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Abstract

In this paper we present the boundedness condition of the Toeplitz super-operators and we describe the quasi-
Toeplitz operators over classical Bergman space with quasi-homogeneous symbols. Finally, we proved that every
even super-operator acting over the Bergman super-space in the super-sphere can be written as a Toeplitz super-
operator.
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1. Introduction

Borthwick et al. (1993) introduced a general theory of the non-perturbative quantization of the super-disk. The
quantization scheme is based on the notion of a Toeplitz super-operator on a suitable Z,-graded Hilbert space of
super-holomorphic functions. The quantized supermanifold arises as the C*-algebra generated by such operators.

In (Sanchez-Nungaray), Sdnchez-Nungaray showed the scheme of Toeplitz super-operators for the super-sphere
S @2 Moreover, the author introduced the Bergman theory for the super-sphere and he also presented the form
for the Bergman super-spaces and Toeplitz super-operators. In this work he characterized the invariant functions
under the action of the super-circle. Moreover, he showed that the C*-algebra of the Toeplitz operators with invari-
ant symbols under the action of the super-circle is commutative. In (Loaiza & Sanchez-Nungaray, 2010), Loaiza
and Sanchez-Nungaray studied the Toeplitz operators with radial symbols acting on the Bergman space of the
super-disk and they proved that every Toeplitz super-operator with radial symbol is diagonal. This result general-
izes the classical case, implying that the algebra generated by all Toeplitz super-operators with radial symbols is
commutative.

Vasilevski (2001) proved that every Toeplitz operator with radial symbol acting on weigthed Bergman spaces is
unitary equivalent to a multiplication operator on the unit disk. In general, the product of two Toeplitz operators
not necessarily is a Toeplitz operator (Vasilevski, 2001). The situation changes in the sphere because weigthed
Bergman spaces are finite-dimensional. In this way, Prieto-Sanabria (2009) showed that Toeplitz operators with
radial symbols, acting on weigthed Bergman spaces of the sphere, are unitary equivalent to multiplication oper-
ators. Using this fact, he also proved that every operator acting in weigthed Bergman spaces of the sphere is a
Toeplitz operator.

In the case of the super-sphere S ?), we know that Bergman spaces are finite dimensional, and also every Toeplitz
super-operator is an even operator. We prove in this paper that every even operator is a Toeplitz super-operator.
In particular, the product of two Toeplitz super-operators is a Toeplitz super-operator. In this way, we obtain an
extension of the result presented for the sphere S to the super-sphere S,

In Sections 2 and 3 we introduce the Bergman theory for the super-sphere, for example, by defining the notion
of Bergman super-space and Toeplitz super-operator and giving the description of these operators. In Section 4
we present the boundedness condition of the Toeplitz super-operators as follows. In Proposition 3.1 we consider
super-functions having no super-variables. In Proposition 3.2 we study odd super-functions. In Proposition 3.3
we study even super-functions vanishing in the part without super-variables. Finally, the Corollary 3.4 is summary
of these propositions. In Section 5 we describe the quasi-Toeplitz operators over classical Bergman spaces with
quasi-homogeneous symbols. In the last section we prove that every even operator over Bergman super-space on
the super-sphere is a Toeplitz super-operator.
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2. Bergman Super-space on the Super-sphere

The super-sphere S ?? is defined as the projective super-plane. Let A be the set of all nilpotent elements of C?1:
N ={xeC® : x* =0 for k € Z}. Consider

(COMY = (x e CPY : xmod N # 0).

Let (z1,22,6), (2,25, 0) € (CPV)". We say that (z1,22,6) ~ (2},25,8) if there exists 2 € (C!P)< such that
(z1,22,0) = (2}, 425, A¢). By means of this equivalent relation we define the projective super-plane: §@? =
(CODY*/ ~.

Using the homogeneous coordinates, the local coordinates can be expressed with the two following charts of S ??):
z1 0 e 2 0
(z,9)=(—1,—), (1,9)=(—2,—).
2 22 21 2
Therefore, the super-sphere can be covered by two open domains, glued by
16
(ZI, 0’) = (_7 _) .
72
See Ninnemann (1992) for more details of the super-sphere space.

An element f € C*(S () can be written, in local coordinates, as

f(z,6,0) = foo(2) + fi0(2)0 + for(2) + £11(2)60, (2.1)
where f;; € C*(C).
The following definitions and propositions in this section can be seen in (Sdnchez-Nungaray).
Definition 2.1 A function f € C®(S®?) is called super-holomorphic if 9: f = 0 and 9;f = 0, or equivalently, if
f(z,0) = fo(2) + f1(2)0, (22)

where fy and f; are holomorphic functions in C. In the follow we use a collective notation for the coordinates,
namely, Z = (z, 0).

Definition 2.2 We define the super-spherical measure by

du(Z) = —;r(l +7Z7— 99)_1dA(z)d9 A db, (2.3)

where dA(Z) = %dz Adz.

We consider the following perturbations of the measure (2.3):

_\—1/h 1 _\—1-N _
dun(2) = (1 + 22— 60) " du(Z) = —;(1 +2Z2-60)  dA(2)do A db, (2.4)
where h = 1/2,1/3,...and N = 1/h € N.

Let f, g be functions defined on S ??. We define a semi-inner product by
(fs 8 = f(zm VAVAI{VALUAVAN (2.5)
s

where f, g have the form (2.1), and f;; are measurable functions on S 2,

g (2"5) we Obtaln

(1 +zg)N+2

+1f (fn(Z)gRJrflo(Z)gm(Z)—fo1(Z)801(Z)+foo(Z)g11(Z))dA(Z)_
T Jc

(1 + zg)N+!
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Note that the above semi-inner product is not positive definite. Now we consider the restriction of this semi-inner
product to the set of super-holomorphic functions. Thus, this semi-inner product turns out to be positive definite
and so it defines the following inner product

N+1 [ /220@4dAR) 1 [ [(2)1E)EAR)
C (1 +ZZ)N+2 n Jc (1 +ZZ)N+]

(fig)h =

The completion of the set of super-holomorphic functions with respect to the norm || - ||, is a Hilbert space. This
super-space is called the weighted Bergman super-space on the super-sphere, and is denoted by ﬂi(S 212y Being
finite dimensional, the space ﬂﬁ(S @12)) is closed.

For f € L(S®?), we define the weighted Bergman projection by

Pu(f(2)) = fs - FOWVKMZ, W)dun(W),

where
K"Z,W) =1 + 2w - 6p)".

An important result about the Bergman theory over the super-sphere is the following.
Theorem 2.3 If f € L°(S®?), then Py(f) € A2(SP?), and Py(f) = f for f € AUS@D).
3. Toeplitz Super-operators

We refer to (Sdnchez-Nungaray) for more details about the topics of this section.

Definition 3.1 For f € L¥(S®?) and ¢ € AX(S??), we define the Toeplitz operator on the Bergman super-space
with weight parameter 1/h by

Tje(Z) = fs o FONCONKNZ, Wdpn (W), 3.1

Definition 3.2 Let 7 = 1/2,1/3,..., and a € L™(S?). We define the classical weighted Bergman space on the
sphere S? by
AN(S?) = Aj(S?) = {f € L(S®.(N + D)duy) : £ is holomorphic]
where duy, = (1/7)(1 + 22)™¥~2dA(z). This space can be denoted by A% (S?), where N = 1/h € N.
Definition 3.3 The Toeplitz operator with symbol a acting on Afl(S 2) is defined by

Tn(a)(p)(2) = Th(@)()(2) = Bu(aw)p(w))(2),
where By, is the classical Bergman projection onto the weighted Bergman space Ai(S 2).
Now we can represent the super-space A2 (S @) as a direct sum of Bergman spaces on the sphere S2, that is,
F2(SP) = A2(SH @A (S0,

where (¢g, 1) € A12V(S2) ® A%,_I(Sz) whenever ¢ = ¢y + @0 € ﬂ%(S (212)) Moreover, the Bergman spaces AIZV(Sz),
A,zv_l (5?)0 are the even and odd parts of the Bergman super-space, respectively.
Now we describe the Toeplitz operator acting on the super-space A%(S%) & A2, (S?)6.

Note that if f(W) has the form (2.1) and (W) = ¢o(w) + ¢1(w)n, with (W) € ﬂﬁ(S @12)), then
SW)p(W) = oo(w) foow) + frow)n + for(w)i + fri(winil + 1w foow)n — for (wnil,

and

-1
K"Z, W)duy(W) = —

ni | dA(w)dnAdn.

(1 +zw)V _ =1 NA+zw) e (N + DA + )Y
W gAw)dpadis — |
(@1 et | AT = | == 1+ win)h 2
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The elements in the integrals that do not vanish are those containing the term 7. Therefore

The(z) = —71] e for W) + zm)" N+1 [C(foo(WH Juw)d +zZ))90o(W)(1 + )"

Tt AW+ — N+l (1 + win)V 2

dA(w)

dA(w)

+ [ﬂf @ow) fiow)(1 + zm)V"! 0+
C

bis (1 +ww)N+1

Nf‘ﬁl(w)foo(w)(1+zﬂi)N_l
c

r (1 +ww)N+1

dA(w)] 0.

Thus, the Toeplitz operator 7 is equivalent to the following operator on the space A3 (S?) D A3, (S)6:

Su(l +22) N-1
T — | -T
[ N(f00+ Vi ) v (o) (io) (3.2)
Ty, (f10) Ty-1(foo) )\
Su(l +z2) ) . ) 5o
where Ty | foo + W and T'y—1(foo) are ordinary Toeplitz operators on the weighted Bergman spaces A%, (S )

and A,zv_l (8?), respectively. The remaining operators have the following form:

TN (for) : Ay (§7) — AX(SP),

is defined by
1 1 +zw)V
TV (fo)(en(@) = - [c ¢1(W3{0i(:i;)lezw) dA(w), 3-3)
and
Ty_i(for) : AY(S?) — A (S?),
is defined by

o) fiow)(1 + zw)V-!
(1 +ww)N+1

Note that the Toeplitz super-operator (3.2) is an even operator on the Bergman super-space, because every even
operator leaves invariant the parity of the super space.

N
T fio)go)o0) = [C dA(W). (3.4)

4. Boundedness Conditions

In this section we present some results over boundedness conditions for Toeplitz operators on Bergman super-
spaces.

Proposition 4.1 Let ¢,y € A;(S??), and a € L™(S @) such that a(Z) = a(z). Then

< llallo liglls o ln- 4.1

L @) p(2)aZ )mdﬂh 2)

Proof. Since a(Z) = ay(z) we have

(1 + ZZ)N+2 T (1 + ZZ)N+1

- N+1 7 Wo(2)dA 1 7 SNdA
Joo @@ 2) = " [ WEOTEEED [ R D,

Thus

‘ fs ep doo(Z)p(Z )mdﬂh z )‘

N+1 24A 1/2 244 12
< llaw@ll= { lpo@)] <z>} { Wo(2)| (z)}

c (1 +z5)N+2 c (1 +z7)N+2

|¢1<z>|2dA<z>}”2 { Ilﬁl(z)lsz(z)}l/z

1
+ Dllo—
||a00( )”07'[{ c (1+ZZ)N+1 C (1+ZZ)N+]

By the above equation, inequality (4.1) holds.
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Proposition 4.2 For ¢,y € ﬂi(S G2 and a € L*(S ®P) such that a(Z) = a0 or a(Z) = ay6, we have

fm *"(Z)a@@dﬂh@)‘ < W llagllollellllvln, 42)

where 0 <i,j<landi+ j=1.

Proof. We just prove the result for a = a,9(z)6, because the reasoning is analogous for a = ag(z)8. For the first
case we have

— L[ @o@1(2)aio(z)dA(z) 1 f @o(@y1(2)dA(2)
2)a( )W Z)dun(Z)| = |— < — —_— 4.3
fs P2 Dydyus( )] ‘ﬂ L Ty | <l | | B 43)
We know that the functions ¢ and ¢, have the following form:
N N-1
wo2) = Y ads vi@) = ) b
n=0 n=0
Hence we replace the previous equation in (4.3), obtaining
1 f Po(2Y1(2)dA(z)
7dc A+ 79N+
N-1 -1 -1
[ u" ~ N-1
<[2e [} it = e (")
1/2

< {zmnﬁ (N(N - 1))_1}1/2 {gwnﬁ (N(N; 1))_]}
< N2l

Note that if a(Z) = ay; (z)@@, with a;; bounded, then there is not guaranteed that the operator is bounded. This fact
is shown in the following

Example Take a(Z) = 60. Since 7V € A;(S@?), we have

2N
[, oo [ EEE
with the left-side expression divergent.
Proposition 4.3 If ¢,y € A(S*?), and a € L™(S ), such that
a(Z) = (alu_izz)g)i, forze Cande> 0, (4.4)
then
fs 22T Zd(2) < ol 1 45)

Proof. Since a(Z) = a11(z)(1 + z2)"¢A8, the Toeplitz operator with symbol a is bounded because the following
bilinear form is also bounded:

— |1 eo@uo@ari(2)dA) 1 [ po(@wo(2)d*z
fs sa(zm(zw(zmuh@)‘—‘; fc (3o S||a11||ol; T (4.6)
We know that
N N
soo(z)=zanz” and lﬂo(z)=2b,,z”.
n=0 n=0
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In consequence

<P0(Z)l!/0(Z)d2
n c (1+z9N (1 + 2N

.
s{ﬁiwv(f:))‘l}”{ﬁ;iwv(f:))*}

<Nl

1/2

In summary we have the following result

Corollary 4.4 Let ¢,y € A;(S*?) and a € L™(S®?) such that

a(2) = aon(@)(E) + a0 + a2 + ~1_gg,
(1+22)

where the functions a;; are bounded. Then

fs 2)aZypZ)dun(2)| < llallo lelln 5. @

5. Form of Quasi-Toeplitz Operators with Radial and Quasi-homogeneous Symbols

Remember that each Toeplitz super-operator has the form (3.2), where the components of the super-operator
are both classical Toeplitz operators and quasi-Toeplitz operators. Toeplitz operators with radial and quasi-
homogeneous symbols were studied in Prieto-Sanabria (2009). In this section, we analyze quasi-Toeplitz operators
with radial and quasi-homogeneous symbols.

Consider the basis By = {1, z, ..., Z"} for the space AZZV(S 2). If a is a radial function, then we consider the following
operator:
TN (a) : AA(S?) — A% (S?).
This operator has a representation over the bases By and By_; given by the following expression:
v ay(m)7" forn=0,1,...,N-1;
TN_1(a)(Zn) =
0 forn=N,

where

_ 00 2n+1
an(n) = ZN(N l)f M,
n 0

(1 + r2)N+1

The last expression is a matrix of dimension N X (N + 1) given by

ay-1(0) 0 0 0
0 aya() : :
: 5.1
: .. . 0 0
0 .. 0 ayv (N-1 0

Analogously, if a is a radial function, then the quasi-Toeplitz operator
TN 'a) : A3 (S?) — AZ(S?)

has the form
TV N a)Z") = ay-1(n)z", forn=0,1,...,N—1,
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where

. N\ [ a(r)rdr
an-1(n) = 2(71) W

The corresponding matrix of dimension (N + 1) X N is given by

an@© 0 ... .. 0
0 an(l)
: ' (5.2)
: . . 0
0 ... ... 0 aynN-1
o .. 0

Definition 5.1 Let g be a function on §2. We say that g is quasi-homogeneous if it has the form ¢*’a, where a is

aradial function and k € Z. In this case we say that g has degree k.
Now we analyze the case when the symbol is a quasi-homogeneous function.

Given k € 7Z, we consider the quasi-Toeplitz operator with quasi-homogeneous symbol. The first case of this type
of operators has the following form:

TV (e™a) 1 AR (S?) — A3 (SD).
The representation of this operator in the bases By and By_; is as follows:

ak(mz* forn=0,1,...,N—k—1,with0 <k <N;

Ty (eMa)2") = ak ()" forn=—k,...,N, with—-N <k < 0;

0 otherwise,
where S
N-1 < a(r)r "t dr
Q = 2N| _
i) (n+k)f0 (1 + PN+

For the other quasi-Toeplitz operator with quasi-homogeneous symbol we have
TN (€"a) : Ay (S?) — A(S?)
and whose expression is
ak_ (mz™*, forn=0,1,...,N -k, for0 <k < N;
TV ' ea) ) ={ &, _ (m)"*, forn=—k,...,N,for—N <k <0;

0, otherwise,

00 2n+k+1
aN_](n)zz( N )j; "(r)r—dr_

n+k (1 + PN+

where

6. Inverse Problem

In this section we prove the following fact: every even operator over Bergman super-space on the super-sphere
is a Toeplitz super-operator. Prieto-Sanabria (2009) showed that every bounded operator B, acting on weighted
Bergman spaces, is a Toeplitz operator, i.e., there exists a € L*(S?) such that the Toeplitz operator Ty(a) is equal
to B. Now we prove the following lemma which is necessary to obtain the inverse problem for the super case. In
(Prieto-Sanabria, 2009) there exists an analogous result for the sphere.

Lemma 6.1 Let k € N U {0} be fixed. If (bo, ..., by—r) € CN'% or (by, ..., by) € CN* | then there exists a € L (R.)
such that the following assertions holds

00 a(r)r2n+k+ldr
fo W:bn, fOrn:O,l,...,N—k (6])
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or
0 a(’,.)an—k+ldr
fo A bk forns=k. N (6.2)
Proof. We just prove the first assertion because the second is analogous. Let a be defined by
Nk st

a(r) =

22(N+1)°
— (1 +7r?)
where the ¢,’s are complex numbers.
If we replace the function a in (6.1), we obtain the following linear system of equations:

2(n+k+s)+ldr
Z f Ty = bw forn=0.1. N~k 6.3)

2s+k}

Note that the set of functions {r****}"" ¥ c L*(R,, duy(r)) is linearly independent, where

rdr

dun(r) = T3 2

Thus
det(<r2"+k, r2s+k>) + O,

where (-, -) is the inner product in L*(R,, duy(r)) defined by

oo 2ntk+s)+]
(P2 2y Aokt gr
’ o (1 + r2)3(N+1)'

In consequence, the system (6.3) of linear equations has an unique solution.
Now we present the following concept:

Definition 6.2 Let A = [a;;] be a matrix of dimension p X g, and k € Z. We say that A is quasi-diagonal of type k
ifa,urk’j =0fori+k+# ]

Note that every matrix A can be written as a sum of quasi-diagonal matrices. Furthermore, every quasi-Toeplitz
operator with quasi-homogeneous symbol is a quasi-diagonal matrix with respect to the representation.

Theorem 6.3 Let B be a bounded operator from Ayn(S?) to Ay_1(S?), such that the matrix representation of B with
respect to the bases By and By_, is a quasi-diagonal matrix. Then there exists a radial function a such that

Ty (€™ a(r) = B

Analogously, let B be a bounded operator from Ay_1(S?) into Ax(S?), such that the matrix representation of B
with respect to the bases By and By_1 is a quasi-diagonal matrix. Then there exists a radial function b such that

Ty '(e™b(r)) = B

Proof. We just prove the first case, since the second is analogous. Consider a quasi-diagonal matrix B of type
k. Now, take a radial function a such that T (¢"™a(r)) = B, where a is the solution function of a linear system
similar to (6.1). This solution can be found by using Lemma 6.1.

As a consequence of the previous result, every arbitrary operator can be written as a quasi-Toeplitz operator where
its symbol is a sum of quasi-homogeneous functions. Thus, we have the following

Corollary 6.4 Let B be an arbitrary bounded operator from Ay(S 2y into An_1(S?). Then there exists a € L*(S?)
such that
Ty (@) =B

Analogously, let B be a bounded operator from An_(S 2y into An(S?). Then there exists a € L*(S?) such that

TN '(a) =B
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The main result of this paper is the following:

Theorem 6.5 Let B be an even super-operator on the Bergman super-space. Then there exists a super-function a
such that B can be written as a Toeplitz super-operator with symbol a.

Proof. We know that every even super-operator in the Bergman space has the following matrix representation:
By B
B, By )

where By is an operator acting on Ay(S 2), B is an operator from Ay_;(S 2) into Ay(S?), B, is an operator from
An(S?) into Ay_(S?), and Bj is an operator on Ay_;(S?).

Using the fact that every operator is Toeplitz on weighted Bergman spaces, we can find a function ag such that
B3 = Ty_1(ag). Analogously, there exists a function a;; such that Ty(a;;) = (N + 1)(31 - TN(aoo)). Moreover, by

Corollary 6.4, there exists two functions ajo and ao; such that B; = Ty '(—ao;) and By = Ty _ (ajo). Thus we take
the Toeplitz super-operator with symbol

01199
(1+22)

a= a00+a106+a019+

and we have that T"(a) = B.
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