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Abstract

In order to approximate the integral I( f ) =
∫ b

a f (x)dx, where f is a sufficiently smooth function, models for

quadrature rules are developed using a given panel of n (n ≥ 2) equally spaced points. These models arise from

the undetermined coefficients method, using a Newton’s basis for polynomials. Although part of the final product is

algebraically equivalent to the well known closed Newton-Cotes rules, the algorithms obtained are not the classical

ones.

In the basic model the most simple quadrature rule Qn is adopted (the so-called left rectangle rule) and a correction

Ẽn is constructed, so that the final rule S n = Qn + Ẽn is interpolatory. The correction Ẽn, depending on the divided

differences of the data, might be considered a realistic correction for Qn, in the sense that Ẽn should be close to the

magnitude of the true error of Qn, having also the correct sign. The analysis of the theoretical error of the rule S n as

well as some classical properties for divided differences suggest the inclusion of one or two new points in the given

panel. When n is even it is included one point and two points otherwise. In both cases this approach enables the

computation of a realistic error ĒS n for the extended or corrected rule S n. The respective output (Qn, Ẽn, S n, ĒS n )

contains reliable information on the quality of the approximations Qn and S n, provided certain conditions involving

ratios for the derivatives of the function f are fulfilled. These simple rules are easily converted into composite ones.

Numerical examples are presented showing that these quadrature rules are useful as a computational alternative to

the classical Newton-Cotes formulas.

Keywords: divided differences, undetermined coefficients method, realistic error, Newton-Cotes rules

1. Introduction

The first two quadrature rules taught in any numerical analysis course belong to a group known as closed Newton-

Cotes rules. They are used to approximate the integral I( f ) =
∫ b

a f (x)dx of a sufficiently smooth function f in the

finite interval [a, b]. The basic rules are known as trapezoidal rule and the Simpson’s rule. The trapezoidal rule is

Q( f ) = h/2 ( f (a) + f (b)), for which h = b − a, and has the theoretical error

I( f ) − Q( f ) = − h3

12
f (2)(ξ), (1)

while the Simpson’s rule is Q( f ) = h/3 ( f (a) + 4 f ((a + b)/2) + f (b)), with h = (b − a)/2, and its error is

I( f ) − Q( f ) = − h5

90
f (4)(ξ). (2)

The error formulas (1) and (2) are of existential type. In fact, assuming that f (2) and f (4) are (respectively) con-

tinuous, the expressions (1) and (2) say that there exist a point ξ, somewhere in the interval (a, b), for which the

respective error has the displayed form. From a computational point of view the utility of these error expressions

is rather limited since in general is quite difficult or even impossible to obtain expressions for the derivatives f (2)

or f (4), and consequently bounds for |I( f ) − Q( f )|∞. Even in the case one obtains such bounds they generally

overestimate the true error of Q( f ).

Under mild assumption on the smoothness of the integrand function f , our aim is to determine certain quadrature

rules, say R( f ), as well as approximations for its error Ẽ( f ), using only the information contained in the table of
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values or panel arising from the discretization of the problem. The algorithm to be constructed will produce the

numerical value R( f ), the correction or estimated error Ẽ( f ) as well as the value of the interpolatory rule

S ( f ) = R( f ) + Ẽ( f ). (3)

The true error of S ( f ) should be much less than the estimated error of R( f ), that is,

|I( f ) − S ( f )| << |Ẽ( f )|, (4)

for a sufficiently small step h. In such case we say that Ẽ( f ) is a realistic correction for R( f ). Unlike the usual

approach where one builds a quadrature formula Q( f ) (like the trapezoidal or Simpson’s rule) which is supposed

to be a reasonable approximation to the exact value of the integral, here we do not care wether the approximation

R( f ) is eventually bad, provided that the correction Ẽ( f ) has been well modeled. In this case the value S ( f ) will

be a good approximation to the exact value of the integral I( f ). Besides the values R( f ), Ẽ( f ) and S ( f ) we are

also interested in computing a good estimation ĒS ( f ) for the true error of S ( f ), in the following sense. If the true

error E( f ) = I( f ) − S ( f ) is expressed in the standard decimal form as E( f ) = ±0.d1d2 · · · dm × 10−k, k ≥ 0, the

approximation Ē( f ) is said to be realistic if its decimal form has the same sign as E( f ) and its first digit in the

mantissa differs at most one unit, that is, Ē( f ) = ±0.(d1 ± 1) · · · × 10−k (the dots represent any decimal digit).

Finally, the algorithm to be used will produce the values (R( f ), Ẽ( f ), S ( f ), Ē( f )).

In section 1.1 we present two models for building simple quadrature rules named model A and model B. Although

both models are derived from the same method, in this work we focus our attention mainly on the model A. Def-

initions, notations and background material are presented in section 2. In Proposition 3 we obtain the weights for

the quadrature rule in model A by the undetermined coefficients method as well as the theoretical error expressions

for the rules are deduced (see Proposition 4). The main results are discussed in Section 3, namely in Proposition

11 we show that a reliable computation of realistic errors depends on the behavior of a certain function involving

ratios between high order derivatives of the integrand function f and its first derivative.

Composite rules for model A are presented in Section 4 where some numerical examples illustrate how our ap-

proach allows to obtain realistic error’s estimates for these rules.

1.1 Two Models

In this work we consider to be given a panel of n (n ≥ 2) points {(x1, f1), (x2, f2), . . . , (xn, fn)}, in the interval [a, b],

having the nodes xi equally spaced with step h > 0, fi = f (xi), where f a sufficiently smooth function in the

interval. We consider the following two models:

Model A

Using only the first node of the panel we construct a quadrature rule Qn( f ) adding a correction Ẽn( f ), so that the

corrected or extended rule S n( f ) = Qn( f ) + Ẽn( f ) is interpolatory for the whole panel,

S n( f ) = Qn( f ) + Ẽn( f )

= a1 f (x1) + {a2 f [x1, x2] + · · · + an f [x1, x2, . . . , xn]} , (5)

where f [x1, x2, . . . , xn] denotes the (n − 1)-th divided difference and a1, a2, . . ., an are weights to be determined.

Note that Qn( f ) is simply the so-called left rectangle rule, thus Ẽn( f ) =
∑n

j=2 a j f [x1, . . . , x j] can be seen as a

correction to such a rule.

Model B

The rule Qn( f ) uses the first n − 1 points of the panel (therefore is not interpolatory in the whole panel), and it is

added a correction term Ẽn( f ), so that the corrected or extended rule S n( f ) is interpolatory,

S n( f ) = Qn( f ) + Ẽn( f )

= { a1 f (x1) + a2 f (x2) + · · · + an−1 f (xn−1) } + an f [x1, x2, . . . , xn]. (6)

Since the interpolating polynomial of the panel is unique, the value computed for S n( f ) using either model is the

same and equal to the value one finds if the simple closed Newton-Cotes rule for n equally spaced points has been

applied to the data. This means that the extended rules (5) and (6) are both algebraically equivalent to the referred

simple Newton-Cotes rules. However, the algorithms associated to each of the models (5) and (6) are not the
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classical ones for the referred rules. In particular, we can show that that for n odd, the rules Qn( f ) in model B are

open Newton-Cotes formulas (Graça, 2012). Therefore, the extended rule S n in model B can be seen as a bridge

between open and closed Newton-Cotes rules.

The method of undetermined coefficients applied to a Newton’s basis of polynomials is used in order to obtain

S n( f ). The associated system of equations is diagonal, The same method can also be applied to get any hybrid

model obtained from the models A and B. For instance, an hybrid extended rule using n = 3 points could be written

as

S 3( f ) = {a1 f (x1) + a2 f (x2) + a3 f (x3)} + a4 f [x1, x2] + a5 f [x1, x2, x3].

In this work our study is mainly focused in model A.

2. Notation and Background

Definition 1 (Canonical and Newton’s basis) Let Pk be the vector space of real polynomials of degree less or equal

to k (k a nonnegative integer). The set < φ0(x), φ1(x), . . . , φn−1(x) >, where

φi(x) = xi, i = 0, 1, . . . , n − 1, (7)

is the canonical basis for Pn−1.

Given n ≥ 1 distinct points x1, x2, . . . xn, the set < w0(x),w1(x), . . . ,wn−1(x) >, with

w0(x) = 1

wi(x) = wi−1(x) × (x − xi), i = 1, . . . , (n − 1)
(8)

is known as the Newton’s basis for Pn−1.

A polynomial interpolatory quadrature rule Rn( f ) obtained from a given panel {(x1, f1), (x2, f2), . . . , (xn, fn)}, where

xi � x j for i � j, has the form

Rn( f ) = c1 f (x1) + c2 f (x2) + · · · + cn f (xn), (9)

where the coefficients (or weights) c j (1 ≤ j ≤ n) can be computed assuming the quadrature rule is exact for any

polynomial q of degree less or equal to n − 1, that is, deg(Rn( f )) = n − 1, according to the following definition.

Definition 2 (Degree of exactness) (Gautschi, 1997, p. 157) A quadrature rule Rn( f ) =
∑n

i=1 ci f (xi) has (polyno-

mial) degree of exactness d if the rule is exact whenever f is a polynomial of degree ≤ d, that is

En( f ) = I( f ) − Rn( f ) = 0, for all f ∈ Pd.

The degree of the quadrature rule is denoted by deg(R). When deg(R) = n − 1 the rule is called interpolatory.

In particular for a n-point panel the interpolating polynomial p satisfies

f (x) = p(x) + r(x), x ∈ [a, b], (10)

where p can be written in Newton’s form (see for instance Steffensen, 2006, p. 23, or any standard text in numerical

analysis)

p(x) = f1 + f [x1, x2] (x − x1) + · · · + f [x1, x2, . . . , xn] (x − x1) (x − x2) · · · (x − xn−1) (11)

and the remainder-term is

r(x) = f [x1, x2, . . . , xn, x] (x − x1) (x − x2) · · · (x − xn), (12)

where fi = f (xi) and f [x1, x2, . . . , x1+ j], for j ≥ 0, denotes the j-th divided difference of the data (xi, fi), with

i = 1, . . . , n. Therefore from (10) we obtain

I( f ) =

∫ b

a
p(x)dx +

∫ b

a
r(x)dx = Rn( f ) + ERn ( f ), (13)

where ERn ( f ) denotes the true error of the rule Rn( f ). Thus,

Rn( f ) =

∫ xn

x1

w0(x)dx × f1 +
∫ xn

x1

w1(x)dx × f [x1, x2] + · · · +
∫ xn

x1

wn−1(x)dx × f [x1, x2, . . . , xn] (14)
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The expression (14) suggests that the application of the undetermined coefficient method using the Newton’s

basis for polynomials should be rewarding since the successive divided differences are trivial for such a basis. In

particular, the weights for the extended rule in model A are trivially computed.

Proposition 3 The weights for the rule S n( f ) in model A are

ai = I(wi−1) =

∫ (n−1) h

0

wi−1(t)dt i = 1, 2, . . . , n (15)

Proof. The divided differences do not depend on a particular node but on the distance between nodes. Thus for

any given n-point panel of constant step h, we can assume without loss of generality that x1 = 0, x2 = h, . . ., xn =

(n−1)h. Considering the Newton’s basis for polynomials w0(t) = 1, w1(t) = t, . . ., wn−1(t) = t(t−h) · · · (t−(n−2)h),

where 0 ≤ t ≤ (n − 1) h, from (5) we have

S n(w0) = a1, S n(w1) = a2, . . . , S n(wi) = ai+1 for i = 0, . . . , (n − 1).

The undetermined coefficients method applied to the Newton’s basis < w0(t), w1(t), . . . ,wn−1(t) > leads to the n
conditions ai = I(wi−1) or, equivalently, to a diagonal system of linear equations whose matrix is the identity. The

equalities in (15) can also be obtained directly from (14).

Theoretical expressions for the error ERn ( f ) in (13) can be obtained either via the mean value theorem for integrals

or by considering the so-called Peano kernel (Davis & Rabinowitz, 1984, p. 285; Gautschi, 1997, p. 176).

However, we will use the method of undetermined coefficients whenever theoretical expressions for the errors EQn

and ES n are needed.

For sufficiently smooth functions f , the fundamental relationship between divided differences on a given panel and

the derivatives of f is given by the following well known result,

Proposition 4 (Steffensen, 2006, p. 24; Gautschi, 1997, p. 101; Krylov, 2005, p. 41) Given n (n ≥ 2) distinct
nodes {x1, . . . , xn} in J = [a, b], and f ∈ Cn−1(J), there exists ξ ∈ (x1, xn) such that

f [x1, x2, . . . , xn] =
f (n−1)(ξ)

(n − 1)!
. (16)

Applying (16) to the canonical or Newton’s basis, we get

φ j[x1, x2, . . . , xn] = wj[x1, x2, . . . , xn] = 0, for j = 0, 1, . . . , (n − 2)

φn−1[x1, x2, . . . , xn] = wn−1[x1, x2, . . . , xn] = 1.
(17)

By construction, the rules S n in models A and B are at least of degree n − 1 of precision according to Definition 2.

In this work the undetermined coefficients method enables us to obtain both the weights and theoretical error

formulas. This apparently contradicts the following assertion due to Walter Gautschi (p. 176): “The method of

undetermined coefficients, in contrast, generates only the coefficients in the approximation and gives no clue as to

the approximation error”.

Note that by Definition 2 the theoretical error (1) says that deg(Q) = 1 for the trapezoidal rule, and from (2) one

concludes that deg(Q) = 3 for the Simpson’s rule. This suggests the following assumption.

Assumption 5 Let be given a n-point (n ≥ 1) panel with constant step h > 0, a sufficiently smooth function f
defined on the interval [a, b], and a quadrature rule R( f ) (interpolatory or not) of degree m, there exists a constant
Kh � 0 (depending on a certain power of h) and a point ξ, such that

E( f ) = I( f ) − R( f ) = Kh f (m+1)(ξ), ξ ∈ (a, b) (18)

where de derivative f (m+1) is not identically null in [a, b], and m is the least integer for which (18) holds.

The expression (18) is crucial in order to deduce formulas for the theoretical error of the rules in model A or B.

Proposition 6 Under Assumption 5, the constant Kh in (18) is

Kh =
I(ωm+1) − R(ωm+1)

(m + 1)!
, (19)
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where ωm+1(x) is either the element φm+1(x) of the canonical basis, or the element wm+1(x) of the Newton’s basis,
or any polynomial of degree m+1 taken from any basis for polynomials used to apply the undetermined coefficients
method.

Proof. For any nonnegative integer i ≤ m, from (18) we get E(ωi) = I(ωi) − R(ωi) = Kh × 0. As m is the least

integer for which the righthand side of (18) is non zero, and deg(R) = m, one has

I(ωm+1) − R(ωm+1) = Kh × ω(m+1)
m+1

(x) = Kh × (m + 1)!,

from which it follows (19).

As for a fixed basis the interpolating polynomial is unique, it follows that the error for the corresponding interpo-

latory rule is unique as well.

In Proposition 8 we show that deg(S n( f )) depends on the parity of n. Thus, we recover a well known result about

the precision of the Newton-Cotes rules, since S n( f ) is algebraically equivalent to a closed Newton−Cotes formula

with n nodes. Let us first prove the following lemma.

Lemma 7 Consider the Newton’s polynomials

w0(t) = 1

w1(t) = t
w j(t) =

∏ j−1

i=1
t (t − i h), j ≥ 2.

Let n ≥ 1 be an integer and I[−1], I[0] and I[−2] the following integrals:

I[−1](wn) =
∫ (n−1) h

0
wn(t)dt

I[0](wn) =
∫ n h

0
wn(t)dt

I[−2](wn) =
∫ (n−2) h

0
wn(t)dt.

Then,

(a) I[−1](wn) � 0 for n even and I[−1](wn) = 0 for n odd;

(b) I[0](wn) � 0 for n ≥ 2 and I[−2](wn) � 0 for n � 3.

Proof. (a) For n = 1 it is obvious that I[−1](1) = 0. For any integer n ≥ 2, let us change the integration interval

[0, (n − 1) h] into the interval I = [−(n − 1)/2, (n − 1)/2] and consider the bijection x = ω(t) = h (x + (n − 1)/2).

For n odd, we obtain

I[−1](wn) =

∫ (n−1) h

0

wn(t)dt

= hn+1

∫ (n−1)/2

−(n−1)/2

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝t2 −

(
n − 1

2

)2
⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝t2 −

(
n − 1

2
− 1

)2
⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝t2 −
(

n − 1

2
− 2

)2
⎞⎟⎟⎟⎟⎟⎠ · · · (t2 − 1

)
t

⎤⎥⎥⎥⎥⎥⎦ dt.

As the integrand is an odd function in I, we have I[−1](wn) = 0.

For n even, we get

I[−1](wn) =

∫ (n−1) h

0

wn(t)dt

= hn+1

∫ (n−1)/2

−(n−1)/2

[(
t2 − (n − 1)2

4

) (
t2 − (n − 3)2

4

)
· · ·

(
t2 − (n − 5)2

4

)
· · · (t2 − 1/4)

]
dt,

where the integrand is an even function, thus I[−1](wn) � 0.

(b) The proof is analogous so it is ommited.

The degree of precision for the rules in models A and B, and the respective true errors can be easily obtained

using the undetermined coefficients method, the Lemma 7 and Proposition 6. The next propositions (8, 9 and 10)
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establish the theoretical errors and degree of precision of these rules. In particular, in Proposition 8 we recover a

classical result on the theoretical error for the rule S n( f ) - see for instance Isaacson and Keller (1966, p. 313).

Proposition 8 Consider the rule S n( f ) for the models A or B defined in the panel {(x1, f1), . . . , (xn, fn)}, and
assume that J = [a, b] is a finite interval containing the nodes x1, . . . , xn, for n ≥ 2. Let wn(x) denote the Newton’s
polynomial of degree n. The respective degree of precision and true error ES n = I( f ) − S n( f ) are the following:

(i) If n is odd and f ∈ Cn+1(J), then

deg(S n) = n

ES n =
I(wn+1)

(n + 1)!
f (n+1)(ξ), ξ ∈ J.

(20)

(ii) If n is even and f ∈ Cn(J), then

deg(S n) = n − 1

ES n =
I(wn)

n!
f (n)(ξ), ξ ∈ J.

(21)

Proof. We can assume without loss of generality that the panel is {(0, f1), (h, f2), . . ., ((n − 1)h, fn)} (just translate

the point x1) . For n even or odd, by construction of the interpolatory rule S n( f ), we have deg(S n) ≥ n−1 in model

A or B. Taking the Newton’s polynomial wn(t) = t(t − h) · · · (t − (n − 1)h)), whose zeros are 0, h, . . . , (n − 1) h, we

get for the divided differences in (5),

wn(0) = wn[0, h] = . . . = wn[0, h, . . . , (n − 1)h] = 0,

where f has been substituted by wn in (5). Thus, S n(wn) = 0 and S j(wn) = 0 for any j ≥ n + 1.

(i) For n odd, by Lemma 7 (a) we get I(wn) = 0. Thus S n(wn) = I(wn), and so deg(S n) ≥ n + 1. However, by

Lemma 7 (b), we have I(wn+1) =
∫ (n−1) h

0
wn+1(t)dt � 0. Therefore, deg(S n) = n and so (20) follows by Proposition

6.

Proposition 9 Consider the rule Qn( f ) = I(w0) f (x1) given by model A, and assume that f ∈ C(J), where J = [a, b]

is a finite interval containing the nodes x1, x2, . . . , xn, for n ≥ 2. Then, there exists a point ξ ∈ J such that

EQn ( f ) = I( f ) − Qn( f ) = I(w1) f ′(ξ) =
(n − 1)2 h2

2
f ′(ξ). (22)

Proof. Taking x1 = 0 and w1(t) = t, we have Qn(w1) = 0 and I(w1) � 0. Thus, by Proposition 6, we obtain the

equalities in (22).

Proposition 10 Consider the rule Qn( f ) given in model B and assume that f ∈ Cn(J), where J = [a, b] is a finite
interval containing the nodes x1, . . . , xn, for n ≥ 2. Let wn−1(x) be the Newton’s polynomial of degree n − 1. The
degree of precision for Qn is n − 2 and there exists a point ξ ∈ J such that

EQn ( f ) =
I(wn−1)

(n − 1)!
f (n−1)(ξ). (23)

Proof. Without loss of generality consider the panel {(0, f1), (h, f2), . . ., ((n − 1)h, fn)}. By construction, via

the undetermined coefficients, we have deg(Qn) ≥ (n − 2). Taking wn−1(t) = t (t − h) . . . (t − (n − 2)h), we have

wn−1(ti) = 0, for i = 0, . . . , (n − 2), so Q(w(n−1)) = 0. By Lemma 7 (b), I(wn−1) =
∫ (n−1)h

0
wn−1(t)dt � 0, and

therefore m = deg(Q2) = n − 2. Thus, by Proposition 4, there exist θ ∈ (0, (n − 1)h) such that,

EQn ( f ) = I( f ) − Qn( f ) =
I(wn−1) − Qn−1

(m + 1)!
f (m+1)(θ) =

I(wn−1)

(n − 1)!
f (n−1)(θ).

To the point θ it corresponds a point ξ in the interval J, and so (23) holds.

3. Realistic Errors for Model A

The properties discussed in the previous Section are valid for both models A and B. However here we will only

present some numerical examples for the rules defined by model A. A detailed discussion and examples for model

B will be presented elsewhere.
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From (15) we obtain immediately the weights for any rule of n points defined by model A. Such weights are

displayed in Table 1, for 2 ≤ n ≤ 9. The values displayed should be multiplied by an appropriate power of

h as indicated in the table’s label. According to Proposition 8, the last column in this table contains the value

d = deg(S n) for the degree of precision of the rule S n( f ).

Table 1. Weights for model A, a j =
∫ (n−1)h

0
wj−1(t)dt, j = 1, 2, . . . , n. The entries in column 2 (heading a1)

should be multiplied by h; the entries in column 3 (heading a2) multiplied by h2, and so on

n a1 a2 a3 a4 a5 a6 a7 a8 a9 d

2 1 1
2

1

3 2 2 2
3

3

4 3 9
2

9
2

9
4

3

5 4 8 40
3

16 112
15

5

6 5 25
2

175
6

225
4

425
6

475
12

5

7 6 18 54 144 1476
5

396 1476
7

7

8 7 49
2

539
6

1 225
4

26 117
30

7 497
4

30 919
12

36 799
24

7

9 8 32 416
3

576 31 424
15

18 688
3

290 048
21

58 880
3

506 368
45

9

Note that, by construction, the weights in model A are positive for any n ≥ 2. Therefore, the respective extended

rule S n( f ) does not suffers from the inconvenient observed in the traditional form for Newton-Cotes rules where,

for n large (n ≥ 9) the weights are of mixed sign leading eventually to losses of significance by cancellation.

The next Proposition 11 shows that a reliable computation of realistic errors for the rule S n( f ), for n ≥ 3, depends

on the behavior of a certain function g(x, h) involving certain quotients between derivatives of higher order of f
and its first derivative. Fortunately, in the applications, only a crude information on the function g(x, h) is needed,

and in practice it will be sufficient to plot g(x, h) for some different values of the step h, as it is illustrated in the

numerical examples given in this Section (for some simple rules) and in Section 4 (for some composite rules) .

Proposition 11 Consider a panel of n ≥ 2 points and the model A for approximating I( f ) =
∫ b

a f (x)dx, where f is
a sufficiently smooth function defined in the interval J = [a, b] containing the panel nodes. Let

S n( f ) = Qn( f ) + Ẽn( f )

= a1 f (x1) +
{∑n

k=2 ak f [x1, x2, . . . .xk]
}
,

where ai = I(wi−1), i = 1, 2, . . . , n. Denote by g(x, h) (or g(x) when h is fixed) the function

g(x, h) =

∣∣∣∣∣∣∣∣1 +
n−1∑
j=2

a j+1

a2

f ( j)(x)

j! f ′(x)

∣∣∣∣∣∣∣∣ . (24)

Assuming that
f ′(x) � 0 ∀x ∈ (x1, xn) (25)

and
g(x, h) ≥ h ∀x ∈ (x1, xn) (26)

then, for a sufficiently small step h > 0, the correction Ẽn( f ) is realistic for Qn( f ). Furthermore, the true error of
S n( f ) can be estimated by the following realistic errors:

(a) For n odd:

ĒS n =
I(wn+1)

I(w1)

f [x1, x2, . . . , xn, x̄1, x̄2]

f [x1, x2]
× Ẽn( f ), (27)

where x̄1 = (x1 + x2)/2 and x̄2 = (xn−1 + xn)/2.
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(b) For n even:

ĒS n =
I(wn)

I(w1)

f [x1, x2, . . . , xn, x̄]

f [x1, x2]
× Ẽn( f ), (28)

where x̄ = (x1 + x2)/2.

Proof. (a) By Proposition 8 (i), we have

I( f ) − S n( f ) =
I(wn+1)

(n + 1)!
f (n+1)(ξ), ξ ∈ (x1, xn),

and from Proposition 4 the correction Ẽn( f ) can be written as

Ẽn( f ) = a2 f ′(θ) + a3

f (2)(θ1)

2!
+ . . . + an

f (n−1)(θn−2)

(n − 1)!
,

where θ ∈ (x1, x2), θ1 ∈ (x1, x3), . . ., θn−2 ∈ (x1, x2, . . . , xn). Therefore,

Ẽn( f ) = a2 f ′(θ)
(
1 +

∑n−1
j=2

a j+1

a2

f ( j)(θ j−1)

j! f ′(θ)

)

= I(w1) f ′(θ)
(
1 +

∑n−1
j=2

a j+1

a2

f ( j)(θ j−1)

j! f ′(θ)

)
.

Thus, using the hypothesis in (25) we obtain

I( f ) − S n( f )

Ẽn( f )
=

I(wn+1)

(n + 1)! I(w1)

f (n+1)(ξ)

f ′(θ)
1(

1 +
∑n−1

j=2

a j+1

a2

f ( j)(θ j−1)

j! f ′(θ)

) ,

that is,
I( f ) − S n( f )

Ẽn( f )
=

c hn

(n + 1)!

f (n+1)(ξ)

f ′(θ)
1(

1 +
∑n−1

j=2

a j+1

a2

f ( j)(θ j−1)

j! f ′(θ)

) , (29)

where c is a constant not depending on h. Thus, by (26) we get

|I( f ) − S n( f )| ≤ c hn−1

(n + 1)!

∣∣∣∣∣∣
f (n+1)(ξ)

f ′(θ)

∣∣∣∣∣∣ |Ẽn( f )|.

Therefore, for h sufficiently small, |I( f ) − S n( f )| << |Ẽn( f )|, that is, Ẽn( f ) is a realistic correction for Qn( f ).

Furthermore,

|I( f ) − S n( f )| ≤ c hn−1

(n + 1)!
M |Ẽn( f )|, where M = maxx∈J

| f (n+1)(x)|
| f ′(x)| . (30)

Finally, by Proposition 4 and the continuity of the function f (n+1)(x), we know that

f (n+1)(ξ)

(n + 1)!
� f [x1, x2, . . . , xn, x̄1, x̄2].

So, from (29) we obtain (27).

(b) The proof is analogous so it is omitted.

The next proposition shows that Proposition 11 for the case n = 2 leads to the rule S 2( f ) which is algebraically

equivalent to the trapezoidal rule, and when n = 3 the rule S 3( f ) is algebraically equivalent to the Simpson’s rule.

Proposition 12 Let I( f ) =
∫ b

a f (x)dx, J = [a, b], and f ∈ C2(J). Consider the simple extended left rectangle rule

S 2( f ) = Q2( f ) + Ẽ2( f ) = h f (x1) +
h2

2
f [x1, x2], (31)

and x̄ = (x1 + x2)/2, where x1 = a and x2 = b. Assuming that

f ′(x) � 0, ∀x ∈ (x1, x2),
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then Ẽ2( f ) is a realistic error for Q2( f ), for h = (b − a) sufficiently small. A realistic approximation for the true
error of S 2( f ) is

ĒS 2
( f ) = −h

3

f [x1, x2, x̄]

f [x1, x2]
× Ẽ2( f ). (32)

Proof By Proposition 4 there exists a point θ ∈ (x1, x2) such that f [x1, x2] = f ′(θ), so Ẽ( f ) = h2/2 f ′(θ). Using

Proposition 8, we know that

I( f ) − S 2( f ) =
I(w2)

2
f (2)(ξ), ξ ∈ (x1, x2)

= − h3

12
f (2)(ξ).

(33)

As by hypothesis f ′(θ) � 0, we get
I( f ) − S 2( f )

Ẽ2( f )
= −h

6

f (2)(ξ)

f ′(θ)
, (34)

and so

|I( f ) − S 2( f )| ≤ M h
6
|Ẽ2( f )|, where M = maxx∈[x1,x2]

| f (2)(x)|
| f ′(x)| . (35)

Therefore, for a sufficiently small h the correction Ẽ2( f ) is realistic for Q2( f ). Since f ′(θ) � f [x1, x2] and
f 2(ξ)

2
� f [x1, x2, x̄] we obtain (32) from (33).

Example 1 (A realistic error for S 2( f )) Let I( f ) =
∫ 0.1

0

√
x dx. The function f (x) =

√
x is not differentiable at

x = 0. However f ′(x) � 0 for x > 0, and the result (32) still holds. The numerical results (for 6 digits of precision)

are:
I( f ) = 0.0210819

Q2( f ) = h f (0) = 0

Ẽ2( f ) =
h2

2
f [0, 0.1] = 0.0158114

S 2( f ) = Q2( f ) + Ẽ2( f ) = 0.0158114.

The true error for S 2( f ) is

ES 2
( f ) = I( f ) − S 2( f ) = 0.00527046.

By (32) the realistic error is

ĒS 2
( f ) = −h

3

f [0, 0.1, 0.05]

f [0, 0.1]
× Ẽ2( f ) = 0.00436619.

Table 2 shows that the realistic error ĒS 2
( f ) becomes closer to the true error when one goes from the step h to the

step h/2.

Table 2. Realistic and true error for S 2( f )

h ĒS 2
( f ) ES 2

( f ) = I( f ) − S 2( f )

0.1 0.00436619 0.00527046

0.05 0.00154368 0.00186339

0.025 0.00054577 0.000658808

Proposition 13 Consider the model A for n = 3,

S 3( f ) = Q3( f ) + Ẽ3( f )

= 2 h f (x1) +

{
2h2 f [x1, x2] +

2 h3

3
f [x1, x2, x3]

}
,

(36)

where x1 = a, x2 = (a + b)/2 and x3 = b. Let

g(x, h) =

∣∣∣∣∣∣1 +
h
6

f (2)(x)

f ′(x)

∣∣∣∣∣∣ . (37)
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Assuming that f ∈ C4[a, b], if
(i) f ′(x) � 0 ∀x ∈ (x1, x3) (38)

and
(ii) g(x, h) ≥ h ∀x ∈ (x1, x3), (39)

then, for a sufficiently small h = (b − a)/2, Ẽ3( f ) is a realistic correction for Q3( f ). A realistic approximation to
the true error of S 3( f ) is

ĒS 3
( f ) = −2 h3

15

f [x1, x2, x3, x̄1, x̄2]

f [x1, x2]
× Ẽ3( f ), (40)

where x̄1 = (x1 + x2)/2 and x̄2 = (x2 + x3)/2.

Proof. As I(w4) =
∫ 2h

0
w4(t)dt = −4h5/15 and I(w1) =

∫ 2h
0

w1(t)dt = 2 h2, by Proposition 11 (a) we obtain (40).

Example 2 (A realistic error for the S 3( f ) rule) Let I( f ) =
∫ 2 h

0
e−x2

dx = −
√
π

2
erf(2 h), with h > 0. Since

f ′(x) = −2 x e−x2

� 0, the condition (38) holds with x1 = 0 and x3 = 2h. Consider

g(x, h) =

∣∣∣∣∣∣1 +
h
6

f (2)(x)

f ′(x)

∣∣∣∣∣∣ =
1

6

∣∣∣∣∣∣6 + h
(

1

x
− 2x

)∣∣∣∣∣∣ , 0 < x < 1.

As limx→0 g(x, h) = 1 and for any 0 < x ≤ 1 we have g(x, h) > h, for 0 < h ≤ 1 (see Figure 1), thus the condition

(39) is satisfied. Notice that g(x, h) gets closer to the value 1 as h decreases. Therefore one can assure that realistic

estimates (40) can be computed to approximate the true error of S 3( f ) for a step h ≤ 1. In Table 3 is displayed the

estimated errors ĒS 3
( f ) and the true error for S 3( f ), respectively for h ∈ {1/2, 1/4, 1/8, 1/16}. As expected, the

computed values for ĒS 3
( f ) have the correct sign and closely agree with the true error.

h=1/2

h=1/16

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

x

g�
x�

g�x��
1

6
h
1

x
� 2 x � 6

Figure 1. g(x) > h, for h = 1/2, 1/4, 1/8, 1/16

For h = 1/2, we have
I( f ) = 0.746824

Q3( f ) = 2 h f (0) = 1

Ẽ3( f ) = 2h2 f [0, 1/2] +
2 h3

3
f [0, 1/2, 1] =

= −0.221199 − 0.03162046 = −0.252850

S 3( f ) = Q3( f ) + Ẽ3( f ) = 0.747180.
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Table 3. Realistic and true error for S 3( f )

h ĒS 3
( f ) =

−2 h3

15

f [x1, x2, x3, x̄1, x̄2]

f [x1, x2]
× Ẽ3( f ) ES 3

( f ) = I( f ) − S 3( f )

1/2 −0.000396282 −0.000356296

1/4 −0.000115228 −0.0000900798

1/8 −4.92044 × 10−6 −3.72994 × 10−6

1/16 −1.65494 × 10−7 −1.24455 × 10−7

Example 3 (A realistic error for the S 5( f ) rule) From Table 1 we obtain the following expression for the rule S 5( f ),

S 5( f ) = 4 h f (x1) +

{
8 h2 f [x1, x2] +

40

3
h3 f [x1, x2, x3] + 16 h4 f [x1, . . . , x4]

}
. (41)

Consider I( f ) =
∫ 4 h

0
sin(2 x)dx = sin2(4 h) and the interval J = [a, b] = [0, π/5]. Since f ∈ C6(J) and f ′(x) =

2 cos(2 x) � 0, ∀ x ∈ J, the condition (25) holds with x1 = 0 and x5 = 4 h. Let

g(x, h) =

∣∣∣∣∣∣1 +
a3 f (2)(x)

a2 2! f ′(x)
+

a4 f (3)(x)

a2 3! f ′(x)
+

a5 f (4)(x)

a2 4! f ′(x)

∣∣∣∣∣∣ , a < x < b

=

∣∣∣∣∣∣1 −
4 h2

3
+

1

45
(14 h2 − 75) h tan(2x)

∣∣∣∣∣∣ ,
where the coefficients ai are computed using (15). It can be observed in the plot in the Figure 2 that for h ∈
{1/8, 1/16, 1/32, 1/64} the condition g(x, h) > h is satisfied. Therefore, since n is odd, one concludes from Propo-

sition 11 (a) that the following realistic estimation for the true error of S 5( f ) is,

ĒS 5
( f ) =

I(w6)

I(w1)

f [x1, x2, . . . , x5, x̄1, x̄2]

f [x1, x2]
× Ẽ5( f )

=
−16 h5

21

f [x1, x2, . . . , x5, x̄1, x̄2]

f [x1, x2]
× Ẽ5( f ),

(42)

where x̄1 = (x1 + x2)/2 and x̄2 = (x4 + x5)/2. In Table 4 are displayed the computed realistic errors ĒS 5
( f ) for the

steps h referred above.

h=1/8

h=1/64

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

g�
x�

g�x��
1

45
�14 h2 � 75� h tan�2 x� �

4 h2

3
� 1

Figure 2. g(x, h) > h, for h = 1/8, 1/16, 1/32, 1/64

For instance for h = 1/8, we have

I( f ) = I = 0.2298488470659301

Q5( f ) = 4 h f (x1) = 0

Ẽ5( f ) = 8 h2 f [x1, x2] + 40
3

h3 f [x1, x2, x3] + 16h4 f [x1, . . . , x4] + 112
15

h5 f [x1, . . . , x5] =

= 0.2474039592545229 − 0.01281864992070238−
−0.004808659341902015 + 0.00007207430695446034

= 0.2298487242988730,
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and finally

S 5( f ) = Q5( f ) + Ẽ5( f ) = 0.229848724298873.

Table 4. Realistic and true error for S 5( f )

h ĒS 5
( f ) � −16 h5

21

f [x1, x2, x3, x4, x5, x̄1, x̄2]

f [x1, x2]
× Ẽ5( f ) ES 5

( f ) = I( f ) − S 5 f )

1/8 1.14143 × 10−7 1.22767 × 10−7

1/16 4.89318 × 10−10 4.98246 × 10−10

1/32 1.95599 × 10−12 1.96484 × 10−12

1/64 7.68478 × 10−15 7.69335 × 10−15

4. Composite Rules

The rules whose weights have been given in Table 1 are here applied in order to obtain the so-called composite rules.

The algorithm described hereafter for composite rules is illustrated by several examples presented in paragraph 4.1.

Since the best rules S n are the ones for which n is even (when deg(S n) = n holds) the examples refer to S 3, S 5,

S 7 and S 9. Whenever the conditions of Proposition 11 for obtaining realistic errors are satisfied, these rules enable

the computation of high precision approximations to the integral I( f ), as well as good approximations to the true

error. This justifies the name realistic error adopted in this work.

Let n ≥ 2 be given and fix a natural number i. Consider the number N = (n − 1) × i and divide the interval

[a, b] into N equal parts of length h = (b − a)/N, denoting by x1, x2, . . . , xN the nodes, with x1 = a, xN = b, and

x j = x j−1+h, j = 2, 3, . . . (N−1). Partitioning the set {x1, x2, . . . , xN} into subsets of n points each, and for an offset

of n − 1 points, we get i panels each one containing n successive nodes. To each panel we apply in succession the

rule Qn and compute the respective realistic correction Ẽn as well as the estimated realistic error ĒS n for the rule

S n( f ). For the output we compute the sum of the partial results obtained for each panel as described in (43):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q =
∑i

k=1 Qn(panelk)

Ẽ =
∑i

k=1 Ẽn(panelk)

S = Q + Ẽ (composite rule)

Ē =
∑i

k=1 Ēn(panelk) (realistic error for S ).

(43)

According to Proposition 8, for composite rules with n points by panel and step h > 0, in the favorable cases

(those satisfying the hypotheses behind the theory) one can expect to be able to compute approximations S having

a realistic error. Analytic proofs for realistic errors in composite rules for both models A and B will be treated in a

forthcoming work.

4.1 Numerical Examples for Composite Rules

Once computed realistic errors within each panel for a composite rule, we can expect the error Ē in (43) to be also

realistic. This happens in all the numerical examples worked below.

Example 4 Let

I( f ) =
∫ 2×105

105

1

ln(x)
dx (Steffensen, 2006, p. 161)

= li(2 × 105) − li(105)

In the interval J = [105, 2 × 105], the function f (x) = 1/ ln(x) belongs to the class C∞(J). Since f ′(x) =

−(x ln2(x))−1 � 0, for all x ∈ J, and for k ≥ 2 the quotients f (k)(x)/ f ′(x), with x ∈ J, are close to γ(x) = 0

and tends to the zero function γ(x) as k increases. Therefore, the lefthand side in the inequality (26) is very close

to 1. That is, for n ≥ 2 the function

g(x, h) =

∣∣∣∣∣∣∣∣1 +
n−1∑
j=2

a j+1

a2

f ( j)(x)

j! f ′(x)

∣∣∣∣∣∣∣∣
is such that g(x, h) � 1, for h sufficiently small. So Proposition 11 holds and one obtains realistic errors for the

rules S n( f ).
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The behavior of the function g(x, h) is illustrated for the case n = 3 in Figure 3, for h ∈ {5, 5/2, 5/3}. Note that in

this example g(x) � 1 while the chosen steps h are greater than 1. However, realistic errors are still obtained.

h=5
h=5/2

h=5/3

100 000 120 000 140 000 160 000 180 000 200 000
0.999990

0.999992

0.999994

0.999996

0.999998

x

g�
x�

g�x�� �
h

6 x
�

h

3 x log�x�
� 1

Figure 3. n = 3. g(x) � 1, for h = 5, 5/2, 5/3

Using a precison of 32 decimal digits (or greater for n > 3) the following values are obtained for the 3-point

composite rule:

I = 8406.2431208462027086216460436947

h = 5

Q = 8406.2677835091928175

E = −0.024662837510842808609 + 1.7452073401705812569 × 10−7 =

= −0.024662662990108791550

S = 8406.2431208462027087

ĒS = −5.9854000 × 10−17 (realistic error for S )

I − S = −5.9854472 ∗ 10−17 (true error).

In Table 5 the realistic error is compared with the true error, respectively for the rules with n odd from 3 to 9 points

(the step h is as tabulated).

Table 5. Comparison of the realistic error ĒS with the true error

n h ĒS I − S
3 5 −5.98540 × 10−17 −5.98545 × 10−17

3 5/3 −7.38942 × 10−19 −7.38944 × 10−19

5 5/2 −1.30573 × 10−26 −1.30576 × 10−26

5 5/6 −1.79116 × 10−29 −1.79117 × 10−29

7 5/3 −5.31897 × 10−36 −5.31911 × 10−36

7 5/6 −2.07775 × 10−38 −2.07778 × 10−38

9 25/6 −4.95560 × 10−40 −4.95608 × 10−40

9 5/2 −2.99658 × 10−42 −2.99675 × 10−42

For n = 7, the computed approximation for the integral I is

S = 8406.24312084620270862164604369467068,

where all the digits are correct. The simple rule S 7( f ) is defined (see Table 1) as

S 7( f ) = 6 h f (x1) +
{
18h2 f [x1, x2] + 54h3 f [x1, x2, x3] + 144h4 f [x1, . . . , x4]+

+ 1476
5

h5 f [x1, . . . , x5] + 396h6 f [x1, . . . , x6] + 1476
5

f [x1, . . . , x7]
}
.

(44)
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The respective realistic error is (see (27))

ĒS 7
=

I(w8)

i(w1)

d8

d1

× Ẽ7 = −72

5
h7 d8

d1

× Ẽ7. (45)

In Appendix A a Mathematica code for the composite rule S , for n = 7, is given. The respective procedure is

called Q7A and the code includes comments explaining the respective algorithm. Of course we could have adopted

a more efficient programming style, but our goal here is simply to illustrate the algorithm described above for the

composite rules.
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A. Appendix (Composite rule S for n = 7 points )

(* For the data {x1,. . . , xn}, { f1,. . . , fn}, and k ≥ 0 the output for d[x, y, k, p] is the divide difference f[x1,. . . , xk] *)

(* The user may enter a precision p which will be assigned to the data. *)

(* By default p = ∞ *)

d[xi_List, yi_List, k_/; k >= 0, precision_ : In f inity] := Module[{n = Length[xi], x, y, dd},
(* set default precision to nodes xi *)

x = S etPrecision[xi, precision];

(* set default precision to functional values yi *)

y = S etPrecision[yi, precision];

(* recursive definiton for finite differences: *)

dd[0, j_] := y[[ j]]; (* order 0 difference *)

(* ordem i difference; dynamic computation *)

dd[i_, j_] := dd[i, j] = (dd[i − 1, j + 1] − dd[i − 1, j])/(x[[i + j]] − x[[ j]]);

(* Output: first difference of order k *)

dd[k, 1] ];

(* The procedure q7A uses the algorithm for the simple rule with n=7 nodes *)

(* The output is a list containing the relevant items for this simple rule *)

q7A[{{t1_, f 1_}, {t2_, f 2_}, {t3_, f 3_}, {t4_, f 4_}, {t5_, f 5_}, {t6_, f 6_}, {t7_, f 7_}}, precision_ : In f inity]:=

Module[{x1, x2, x3, x4, x5, x6, x7, xb1, xb2, y1, y2, y3, y4, y5, y6, y7,

yext, hh, ext, d1, d8, q, e1, e2, e3, e4, e5, e6, E7, s, real},
{y1, y2, y3, y4, y5, y6, y7} = S etPrecision[{ f 1, f 2, f 3, f 4, f 5, f 6, f 7}, precision];

{x1, x2, x3, x4, x5, x6, x7} = S etPrecision[{t1, t2, t3, t4, t5, t6, t7}, precision];

xb1 = (x1 + x2)/2; xb2 = (x6 + x7)/2;

ext = {x1, x2, x3, x4, x5, x6, x7, xb1, xb2};
yext = Map[ f , ext]; (* completation of the panel *)

d1 = d[{x1, x2}, {y1, y2}, 1]; (* divided difference order 1 *)

d8 = d[ext, yext, 8, precision]; (* divided difference order 8 *)

hh = S etPrecision[h, precision]; (* step *)

q = 6 ∗ hh ∗ y1; (* left rectangle quadrature rule *)

e1 = 18 ∗ hh2 ∗ d[{x1, x2}, {y1, y2}, 1]; (* error e1: *)

e2 = 54 ∗ hh3 ∗ d[{x1, x2, x3}, {y1, y2, y3}, 2]; (* error e2: *)
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e3 = 144 ∗ hh4 ∗ d[{x1, x2, x3, x4}, {y1, y2, y3, y4}, 3]; (* error e3: *)

e4 = 1476/5 ∗ hh5 ∗ d[{x1, x2, x3, x4, x5}, {y1, y2, y3, y4, y5}, 4]; (* error e4: *)

e5 = 396 ∗ hh6 ∗ d[{x1, x2, x3, x4, x5, x6}, {y1, y2, y3, y4, y5, y6}, 5]; (* error e5: *)

e6 = 1476 ∗ hh7/7 ∗ d[{x1, x2, x3, x4, x5, x6, x7}, {y1, y2, y3, y4, y5, y6, y7}, 6]; (* error e6: *)

E7 = e1 + e2 + e3 + e4 + e5 + e6; (* realistic error for q *)

s = q + E7; (* s is a realistic approximation to the integral *)

real = N[−72 ∗ hh7/5 ∗ d8/d1 ∗ E7, 8]; (* realistic error for s *)

{q, e1, e2, e3, e4, e5, e6, E7, s, real}]; (* output *)

(* The following procedure Q7A gives a list containing the relevant items for the composite rule. It calls the

procedure q7A: *)

Q7A[x_List, y_List, precision_ : In f inity] := Module[{data, list},
(* partition into 7 nodes offset 6 *)

data = Partition[Transpose[{x, y}], 7, 6]; (* sum entries in cells and prepend the step h used *)

list = Map[q7A[#, precision]&, data]; Prepend[Map[Apply[Plus, #]&,Transpose[list]],Rationalize[h]]];
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