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Abstract

In our paper paper we propose a new binary elliptic curve of the form a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0.

If m ≥ 5 we prove that each ordinary elliptic curve y2 + xy = x3 +αx2 +β, β � 0 over F2m , is birationally equivalent

over F2m to our curve. This paper also presents the formulas for the group law.
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1. Introduction

Recently, many papers are written about binary elliptic curves such as Binary Edwards curves (Bernstein, Lange,

& Farashahi, 2008) and Binary Huff curves (Devigne & Joye, 2011). In this paper, we introduce a new binary

elliptic curve.

Let E be a projective curve of dimension one, defined over a field K. E is an elliptic curve if E is nonsingular

(smooth), irreducible over K (algebraic closure), with genus 1 and has at least one rational point (over K).

The affine version of elliptic curve in Weierstrass form is:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where the coefficients a1, a2, a3, a4 and a6 are in K; with a special element denoted by O and called the point at

infinity.

An binary non supersingular elliptic curve E has the classical Weierstrass equation:

y2 + xy = x3 + αx2 + β (β � 0).

The group law of a binary elliptic curve is given by the following. Let P = (x1, y1) and Q = (x2, y2) be elements in

E then we have the following:

• the neutral element is O and the opposite of P, is −P = (x1, x1 + y1);

• if Q � −P then P + Q = (x3, y3):

– if P � Q then x3 = λ
2 + λ + x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1 with λ =

y1 + y2

x1 + x2

;

– if P = Q then x3 = λ
2 + λ + a and y3 = x2

1 + λx3 + x3 with λ = x1 +
y1

x1

.

In section 2 we introduce a new binary curve and prove that it is a projective variety.

In section 3 we study the universality of the model and explain how to do the addition via a birationale equivalence.

2. A New Binary Curve

In the following, we introduce a new curve and study its properties.

Definition 2.1 (New binary curve) Suppose that k is a field such that it’s characteristic is 2. Let a, b be elements

of k with ab(a + b) � 0. The new binary curve with coefficients a and b is the affine curve

Ea,b : a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0.
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2.1 Varieties

Proposition 2.2 The curve a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0 with ab(a + b) � 0 define over F2m is
absolutely irreducible in F2m .

Proof. Put H(x, y) = [a+ (a+b)x]y2+ [ax+ (a+b)x2]y+a(x2+1) in F2m . Suppose that H is reducible i.e. there exist

four non zero functions f , f ′, g and g′ such that H(x, y) = [ f (x)+ g(x)y][ f ′(x)+ g′(x)y] = f (x) f ′(x)+ ( f (x)g′(x)+

g(x) f ′(x))y + g(x)g′(x)y2, by identification:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (x) f ′(x) = a(x2 + 1), (1);

g(x)g′(x) = (a + b)x + a, (2);

f (x)g′(x) + g(x) f ′(x) = ax + (a + b)x2, (3).

• 1st case: f = cste then (1) =⇒ f ′ =
a(x2 + 1)

f
, (3) =⇒ g = cste and (2) =⇒ g′ =

a + (a + b)x
g

. In (3) we have

f g′ + g f ′ = a
g
f

x2 + (a + b)
f
g

x + a(
f
g
+

g
f

); by identification

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + b = a
g
f
, (1’);

a = (a + b)
f
g
, (2’);

a(
f
g
+

g
f

) = 0, (3’).

iff.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
f
=

a + b
a
, (1”);

f
g
=

a
a + b

, (2”);

a(
a + b

a
+

a
a + b

) = 0, (3”).

(3′′) iff.
b2

a + b
= 0 iff. b = 0 impossible because b � 0.

• 2nd case: f ′ = cste then (1) iff. f =
a(x2 + 1)

f ′
, (3) iff. g′ = cste and (2) iff. g =

a + (a + b)x
g′

. In (3) we have

f g′ + g f ′ = a
g′

f ′
x2 + (a + b)

f ′

g′
x + a(

f ′

g′
+

g′

f ′
); by identification

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + b = a
g′

f ′
, (1’);

a = (a + b)
f ′

g′
, (2’);

a(
f ′

g′
+

g′

f ′
) = 0, (3’).

iff.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g′

f ′
=

a + b
a
, (1”);

f ′

g′
=

a
a + b

, (2”);

a(
a + b

a
+

a
a + b

) = 0, (3”).

(3′′) iff.
b2

a + b
= 0 iff. b = 0 impossible because b � 0.

• 3rd case: deg f = deg f ′ = 1 then there exists a1, and a2 such that f (x) = a1(x + 1) and f ′(x) = a2(x + 1).

Equation (2) implies that g = cste or g′ = cste. Suppose g = cste then g′ =
a + (a + b)x

g
. Equation (3) implies

that f g′ + g f ′ = a1(x + 1)
[(a + b)x + a]

g
+ ga2(x + 1) = x[(a + b)x + a] if x = 1 then (a + b) + a = 0 impossible.

2.2 Smooth Varieties

Theorem 1.3 (Nonsingularity) Each binary curve define over F2m by a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0

is nonsingular.

Proof. It exists smooth variety if the following system assume solution:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(x, y) = y2[a + (a + b)x] + y[ax + (a + b)x2] + a(x2 + 1) = 0, (1);

∂H
∂x = (a + b)y2 + ay = 0, (2);

∂H
∂y = (a + b)x2 + ax = 0, (3).

35



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 6; 2012

Equation (2) implies that y = 0 or y =
a

a + b
and equation (3) implies that x = 0 or x =

a
a + b

.

If x =
a

a + b
, in (1) we have a(

a2

a2 + b2
+ 1) = 0 ⇐⇒ ab2 = 0 ⇐⇒ a = 0 or b = 0, impossible because ab � 0.

Thus H is nonsingular.

2.3 Projective Form

2.3.1 Homogenus Equation

If we put x =
X
Z

and y =
Y
Z

, we obtain the projective form of the curve Ea,b. Thus we have the following

homogenus equation:

a[X2Z + Y2Z + XYZ + Z3] + (a + b)[X2Y + Y2X] = 0.

2.3.2 Infinites Points

Z = 0 implies that (a + b)[X2Y + Y2X] = 0 iff. X = 0 or Y = 0 or X = Y .

• X = 0, 〈X : Y : 0〉 = 〈0 : Y : 0〉 = 〈0 : 1 : 0〉;
• Y = 0, 〈X : Y : 0〉 = 〈X : 0 : 0〉 = 〈1 : 0 : 0〉;
• X = Y , 〈X : Y : 0〉 = 〈X : X : 0〉 = 〈1 : 1 : 0〉.

We have three points at infinity.

2.3.3 Singularity of Infinites Points

• 〈1 : 0 : 0〉, X = 1 we have the following equation T (Z, Y) = a[Z + Y2Z + YZ + Z3] + (a + b)[Y + Y2].
∂T
∂Y = aZ + a + b, ∂T

∂Y (0, 0) = a + b � 0 thus the point 〈1 : 0 : 0〉 is a nonsingular infinite point.

• 〈0 : 1 : 0〉, Y = 1 we have the following equation T (X,Z) = a[X2Z + Z + XZ + Z3] + (a + b)[X2 + X].
∂T
∂X = aZ + a + b, ∂T

∂X (0, 0) = a + b � 0 thus the point 〈0 : 1 : 0〉 is a nonsingular infinite point.

• 〈1 : 1 : 0〉, X = Y = 1 we have the following equation T (Z) = a[Z + Z + Z + Z3] = aZ[1+ Z2]. ∂T
∂Z = a[1+ Z2],

∂T
∂Z (0, 0) = a � 0 thus the point 〈1 : 1 : 0〉 is a nonsingular infinite point.

2.4 Birational Equivalence

Theorem 2.4 Suppose that k is a field such that it’s characteristic is 2 and a, b ∈ k. Each curve with affine equation
a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0 with ab(a + b) � 0 is equivalent in a birationally way to the curve

v2 + v
[
1 + au
a + b

]
= u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]
via the map ϕ : (x, y) 	−→ (u, v), with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u =
1

a + (a + b)x

v =
y

a + (a + b)x

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x =

1 + au
(a + b)u

y =
v
u

Proof.

a) Assume that v2+v
[
1 + au
a + b

]
= u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]
and prove that a[x2+y2+xy+1]+(a+b)[x2y+y2x] = 0.

Let H(x, y) = a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x].We obtain

H(x, y) = a
[

1 + a2u2

(a2 + b2)u2
+

v2

u2
+

v(1 + au)

(a + b)u2
+ 1

]
+ (a + b)

[
v(1 + a2u2)

(a2 + b2)u3
+

v2(1 + au)

(a + b)u3

]

= a[(1 + a2u2)u + uv2(a2 + b2) + uv(a + b)(1 + au) + u3(a2 + b2)] + (a + b)[v(1 + a2u2) + v2(a + b)(1 + au)]

=
u(a + a3u2)

a2 + b2
+ auv2 + auv

1 + au
a + b

+ au3 + v
1 + a2u2

a + b
+ v2(1 + au)

= v2 + v
[
1 + au
a + b

]
+ u

[
a

a2 + b2
+

ab2

a2 + b2

]

= 0
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b) Suppose that a[x2+y2+xy+1]+(a+b)[x2y+y2x] = 0 and prove that v2+v
[
1 + au
a + b

]
= u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]
.

Let G(u, v) = v2 + v
[
1 + au
a + b

]
+ u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]
.We have the following

G(u, v) =
y2

[a + (a + b)x]2
+

y
a + (a + b)x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 +

a
a + (a + b)x

a + b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
1

a + (a + b)x

[
a

a2 + b2
+

ab2

a2 + b2
× 1

(a + (a + b)x)2

]

= y2(a + (a + b)x) + y(a + (a + b)x) ×
[
a + (a + b)x + a

a + b

]
+

[
a(a2 + (a2 + b2)x2)

a2 + b2
+

ab2

a2 + b2

]

= ay2 + (a + b)xy2 + axy + (a + b)x2y + a + ax2

= a[x2 + y2 + xy + 1] + (a + b)[x2y + xy2]

= 0

Corollary 2.5 (Projective version) Suppose that k is a field such that it’s characteristic is 2 and a, b ∈ k. Each
curve with projective equation a[X2Z +Y2Z +XYZ +Z3]+ (a+b)[X2Y +Y2X] = 0 with ab(a+b) � 0 is equivalent

in a birationally way to the curve V2W + VW
[W + aU

a + b

]
= U

[
aW2

a2 + b2
+

ab2

a2 + b2
U2

]
, by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U =
Z

a + b

V =
Y

a + b

W = X +
aZ

a + b

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = aU +W

Y = (a + b)V

Z = (a + b)U

Proof. similarly to the above.

3. Universality of the Model and Addition Law

First of all let us recall the properties of trace function.

Let Fq = Fpn be a field of q = pn elements. The trace function denoted Trace is defined as follows: Trace(α) =

α + αp + . . . αpn−1 for α ∈ Fq.

Proprieties: 1 Let α, β ∈ Fq

1) Trace(α) ∈ Z/pZ;

2) Trace(αp) = α;

3) There exists γ ∈ Fpn , with Trace(γ) � 0;

4) if a ∈ Z/pZ , then Trace(a) = na;

5) if a ∈ Z/pZ, then Trace(aα) = aTrace(α);

6) Trace(α + β) = Trace(α) + Trace(β)

7) The polynomial xp − x − α ∈ Fq[x] is

(a) either irreducible;

(b) or a product of factors of degree 1.

8) The polynomial xp − x − α ∈ Fq[x] is product of factors of degree 1 if and only if Trace(α) = 0.

Corollary: Trace function for binary fields Let α, β ∈ F2n

1) Trace(α2) = α;

2) The equation x2+ux+v = 0 with u, v ∈ F2n [x], u � 0 has a solution if and only if Trace( v
u2 ) = 0. Furthermore,

for a solution x0 the other is x0 + u.
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Cardinality for elliptic curve

The cardinality of an elliptic curve E over Fq is the number of Fq-rational points. The theorem of HasseWeil relates

the number of points to the field size.

Theorem: (Hasse-Weil) Let E be an elliptic curve defined over Fq. Then

|E(Fq)| = q + 1 − t and |t| ≤ 2
√

q.

3.1 Universality

When introducing a new form or elliptic curve, it is important to study how many ”good” curve are isomorph to

the new model.

Theorem 3.1 Over F2l with l ≥ 5, the curves y2 = x3+αx2+xy+β, β � 0 and a[x2+y2+xy+1]+(a+b)[x2y+y2x] = 0

are birationally equivalent.

Proof.

• a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0 is equivalent in a birationally way over F2l to an elliptic curve in

the form

v2 + v
[
1 + au
a + b

]
= u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]

via the map ϕ1 : (x, y) 	−→ (u, v), with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u =
1

a + (a + b)x

v =
y

a + (a + b)x

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x =

1 + au
(a + b)u

y =
v
u
.

• We have also v2 + v
[
1 + au
a + b

]
= u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]
is equivalent in a birationally way to v′2 + a1u′v′ =

u′3 + a2u′2 + a4u′ + a6 with a1 =
a

c(a + b)
, a2 =

1

a
, a4 =

1

a2
+

1

b2
and a6 =

1

c2(a2 + b2)
+

1

a3
and c2 =

ab2

a2 + b2
, via

the map ϕ2 : (u, v) 	−→ (u′, v′), with

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u′ =

1

a
+ u

v′ =
v
c

⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u =

1

a
+ u′

v = cv′.

• Define change of variables, put

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u =

1

a
+ u′

v = cv′
⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u′ =

1

a
+ u

v′ =
v
c

and c2 =
ab2

a2 + b2
. We have v′2 + a1u′v′ =

u′3 + a2u′2 + a4u′ + a6 with a1 =
a

c(a + b)
, a2 =

1

a
, a4 =

1

a2
+

1

b2
and a6 =

1

c2(a2 + b2)
+

1

a3
.

Define another the change of variables

{
u′ = a2

1T
v′ = a3

1
(Z + sT + λ) then we have

a6
1
(Z2 + s2T 2 + λ2) + a6

1
t(Z + sT + λ) = a6

1
T 3 + a4

1a2T 2 + a2
1a4T + a6Z2 + Tz

= T 3 + T 2

⎡⎢⎢⎢⎢⎣s2 + s +
a2

a2
1

⎤⎥⎥⎥⎥⎦ + T
⎡⎢⎢⎢⎢⎣λ + a4

a4
1

⎤⎥⎥⎥⎥⎦ + λ2 +
a6

a6
1

.

By identification:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s2 + s +
a2

a2
1

= a′2

λ +
a4

a4
1

= 0

λ2 +
a6

a6
1

= a′
6
⇒ a′

6
=

a2
4

a8
1

+
a6

a6
1

=
a2

4 + a2
1a6

a8
1

.
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Define h−2 =
a2

a2
1

=⇒ h =
a1√
a2

. Thus we have s2+ s+a′2+h−2 = 0, h−2 =
a2

a2
1

=
c2(a2 + b2)

a3
, a′

6
=

⎛⎜⎜⎜⎜⎝a4 + a1
√

a6

a4
1

⎞⎟⎟⎟⎟⎠ =⎛⎜⎜⎜⎜⎜⎝1 + c2(a2 + b2)

a3
+

√
1 +

c2(a2 + b2)

a3

⎞⎟⎟⎟⎟⎟⎠ c2(a2 + b2)

a3
=

(
1 + h−2 +

√
1 + h−2

)
h−2 =⇒ h2

√
a′

6
= h−2 + h−1 ⇐⇒ h−2 +

h−1 + h2
√

a′
6
= 0.

Put t = h−1 thus t2 + t + h2
√

a′
6
= 0.

Thus

{
s2 + s + a′2 + h−2 = 0

t2 + t + h2
√

a′
6
= 0

⇐⇒
{

Trace(a′2 + h−2) = 0

Trace(h2
√

a′
6
) = 0

⇐⇒
{

Trace(h−1) = Tr(a′2)

Trace(h 4
√

a′
6
) = 0.

For each λ, π ∈ F2, define

Lλ,π = {h ∈ F∗2l : Trace(h−1) = λ,Trace(h 4

√
a′

6
) = π}

We define by |L| the cardinality of the set L and |E| the cardinality of E. Since t4
√

a′
6
+ t + 1 = 0 has at most 4

roots, we must prove that LTrace(a′
6
),0 has at least 5 elements i.e |L|Trace(a′

6
),0 ≥ 5 if l ≥ 5.

Namely let at prove that |L|0,0 ≥ 5 and |L|1,0 ≥ 5 if l ≥ 4.

We have |L|0,0 + |L|1,0 = 2l−1 − 1. Therefore, since h can take all values in F
∗
2l , then h 4

√
a′

6
also take all values in

F
∗
2l . We deduce that |L|0,0 + |L|1,0 count the elements h ∈ F∗

2l with Trace(h) = 0. Now, we have |L|1,0 + |L|1,1 = 2l−1.

Therefore, similarly as above |L|1,0 + |L|1,1 count the elements h ∈ F∗
2l with Trace(h) = 1. We have |L|0,0 + |L|1,0 =

2l

2
− 1 = 2l−1 − 1, |L|1,0 + |L|1,1 = 2l

2
= 2l−1.

Let us compute |L|0,0 + |L|1,1. We have the following:

h ∈ L0,0 ∪ L1,1 ⇐⇒
{

Trace(h−1) = 0 = Trace(h 4
√

a′
6
)

Trace(h−1) = 1 = Trace(h 4
√

a′
6
)
⇐⇒ Trace(h−1) = Trace(h 4

√
a′

6
) ⇐⇒ Trace(h−1 +

h 4
√

a′
6
) = 0 iff we have two possibilities for x, namely (x and x + 1) such that x2 + x + h−1 + h 4

√
a′

6
= 0 ⇐⇒

h2x2 + h2x + h + h3 4
√

a′
6
= 0⇐⇒ (hx)2 + h(hx) = h3 4

√
a′

6
+ h⇐⇒ v2 + uv = u3 4

√
a′

6
+ u with v = hx and u = h.

Hasse’s theorem implies that it exists δ = |E(F∗
2l )| − 2l − 1 ∈ [−2

√
2l, 2
√

2l], the point (0, 0) and the infinite point

do not verify the above equation and two points on the curve produce one h.

Thus |L|0,0 + |L|1,1 = (|E(F∗
2l )| − 2)/2 = (δ + 2l + 1 − 2)/2, |L|0,0 + |L|1,1 = 2l−1 +

δ − 1

2
, 4|L|1,0 = 2(|L|0,0 + |L|1,0) +

2(|L|1,0+ |L|1,1)−2(|L|0,0+ |L|1,1) = 2(2l−1−1)+2(2l−1)−2(2l−1− δ − 1

2
) = 2l− (δ+1), 4|L|0,0 = 4(2l−1−1)−4|L|1,0 =

4(2l−1 − 1) − (2l − (δ − 1)) = 22l − 4 − 2l + δ + 1 = 2l + δ − 3, since δ ∈ [−2
√

2l, 2
√

2l] =⇒ δ ≥ −2
√

2l, then

4|L|0,0 = 2l + δ − 3 =⇒ 4|L|0,0 ≥ 2l + −2
√

2l − 3 =⇒ |L|0,0 ≥ 2l − 2
√

2l − 3

4
and 4|L|1,0 ≥ 2l + −2

√
2l − 1 =⇒

|L|1,0 ≥ 2l − 2
√

2l − 1

4
≥ 2l − 2

√
2l − 3

4
=

(
√

2l − 1)2 − 4

4
≥ (
√

25 − 1)2 − 4

4
= 11.25 ≥ 5.

As final remark,in order to transform the curve z2 + zt = t3 + a′2t+ a′
6

to a[x2 + y2 + xy+ 1]+ (a+ b)[x2y+ y2x] = 0,

we must find h with Trace(h−1) = Trace(a′2) and Trace(h 4
√

a′
6
) = 0, h−2 =

c(a2 + b2)

a3
=

b2

a2
,

b
a
= h−1 = t0 where

t2
0 + t0 + h2

√
a′

6
= 0, t2

0 =
b2

a2
, fix b and compute a =

√
b
t0

and fix a and compute b =
√

at0.

Theorem 3.2 Suppose that k is a field such that it’s characteristic is 2 and a, b ∈ k. Each curve with affine equation
a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0 with ab(a + b) � 0 is equivalent in a birationally way to the curve

z2 + tz = t3 + a′2t2 + a′
6

with a′2 =
b2

a2
and a′

6
=

a4 + b4

a8
b4 +

a2 + b2

a6
b4 via the map ψ : (x, y) 	−→ (t, z) with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t =
b2

a2

[
(a + b)x

a + (a + b)x

]

z =
b2

a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(a + b)y +

a2 + b2

a2
[a + (a + b)x]

a + (a + b)x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =

a3

a + b
t

b2 + a2t

y =

a3

a + b
z +

a + b
a

b2

b2 + a2t
.

Proof.

a) Suppose that z2 + tz = t3 + a′2t2 + a′
6

and prove that a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0.

Let H(x, y) = a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x], we have the following:

H(x, y) = a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a6

a2 + b2
t2

(b2 + a2t)2
+

a6

a2 + b2
z2 +

a2 + b2

a2
b4

(b2 + a2t)2
+

a3

a + b
t
[

a3

a + b
z +

a + b
a

b2

]

(b2 + a2t)2
+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+(a + b)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a6

a2 + b2
t2

[
a3

a + b
z +

a + b
a

b2

]

(b2 + a2t)3
+

a3

a + b
t
[

a6

a2 + b2
z2 +

a2 + b2

a2
b4

]

(b2 + a2t)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= a[t2(b2 + a2t) + z2(b2 + a2t) +

a4 + b4

a8
b4(b2 + a2t) + zt(b2 + a2t) +

a2 + b2

a4
b2t(b2 + a2t)

+
a2 + b2

a6
(b2 + a2t)3] + (a + b)

[
t2(

a3

a + b
z +

a + b
a

b2) +
a3

a + b
z2t +

b4(a + b)(a2 + b2)

a5
t
]

= z2[ab2] + zt[ab2] + t3[ab2] + t2

[
ab2 +

a2 + b2

a
b2

]
+

a4 + b4

a7
b6 +

a2 + b2

a5
b6

= z2 + zt + t3 +
b2

a2
t2 +

a4 + b4

a8
b4 +

a2 + b2

a6
b4

= z2 + zt + t3 + a′2t2 + a′
6

= 0.

b) Suppose that a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x] = 0 and prove that z2 + tz = t3 + a′2t2 + a′
6
.

Let G(t, z) = z2 + tz + t3 + a′
2
t2 + a′

6
, we have the following:

G(t, z) =
b4

a4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(a2 + b2)y2 +

a4 + b4

a4
[a2 + (a2 + b2)x2]

(a + (a + b)x)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

b4

a4

[
(a + b)x

a + (a + b)x

] [
(a + b)y + d f raca2 + b2a2(a + (a + b)x)

a + (a + b)x

]

+
b6

a6
× (a2 + b2)(a + b)x3

(a + (a + b)x)3
+

b6

a6

[
(a2 + b2)x2

(a + (a + b)x)2

]
+

b4

a4
(a2 + b2)

[
a2 + b2

a4
+

1

a4

]

= y2[a + (a + b)x] + (a2 + b2)
a2 + (a2 + b2)x2

a4
[a + (a + b)x] + x

[
y + (a + b)

a + (a + b)x
a2

]
[a + (a + b)x]

+
b2

a2
(a + b)x3 +

b2

a2
x2[a + (a + b)x] +

b2

a4
[a2 + (a2 + b2)x2][a + (a + b)x]

= ay2 + (a + b)xy2 +
1

a
+

a + b
a2

x +
a2 + b2

a3
x2 +

(a2 + b2)(a + b)

a4
x3 + axy + (a + b)x2y + x +

a + b
a

x2

+
a + b

a
x2 +

a2 + b2

a2
x3 +

b2

a2
(a + b)x3 +

b2

a
x2 +

b2

a2
(a + b)x3

+
b2

a4
[a3 + a2(a + b)x + a(a2 + b2)x2 + (a2 + b2)(a + b)x3]

= a[x2 + y2 + xy + 1] + (a + b)[x2y + y2x]

= 0.
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Corollary 3.3 (Projective version) Suppose that k is a field such that it’s characteristic is 2 and a, b ∈ k. Each
curve with projective equation a[X2Z+Y2Z+XYZ+Z3]+(a+b)[X2Y+Y2X] = 0 with ab(a+b) � 0 is equivalent in

a birationally way to the curve V2W +UVW = U3+a′2U2W +a′
6
W3 with a′2 =

b2

a2
and a′

6
=

a4 + b4

a8
b4+

a2 + b2

a6
b4

by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U =
b2(a + b)

a2
X

V =
b2

a2

[
(a + b)Y +

a2 + b2

a2
(aZ + (a + b)X)

]

W = aZ + (a + b)X

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
a3

a + b
U

Y =
a3

a + b
V +

a + b
a

b2W

Z = a2U + b2W

Proof. To refer to from above.

3.2 Addition Law

• Neutral element: In corollary 1.5, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U =
Z

a + b

V =
Y

a + b

W = X +
aZ

a + b

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = aU +W

Y = (a + b)V

Z = (a + b)U

and the point at infinity is P∞ = 〈0 : 1 : 0〉 in the elliptic curve in form V2W + VW
[W + aU

a + b

]
= U[

aW2

a2 + b2

+
ab2

a2 + b2
U2].

The neutral element is the point ϕ−1(P∞) = ϕ−1(0 : 1 : 0) = (0 : a + b : 0) = (0 : 1 : 0).

• Symetrical element: if P = (x, y) is a point over the curve. We have −P = ϕ−1(−ϕ(P)), and in the curve

v2 + v
[
1 + au
a + b

]
= u

[
a

a2 + b2
+

ab2

a2 + b2
u2

]
, we have −ϕ(P) = −(u, v) =

(
u, v +

1 + au
a + b

)
. Thus the symetrical

element is −P = (x, x + y).

• Addition law: let y = αx + β denote the line (PQ) where P = (xP, yP) and Q = (xQ, yQ) are in the curve Ea,b.

We define P+Q = R where R = (xR, yR) and −R = (xR, xR + yR) is third intersection point between the line and the

curve.

We have a[x2 + (αx + β)2 + x(αx + β)+ 1]+ (a+ b)[x2(αx + β)+ (αx + β)2x] = 0, thus [(a+ b)(α+ α2)]x3 + [a(1+

α + α2) + β(a + b)]x2 + [aβ + β2(a + b)]x + a(β2 + 1) = 0. Thus xP + xQ + xR =
a(1 + α + α2) + β(a + b)

(a + b)(α + α2)

Hence we have: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
xR = xP + xQ +

a(1 + α + α2) + β(a + b)

(a + b)(α + α2)
yR = αxR + β

with α =
yP + yQ

xP + xQ
and β = yP + αxP.

4. Conclusion

We have successfully proposed a new binary elliptic curve. For further works, one must study if the addition law

is unified and complete.
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