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Abstract

A theoretical foundation is proposed for some computing schemes of quadratures method for solving nonlinear

singular integral equations (SIE) given on arbitrary closed smooth contour. Estimations of convergence rate of

approximative solution are obtained in Holder spaces.
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1. Introduction

In the case of more smooth contours of integration Γ, namely, contours from class C(2, v) the un improvable

estimates of convergence rate of method are proved. Convergence of quadratures methods for nonlinear SIE given

on arbitrary closed smooth contours.

Let Γ be a closed smooth contour (Mushelishvili, 1968) bounding a simple connected region F+ of the complex

plane C containing the point t = 0. In the Banach space of functions Hβ(Γ) (Mushelishvili, 1968) satisfying on Γ

the Holder condition with the exponent β (0 < β < 1) consider a nonlinear SIE

A(ϕ) ≡ Φ [t;ϕ(t); S τh(t, τ;ϕ(τ))
]
= f (t), (1)

where Φ[t; u; v](t ∈ Γ; |u|, |v| < ∞), h(t, τ; u) (t, τ ∈ Γ; |u| < ∞) and f (t) are known continuous functions of their

arguments, the singular integral

S τh(t, τ;ϕ(τ)) ≡ 1

πi

∫
Γ

h(t, τ;ϕ(τ))

τ − t
dτ, t ∈ Γ,

is understood in the meaning of Cauchy principal value, and ϕ(t) (t ∈ Γ)is an unknown function.

The researchers seek for the approximate solution of nonlinear SIE (1) as a polynomial

ϕn(t) =
2n∑
j=0

c jl j(t), (t ∈ Γ), (2)

where (Zolotarevschi, 1991; Scichiuc, 1984)

l j(t) =
2n∏

k=0k� j

(
t − tk
t j − tk

) ( t j

t

)n
≡

n∑
k=−n

A( j)
k tk, j = 0, 2n, t ∈ Γ.
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2. Method

For quadratures methods the unknown coefficients {c j}2n
j=0

will be determinated from the system of nonlinear equa-

tions (SNE)

Φ[t j; c j;

2n∑
k=0

h(t j, tk; ck)tp
k (

n∑
v=p

A(k)
v tv−p

j −
p−1∑

v=−n

A(k)
v tv−p

j )] = f (t j), j = 0, 2n, p = 0; 1, (3)

where {t j}2n
j=0

is a set of pairwize distinct points on Γ.

Scichiuc note that the foundation of quadratures method for the equation (1) is obtained for the case of Lyapunov’s

contour Γ and p = 0 in the computing scheme (3) (Scichiuc, 1984). In present work the following results are

obtained for the class of closed smooth contours Γ and p = 1 in SNE (3). In this case the convergence rate of

approximative solution is improved.

Theorem 1 Let the following conditions be fulfilled:

1) Φ
′′
u2 [t; u; v], Φ

′′
v2 [t; u; v], Φ

′′
uv[t; u; v] ∈ Hα;1;1(Γ), h

′′
u2 (t, τ; u) ∈ Hμ;α;1(Γ), (0 < α < μ < 1);

2) The nonlinear SIE (1) in some sphere of the space Hβ(Γ)(0 < β < α ≤ 1) has a unique solution ϕ(t) ∈ Hr
α(Γ), r =

0, 1, ...;

3) C2
ϕ(t) − D2

ϕ(t) � 0(t ∈ Γ), ind[(Cϕ(t) + Dϕ(t))(Cϕ(t) − Dϕ(t))−1] = 0(t ∈ Γ), where

Cϕ(t) = Φ
′
u[t;ϕ(t); S τh(t, τ;ϕ(τ))] ∈ Hr

α;1;1(Γ),

Dϕ(t) = Φ
′
v[t;ϕ(t); S τh(t, τ;ϕ(τ))]h

′
u(t, t;ϕ(t)) ∈ Hr

α;1;1(Γ), t ∈ Γ. (4)

In cases r = 0 or r = 1 conditions (4) are fulfilled by 1);

4) dim Kern A
′
(ϕ) = 0, where A

′
is defined in the following way: ∀ϕ0(t) ∈ Hβ(Γ),

(A
′
(ϕ0)g)(t) ≡ Φ′u[t;ϕ0(t); S τh(t, τ;ϕ0(τ))]g(t) + Φ

′
v[t;ϕ0(t); S τh(t, τ;ϕ0(τ))]S τ[h

′
u(t, τ;ϕ0(τ))g(τ)]

= Cϕ0 (t)g(t) + Dϕ0 (t)S τg(τ) +
1

πi

∫
Γ

Φ
′
v[t;ϕ0(t); S τh(t, τ;ϕ0(τ))]

h
′
u(t, τ;ϕ0(τ)) − h

′
u(t, t;ϕ0(t))

τ − t
g(τ)dτ;

5) The points t j( j = 0, 2n) form on Γ a system of Fejer’s nodes (Smirnov, & Lebedev, 1964, p. 36), i. e.,

t j = ψ(wj), wj = exp(
2πi

2n + 1
( j − n)), i2 = −1, j = 0, 2n,

t = ψ(w) is the Riemann’s function which realizis the conform mapping of exterior of the unitary circumfirence
Γ0(= |W | = 1) on the exterior of F+UΓ such that ψ(∞) = ∞, ψ′(∞) = const > 0.

Then there exists a 2n+ 1 dimensional point {yk}nk=−n, in an neighbourhood of which SNE (3) has a unique solution
{c j}2n

j=0
for all n begining with a certain one. The approximate solutions (2) converge in the norm of Hβ(Γ) to ϕ(t)

as narrow∞ for any function f (t) ∈ Hr
α(Γ). For the rate of convergence the following estimation holds

||ϕ − ϕn||β = O(n−r+β−σ(α) ln2 n)H(ϕ(r);σ(α)), (5)

where σ(α) = α, if 0 < α < 1, and σ(α) = α − ε(∀ε > 0), if α = 1.

Proof. By conditions 1) of the theorem 1 the nonlinear operator A, determinated by the left-hand side of the

equation (1) is Freshet differenti able (Gabdullaev & Gorlov, 1976) at every point ϕ0 of Hβ(Γ)(0 < β < α ≤ 1) and

its derivative has the form described by condition 4) of the theorem. Moreover as long as the Singular operator S τ
is bounded in space Hβ(Γ), in the sphere ||g − ϕ0||β ≤ r(r > 0) of Hβ(Γ) the linear operator A

′
satisfies the Lipshitz

condition

||A′(g1) − A
′
(g2)||β ≤ L||g1 − g2||β, (6)

where L is a completely definite constant, its value depends on r, on element ϕ0(t) ∈ Hβ(Γ) and on functions Φ and

h.
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Let X(t) be an arbitrary continuous on Γ function and

Un(x) = Un(X, t) =
2n∑
j=0

X(t j)l j(t),

its interpolating Lagrange polynomial, constructed by nodes {t j}2n
j=0
⊂ Γ. Then SNE (3) can be written as an

equation.

(Bn,p(ϕn)) ≡ UnΦ[t;ϕn(t); S τ[
1

τp Uτn(τph(t, τ;ϕn(τ)))]] = Un f (t), p = 0; 1, t ∈ Γ, (7)

where Bn,p is a nonlinear operator on the subspace Xn of polynomial functions of the form (2) with the same norm

as in Hβ(Γ). By the same conditions 1) of the theorem, the operator Bn,p from (7) is also Freshet differentiable at

every point ϕ0
n of Xn and its derivative has the form

(B
′
n,p(ϕ0

n)gn) ≡ Un{Φ′u[t, ϕ0
n(t); S τ[

1

τp Uτn(τph(t, τ;ϕ0
n(τ)))]]gn(t)}+

+Un{Φ′v[t;ϕ0
n(t); S τ[

1

τp Uτn(τph(t, τ;ϕ0
n(τ)))]]S τ[

1

τp Uτn(τph
′
u(t, τ;ϕ0

n(τ)))gn(τ)]}. (8)

Now let the nodes {t j}2n
j=0
⊂ Γ be computed in accordance with condition 5) of the theorem.

Then (Zolotarevschi, 1991)

||Un||β ≤ μ1 + μ2 ln(2n + 1), (9)

where, here and later on, μk(k = 1, 2, ...) are completely definite constants not depending on n. Hence, using (9),

the linear operator B
′
n,p(ϕ0

n) defined in (8) satisfies Lipschitz condition (6) with the new constant.

||B′n,p(z(1)
n ) − B

′
n,p(z(2)

n )||β ≤ (μ3 + μ4 ln(2n + 1) + μ5 ln2(2n + 1))||z(1)
n − z(2)

n ||β (10)

Let ϕ∗n(t)(∈ Xn(Γ)) be the best uniform approximation polynomial of ϕ(t). Then from (6) and lemma 6.1 (Zolotarevschi,

1991) there we get (Seichiuc, 1997)

||A′ (ϕ) − A
′
(ϕ∗n)||β ≤ μ6

nr+σ(α)−βH(ϕ(r);σ(α)).

Hence from the reversibility of A
′
(ϕ) and from Banach theorem it follows that for all n (n ≥ n1) such that

μ6

nr+σ(α)−βH(ϕ(r);σ(α))||[A′ (ϕ)]−1||β = dn ≤ q < 1,

The operator A
′
(ϕ∗n) is also reversible in Hβ(Γ), and

||[A′(ϕ∗n)]−1||β ≤ ||[A
′
(ϕ)]−1||β

1 − dn
≤ ||[A

′
(ϕ)]−1||β

1 − q
= μ7.

By the theorem about the continuity of the function index (Gahov, 1977) changing there ϕ on ϕ∗n, the conditions

3)-4) of the theorem are fulfilled, as n ≥ n1. From (8) it follows that the operator B
′
n,p(ϕ∗n) is the operator of

quadratures method for the operator A
′
(ϕ∗n). Thus for the operators A

′
(ϕ∗n) and B

′
n,p(ϕ∗n) all the conditions of the

theorem 8.2 (Zolotarevschi, 1991) are fulfilled. Therefore for sufficiently large n (n ≥ n2 ≥ n1) the operator

B
′
n,p(ϕ∗n) is reversible in Xn(Γ) and the estimation

||[B′n,p(ϕ∗n)]−1||β ≤ μ8, (11)

holds. From the estimations (10) and (11) it follows that for sufficiently small r1-the inequality

sup
‖Ψn−ϕ∗N‖β≤r1

‖[B′n,p(ϕ∗n)]−1[B′n,p(Ψn) − B′n,p(ϕ∗n)]‖ ≤ μ8(μ3 + μ4 ln(2n + 1) + μ5 ln2(2n + 1))r1 = q < 1 (12)

holds, where ψn ∈ Xn.
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Let f (t) ∈ Hr
α(Γ)(0 < β < α ≤ 1). Using the estimations (9), (11), the well known formula of finite increments for

operators the inequality ‖S τ‖β ≤ μ9 and Lemma 6.1 (Zolotarevschi, 1991, p. 55). We find that for all n begining

with a certain one (n ≥ n3 ≥ n2) the following in equality is true:

ρn ≡
∥∥∥[B′n,p(ϕ∗n)]−1[Bn,p(ϕ∗n) − Un f ]

∥∥∥
β
=
∥∥∥[B′n,p(ϕ∗n)]−1[Bn,p(ϕ∗n) − Bn,p(ϕ)]

∥∥∥
β

≤ μ8(μ1 + μ2 ln(2n + 1))

∥∥∥∥∥Φ[t;ϕ∗n(t); S τ[
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]] − Φ[t;ϕ(t); S τ[
1

τp Uτn(τph(t, τ;ϕ(τ)))]]

∥∥∥∥∥
β

≤ μ8(μ1 + μ2 ln(2n + 1)){
∥∥∥∥∥Φ[t;ϕ∗n(t); S τ[

1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]] − Φ[t;ϕ(t); S T [
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]]

∥∥∥∥∥
β

+

∥∥∥∥∥Φ[tlϕ(t); S T [
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]] − Φ[t;ϕ(t); S T [
1

τp Uτn(τph(t, τ;ϕ(τ)))]]

∥∥∥∥∥
β
}

≤ μ8(μ1 + μ2 ln(2n + 1)){
∥∥∥∥∥Φ′u[t; ξ(1)

n (t); S T [
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]]

∥∥∥∥∥
β

∥∥∥ϕ∗n − ϕ∥∥∥β
+

∥∥∥∥∥Φ′v[t;ϕ(t); S T [
1

τp UT
n (τph(t, τ; ξ(2)

n (τ)))]]

∥∥∥∥∥
β
‖S τ‖β × 1

mint∈Γ |t|p
∥∥∥Uτn∥∥∥βmax

t∈Γ
|t|p
∥∥∥h′u(t, τ; ξ(2)

n (τ))
∥∥∥
β

∥∥∥ϕ∗n − ϕ∥∥∥β}

≤ μ10 + μ11 ln(2n + 1) + μ13 ln2(2n + 1)

nr+σ(α)−β H(ϕ(r);σ(α)) ≤ r1(1 − q1). (13)

From the estimations (12), (13) and lemma (Krasnoselski, 1969), putting there T = Bn,p, we obtain that the

equation Bn,p,ϕn = Un f has in the sphere
∥∥∥ψn − ϕ∗n

∥∥∥
β
≤ r1 the unique solution ϕn(t) and the estimation

ρn

1 + q
≤ ∥∥∥ϕn − ϕ∗n

∥∥∥
β
≤ ρn

1 − q

is proved.

This means that for n ≥ n3 in some neighbourhood of (2n+1)-dimensional point {yk}nk=−n(yk : ϕ∗n(t) =
∑n

k=−n yktk)

in the sphere ‖Ψn − ϕ∗n‖β ≤ r1 SNE (3) has the unique solution {c j}2n
j=0

.

For approximative solution (2) the following estimation

‖ϕ∗n − ϕn‖β ≤ ρn

1 − q
≤ μ14 + μ15 ln(2n + 1) + μ2

16
ln(2n + 1)

nr+σ(α)−β H(ϕ(r), σ(α))

is obtained.

From the last inequality, triangle inequality

‖ϕ − ϕn‖β ≤ ‖ϕ − ϕ∗n‖β + ‖ϕ∗n − ϕn‖β
and Lemma 6.1 (Zolotarevschi, 1991) the estimation (5) follows. The theorem 1 is proved.

2- Unimprovable estimations of convergence rate of quadratures methods for nonlinear SIE.

Theorem 1 establishes convergence of quadratures methods for solving nonlinear SIE in the case, when the equa-

tions are defined on closed smooth contour of complex plane. It turns out that if the contour satisfies stronger

conditions on its smoothness, then in the convergence rate (5) the factor ln2 n is substituted by ln n and this estima-

tion becomes unimprovable.

Theorem 2 Let Γ be a closed smooth of class C(2, v)(0 < v < 1) (Zolotarevschi, 1996), i.e. ψ
′′
(t) ∈ Hv(Γ).

Moreover, all conditions of theorem 1 are fulfilled. Then all the assertions of theorem 1 are true with substitution
of estimation of convergence rate (5) by the unimprovable estimate

‖ϕ − ϕn‖β = O(n−r+β−σ(α) ln n)H(ϕ(r), σ(α)). (14)

Proof. Firstly we prove, that if Γ belongs to the class C(2; v) the Lipshitz condition (10) for the linear operator

B
′
n,p(ϕ0

n) is fulfilled with less constant containing nβ ln(2n + 1) instead of ln2(2n + 1). As it is seen from inequality

(12), this gives the possibility to extend the neighbourhood ‖ϕn − ϕ∗n‖β ≤ r1 of the best uniform approximation of
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element ϕ∗n ∈ Xn(Γ), in which approximate solution ϕn(t) ∈ Xn(Γ) ⊂ Hβ(Γ) is looked for initial nonlinear SIE (1),

using quadratures methods.

By virtue of theorem (4) from (Feras, 2009) for every function g(t) ∈ C(Γ).

‖g − Ung‖L2 ≤ d1En(g,Γ), (15)

where dk(k = 1, 2, ...) are completely determined constants not depending on n, En(g,Γ) is the best uniform

approximation of function g(t) of polynomial type (2) from Xn(Γ) and L2 is the space of square integrable functions

with norm

‖g‖L2 = (
1

l

∫
Γ

|g(τ)|2|dτ|) 1
2 .

Let now Z(1)
n and Z(2)

n be arbitrary fixed elements from Xn(Γ). For any element ψn ∈ Xn(Γ) estimate the value

ηn
de f≡ ‖
[
B
′
n,p(z(1)

n − B
′
n,p(z(2)

n,p)ψn(t)
∥∥∥
β
≤ ‖Un{Φ′n[t; z(1)

n (t); S τ[
1

τp Uτn(τph(t, τ; z(1)
n (τ)))]]−

Φ
′
u[t; z(2)

n (t); S τ[
1

τp Uτn(τph(t, τ; z(2)
n (τ)))]]}ψn(t)‖β

+‖Un{Φ′v[t; z(1)
n (t); S τ[

1

τp Uτn(τph(t, τ; z(1)
n (τ)))]]S τ[

1

τp Uτn(τph
′
u(t, τ; z(1)

n (τ)))ψn(τ)]−

Φ
′
v[t; z(2)

n (t); S τ[
1

τp Uτn(τph(t, τz(2)
n (τ)))]]S τ[

1

τp Uτn(τph
′
u(t, τ; z(2)

n (τ)))ψn(τ)]}‖β = η(1)
n + η

(2)
n .

Estimates for every term η(1)
n and η(2)

n are carried out separately. As it is shown in (Zolotarevschi, 1991), for every

function g(t) ∈ C(Γ) the next inequality is valid

‖Ung‖β ≤ d2nβ ‖Ung‖ c ≤ d3nβ ln(2n + 1) ‖g‖ c. (16)

From here, taking into account (9), conditions 1) of theorem 1, and the well known formula of finite increments

for operators, we get

η(1)
n ≤

∥∥∥∥∥UnΦ
′
u[t; z(1)

n (t); S τ[
1

τp Uτn(τph(t, τ; z(1)
n (τ)))]] − UnΦ

′
u[t; z(2)

n (t); S τ[
1

τp Uτn(τph(t, τ; z(1)
n (τ)))]]

∥∥∥∥∥
β
‖ψn‖β +

+

∥∥∥∥∥Un{{Φ′u[t, z(2)
n (t); S τ[

1

τp Uτn(τph(t, τ; z(1)
n (τ)))]] − Φ′u[t, z(2)

n (t); S τ[
1

τp Uτn(τPh(t, τ; z(2)
n (τ)))]]}ψn(t)}

∥∥∥∥∥
β

≤ (μ1 + μ2 ln(2n + 1))d4

∥∥∥z(1)
n − z(2)

n

∥∥∥
β
‖ψn‖β + d3nβ ln(2n + 1))‖Φ′u[t; z(2)

n (t); S τ[
1

τp Uτn(τph(t, τ; z(1)
n (τ)))]]

−Φ′u[t; z(2)
n (t); S τ[

1

τp Uτn(τph(t, τ; z(2)
n (τ)))]]‖c‖ψn‖c ≤ (d5 + d6 ln(2n + 1))

∥∥∥Unz(1)
n − Unz(2)

n

∥∥∥
β
‖ψn‖β

+d7nβ ln(2n + 1)

∥∥∥∥∥S τ[ 1

τp Uτn (τp[h(t, τ; z(1)
n (τ)) − h(t, τ; z(2)

n (τ))])] ‖c. ‖ψn‖ c.

Further, since 1
τp Uτn(τp[h(t, τ; z(1)

n (τ)) − h(t, τ; z(2)
n (τ))]) is a polynomial on degrees of τ and τ(−1), then

S τ[ 1
τp Uτn(τp[h(t, τ; z(1)

n (τ)) − h(t, τ; z(2)
n (τ))])] is also a polynomial and, hence, a continuous function on Γ.

3. Results

Therefore, using Holder inquality for integrals and estimate (Feras, 2006).

‖Un‖C→L2 ≤ d9 < ∞, (17)

Findings:

‖S τ[ 1

τp Uτn(τp[h(t, τ; z(1)
n (τ)) − h(t, τ; z(2)

n (τ))])]‖c ≤ d8‖ 1

τp ‖l2‖Uτn(τp[h(t, τ; z(1)
n (τ) − h(t, τ; z(2)

n (τ))])‖l2

≤ d8

1

‖τp‖L2

‖Uτn‖c→ l2‖τp‖l2‖(t, τ; z(1)
n (τ)) − h(t, τ; z(2)

n (τ))‖l2
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≤ d8d9d10‖h(t, τ/z(1)
n (τ) − h(t, τ; z(2)

n (τ))‖c ≤ d11‖z(1)
n − z(2)

n ‖c. (18)

From inequalities (16) and (18) taking acount of ‖ · ‖c ≤ ‖ · ‖β for η(1)
n , we finally get

η(1)
n ≤ (d12 + d13 ln(2n + 1))nβ‖z(1)

n − z(2)
n ‖c‖ψn‖β. (19)

Estimate the quantity η(2)
n

η(2)
n ≤ ‖Un{(Φ′v[t; z(1)

n (t); S τ[
1

τp Uτn(τph(t, τ; z(1)
n (τ)))]]

−Φ′v[t; z(2)
n (t); S τ[

1

τp Uτn(τph(t, τ; z(2)
n (τ)))]])S τ[

1

τp Uτn(τph
′
u(t, τ; z(1)

n (τ)))ψu(τ)]}‖β+

+‖Un{Φ′v[t; z(2)
n (t); S τ[

1

τp Uτn(τph(t, τ; z(2)
n (τ)))]] × (S τ[

1

τp Uτn(τp[h
′
u(t, τ; z(1)

n (τ)) − h
′
u(t, τ; z(2)

n (τ))])ψn(τ)])}‖β.

As in the points z(1)
n and z(2)

n from Xn(Γ) the inequality

‖S τ[ 1

τp Uτn(τph
′
u(t, τ; z(1)

n (τ)))‖ ≤ d14,

‖Φ′v[t; z(2)
n (t); S τ[

1

τp Uτn(τph(t, τ; z(2)
n (τ)))]]‖β ≤ d15

is satisfied, then carrying out analogous calculations, taking account of (19) and (16), we obtain

η(2)
n ≤ d14(d15 + d16 ln(2n + 1))nβ‖z(1)

n − z(2)
n ‖C‖ψ‖β

+d15d3nβ ln(2n + 1)‖S τ[ 1

τp Uτn(τp[h
′
u(t, τ; z(1)

n (τ)) − h
′
u(t, τ; z(2)

n (τ))])]‖c‖ψn‖c.
Further by analogous reasonings, using Holder’s inequality for integrals and estimate (17), we get

‖S τ[ 1

τp Uτn(τp[h
′
u(t, τ; z(1)

n (τ)) − h
′
u(t, τ; z(2)

n (τ))])]‖c ≤ d17‖z(1)
n − z(2)

2
‖c. (20)

Hence, by virtue of (20) for η(2)
n ,it follows

η(2)
n ≤ (d18 + d19 ln(2n + 1))nβ‖z(1)

n − z(2)
n ‖c‖ψ‖β. (21)

From (19) and (21) it follows that the linear operator B
′
n,p(ϕ0

n) satisfies Lipshitz condition with probably less con-

stant

‖B′n,p(z(1)
n ) − B

′
n,p(z(2)

n )‖β ≤ (d20 + d21 ln(2n + 1))nβ‖z(1)
n − z(2)

n ‖c. (22)

Further we estimate the quantity ρn under condition that Γ ∈ C(2, v). From (13) it is seen that for this it suffices to

estimate the norm

‖Un{Φ[t;ϕ∗n(t); S τ[
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]] − Φ[t;ϕ(t); S τ[
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]]}‖β = η(3)
n

and ther norm

‖Un{Φ[t;ϕ(τ), S τ[
1

τp Uτn(τph(t, τ;ϕ∗n(τ)))]] − Φ[t;ϕ(t); S τ[
1

τp Uτn(τPh(t, τ;ϕ(τ)))]]}‖β = η(4)
n .

Using (16), formula of finite increments of operators, conditions 1) of theorem 1 and lemma 6.1 (Zolotarevschi,

1991) for η(3)
n , we get

η(3)
n ≤ d3nβ ln(2n + 1)‖ξ′ (t)‖c‖ϕ∗ − ϕ‖c ≤ d23 ln(2n + 1)

nr+σ(α)−β H(ϕ(r);σ(α)).

In order to estimate η(4)
n , we use the some method we used to estimate the second term of η(1)

n with the help of (18).

We obtain

η(4)
n ≤

d24 ln(2n + 1)

nr+σ(α)−β H(ϕ(r);σ(α)).
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Hence with the condition Γ ∈ C(2, .v)(0 < v < 1), the inequality (13) takes the form

ρn ≡ ‖[B′n,p(ϕ∗n)−1][Bn,p(ϕ∗) − Un f ]‖β ≤ d25 ln(2n + 1)

nr+σ(α)−β H(ϕ(r);σ(α)) ≤ r1(1 − q)

Further reasoning rare carried out analogously to that of the proof of theorem 1. Theorem 2 is proved.
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