 to x. Then there exists an integer i such that (1, x;) is an edge in
Cay(G, S). This implies that x; € S. Since x; is an arbitrary element in S?, we have S' C §..

Corollary 7.70 Cay(G, S) is an anti-2-hasse diagram (that is, transitive) if and only if S> C S.

Theorem 7.71 Cay(G, S) is an anti-k-quasi-hasse diagram if and only if there exists an integer i (2 < i < n), such
that S'c S uUS~.

Corollary 7.72 Cay(G, S) is an anti-2-quasi-hasse diagram (that is, quasi-transitive) if and only if S> € S U S~
Theorem 7.73 The anti-k-hasse index of Cay(G,S) is the least positive integer k such that there exists some i,
2<i<kandS'CS. Thatis,

L(Cay(G,S)) =mintk e N: S' C S for some i,2 <i<k,).

Theorem 7.74 The anti-k-quasi-hasse index of Cay(G, S) is the least positive integer k such that there exists some
i2<i<kandS'CS US~'. Thatis,

M (Cay(G,S)) =minfk e N: S'c S US™! forsome i,2 <i<k,).
Theorem 7.75 Cay(G, S) is anti-k-(quasi)-hasse diagram if and only if Cay(G,S™") is anti-k-(quasi)-hasse dia-
gram.

Theorem 7.76 Let Cay(G, S) be a Cayley digraph with connection set S. Then we have the following:

(i) £(Cay(G,S)) = £ (Cay(G,S "))
(it) M (Cay(G, S)) = .#(Cay(G,S ™).
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