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Abstract

Let X be a metric continuum and n a positive integer. Let Fn(X) be the hyperspace of all nonempty subsets of X
with at most n points, metrized by the Hausdorff metric. We said that X has unique hyperspace Fn(X) provided

that, if Y is a continuum and Fn(X) is homeomorphic to Fn(Y), then X is homeomorphic to Y. In this paper we

study Peano continua X that have unique hyperspace Fn(X), for each n ≥ 4. Our result generalize all the previous

known results on this subject.
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1. Introduction

A continuum is a nondegenerate, compact, connected metric space. A Peano continuum is a locally connected

continuum. For a given continuum X and n ∈ N, we consider the following hyperspaces of X

Fn(X) = {A ⊂ X : A is nonempty and it has at most n points},
and

Cn(X) = {A ⊂ X : A is closed nonempty and has at most n components}.
Both Fn(X) and Cn(X) are metrized by the Hausdorff metric (Nadler, 1978, Definition 0.1) and are also known as

the n-th symmetric product of X and the n-fold hyperspace of X, respectively. When n = 1 it is customary to write

C(X) instead of C1(X), and refer to C(X) as the hyperspace of subcontinua of X.

Let H(X) be any one of the hyperspaces defined above and let K be a class of continua. We say that X ∈ K has

unique hyperspace H(X) in K if whenever Y ∈ K is such that H(X) is homeomorphic to H(Y), it follows that X
is homeomorphic to Y. If K is the class of all continua, we simply say that X has unique hyperspaceH(X).

The topic of this paper is inserted in the following general problem.

Problem. Find conditions, on the continuum Z, in order that Z has unique hyperspaceH(Z).

A finite graph is a continuum that can be written as the union of finitely many arcs, each two of which are either

disjoint or intersect only in one or both of their end points. Let

G = {X : X is a finite graph}.
It has been proved the following results (a)-(m).

(a) If X ∈ G different from an arc or a simple closed curve, then X has unique hyperspace C(X), see Duda (1968,

p. 265-286) and Acosta (2002, p. 33-49).

(b) If X ∈ G, then X has unique hyperspace C2(X), see Illanes (2002(2), p. 347-363).

(c) If X ∈ G, then X has unique hyperspace Cn(X) for each n ∈ N − {1, 2}, see Illanes (2003, p. 179-188).

(d) If X ∈ G, n,m ∈ N, Y is a continuum and Cn(X) is homeomorphic to Cm(Y), then X is homeomorphic to Y ,

see Illanes (2003, p. 179-188).
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(e) If X ∈ G and n ∈ N, then X has unique hyperspace Fn(X), see Castañeda and Illanes (2006, p. 1434-1450).

A dendrite is a locally connected continuum without simple closed curves.

Let

D = {X : X is a dendrite whose set of end points is closed}.
(f) If X ∈ D which is not an arc, then X has unique hyperspace C(X), see Herrera-Carrasco (2007, p. 795-

805). Moreover, if X is a dendrite and X � D, then X does not have unique hyperspace C(X), see Acosta and

Herrera-Carrasco (2009, p. 451-467).

(g) If X ∈ D, then X has unique hyperspace C2(X), see Illanes (2009, p. 77-96).

(h) If X ∈ D, then X has unique hyperspace Cn(X) for each n ∈ N − {1, 2}, see Herrera-Carrasco and Macı́as-

Romero (2008, p. 321-337).

(i) If X ∈ D and n ∈ N − {2}, then X has unique hyperspace Fn(X), see Acosta, Hernández-Gutiérrez and

Martı́nez-de-la-Vega (2009, p. 195-210) and Herrera-Carrasco, de J. López and Macı́as-Romero (2009, p. 175-

190).

Let

O = {X : X is a dendrite whose set of ordinary points is open}.
Notice that D � O, see Herrera-Carrasco, de J. López and Macı́as-Romero (2009, Corollary 2.4).

(j) If X ∈ O, then X has unique hyperspace F2(X), see Illanes (2002(1), p. 75-96).

A local dendrite is a continuum such that every of its points has a neighborhood which is a dendrite. Let

L = {X : X is a local dendrite},
and let

LD = {X ∈ L : each point of X has a neighborhood which is in D}.
(k) If X ∈ LD is different from an arc and a simple closed curve, then X has unique hyperspace C(X), see

Acosta, Herrera-Carrasco and Macı́as-Romero (2010, p. 2069-2085).

(l) If X ∈ LD, n,m ∈ N−{1, 2}, Y is a continuum and Cn(X) is homeomorphic to Cm(Y), then X is homeomorphic

to Y , see Herrera-Carrasco and Macı́as-Romero (2011, p. 244-251).

Given a continuum X, let

G(X) = {p ∈ X : p has a neighborhood T in X such that T is finite graph}.
Let

AM = {X : X is a continuum and G(X) is dense in X},
and let

M = {X ∈ AM : X has a basis of neighborhood β such that for each elementU ∈ β,U ∩ G(X) is connected}.
Notice that G,D,LD ⊂ M, see Hernández Gutiérrez, Illanes and Martı́nez-de-la-Vega (in press).

(m) If X ∈ M and n ∈ N−{1}, then X has unique hyperspace Cn(X). If X ∈ M and X is neither an arc or a simple

closed curve, then X has unique hyperspace C(X), see Gutiérrez et al. (in press).

The main purpose of this paper is to prove the following result.

(n) If X is a Peano continuum such that X ∈ AM and n ∈ N − {2, 3}, then X has unique hyperspace Fn(X), see

Theorem 4.3.

The result (n) generalize (e) and (i), in the case n ∈ N − {2, 3}, see Corollary 4.4.

This is a partial positive answer to the following problem, see Acosta et al. (2009, Question 1.1), which remains

open.

Question 1 Let X be a dendrite and n ∈ N − {1}. Does X have unique hyperspace Fn(X)?
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2. General Notions and Facts

All spaces considered in this paper are assumed to be metric. For a space X, a point x ∈ X and a positive number

ε, we denote by BX(x, ε) the open ball in X centered at x and having radius ε. If A is a subset of the space X, we

use the symbols clX(A) and intX(A), to denote the closure and the interior of A in X, respectively. We denote the

cardinality of A by |A| and the set of the positive integers by N. In fact, all concepts not defined here will be taken

as in (Nadler, 1978).

If X is a continuum, U1,U2, . . . ,Um ⊂ X and n ∈ N we define

〈U1,U2, . . . ,Um〉n =
⎧⎪⎪⎨⎪⎪⎩A ∈ Fn(X) : A ⊂

m⋃

i=1

Ui and A ∩ Ui � ∅, for each i

⎫⎪⎪⎬⎪⎪⎭ .

It is known that the sets of the form 〈U1,U2, . . . ,Um〉n, where U1,U2, . . . ,Um are open subsets of X, form a basis

of the topology of Fn(X), i.e., a basis for the topology induced by the Hausdorff metric on Fn(X), see Illanes and

Nadler (1999, Theorem 1.2 and Theorem 3.1).

If n ∈ N, then an n-cell is a space homeomorphic to the Cartesian product [0, 1]n, where [0, 1] is the unit interval

in the real line R.

The following result was proved in Acosta et al. (2009, Theorem 2.1).

Theorem 2.1 Let X be a continuum and n ∈ N. Given i ∈ {1, 2, . . . , n}, let Ji be an arc in X with end points ai

and bi. If the sets J1, J2, . . . , Jn are pairwise disjoint, then 〈J1, J2, . . . , Jn〉n is an n−cell in Fn(X) whose manifold
interior is the set 〈J1 − {a1, b1}, J2 − {a2, b2}, . . . , Jn − {an, bn}〉n.

For a continuum X and a point p ∈ X, we denote by ord(p, X) the order of p in X, see Nadler (1992, Definition 9.3).

We say that p is an end point of X if ord(p, X) = 1. The set of all such points is denoted by E(X). If ord(p, X) = 2,

we say that p is an ordinary point of X. The set of all such points is denoted by O(X). If ord(p, X) ≥ 3, we say that

p is an ramification point of X. The set of all such points is denoted by R(X). Clearly, X = E(X) ∪ O(X) ∪ R(X).

A free arc is an arc J ⊂ X with end points p and q such that J − {p, q} is open in X. A maximal free arc is a free

arc in X which is maximal respect to inclusion. A free circle S in a continuum X is a simple closed curve S in X
such that there is p ∈ S such that S − {p} is open in X.

Given a continuum X and n ∈ N, we consider the following sets.

G(X) = {p ∈ X : p has a neighborhood T in X such that T is finite graph},

P(X) = X − G(X),

and

En(X) = {A ∈ Fn(X) : A has a neighborhood in Fn(X) which is an n − cell}.
We recall that a continuum X is said to be almost meshed provided that the set G(X) is dense in X, i. e., X ∈ AM;

and X is meshed if X ∈ M.
Also given a continuum X, let

US (X) = {J ⊂ X : J is a maximal free arc in X or J is a free circle in X},

and

FA(X) =
⋃
{intX(J) : J ∈ US (X)}.

The following two results appear in Hernández et al. (in press).

Lemma 2.2 Let X be a continuum. Then clX(G(X)) = clX(FA(X)). Thus, X is almost meshed if and only if FA(X)

is dense in X.

Lemma 2.3 Let X be a Peano continuum and let J be a free arc. Then there exists K ∈ US (X) such that J ⊂ K.

Theorem 2.4 If X is a Peano continuum, then FA(X) = X − (P(X) ∪ R(X)).

Proof. Suppose that x ∈ FA(X). Then there exists J ∈ US (X) such that x ∈ intX(J). Then x ∈ X − (P(X) ∪ R(X)).
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Assume that x ∈ X − (P(X) ∪ R(X)). Then there exists a finite graph T in X such that x ∈ intX(T ). Moreover, since

x � R(X), there exists a free arc I of X such that x ∈ intX(I). By Lemma 2.3, there exists K ∈ US (X) such that

I ⊂ K. Hence, x ∈ intX(K) and so x ∈ FA(X). This completes the proof of the theorem.

For finish this section we prove the following result.

Theorem 2.5 Let X be a Peano continuum and let n ∈ N. If A ∈ Fn(X) and U is a neighborhood of A in Fn(X),
then there exists a finite collection V1,V2, . . . ,V|A| of pairwise disjoint open and connected subsets of X such that
A ∈ 〈V1,V2, . . . ,V|A|〉n ⊂ intFn(X)(U).

Proof. We assume that |A| = m and let A = {x1, x2, . . . , xm}. Since X is Hausdorff, there exists a finite collection

C1,C2, . . . ,Cm of pairwise disjoint open subsets of X such that xi ∈ Ci, for each i ∈ {1, 2, . . . ,m}. Moreover, since

A ∈ intFn(X)(U), there exists a finite collection U1,U2, . . . ,Ul of pairwise disjoint open subsets of X such that

A ∈ 〈U1,U2, . . . ,Ul〉n ⊂ intFn(X)(U). For each i ∈ {1, 2, . . . ,m}, let Vi = Ci ∩ [∩{U j : j ∈ {1, 2, . . . , l} and xi ∈ U j}].
Notice that V1,V2, . . . ,Vm is a finite collection of pairwise disjoint open subsets of X and A ∈ 〈V1,V2, . . . ,Vm〉n ⊂
〈U1,U2, . . . ,Ul〉n. Since X is a Peano continuum, we can assume that Vi is a connected subset of X, for each

i ∈ {1, 2, . . . ,m}. This completes the proof of the theorem.

3. The Set En(X)

In this section we prove some properties of En(X).

Theorem 3.1 For a Peano continuum X the following are equivalent.

(a) X is almost meshed,

(b) for each n ∈ N, the set En(X) is dense in Fn(X),

(c) each open subset of X nonempty contains a free arc of X.

Proof. Suppose that X is almost meshed, we will prove (b). Let A ∈ Fn(X) and let U be an open subset of Fn(X)

such that A ∈ U. Assume that |A| = m and let A = {x1, x2, . . . , xm}. By Theorem 2.5, there exists a finite collection

U1,U2, . . . ,Um of pairwise disjoint open and connected subsets of X such that xi ∈ Ui for each i ∈ {1, 2, . . . ,m},
and A ∈ 〈U1,U2, . . . ,Um〉n ⊂ U. By Lemma 2.2, we obtain that FA(X) is dense in X and so Ui ∩ FA(X) � ∅
for each i ∈ {1, 2, . . . ,m}. Let yi ∈ Ui ∩ FA(X), for each i ∈ {2, 3, . . . ,m}. We take n + 1 − m pairwise different

points ym+1, ym+2, . . . , yn+1 in U1 ∩ FA(X). Let Vm+1,Vm+2, . . . ,Vn+1 be open subsets of X pairwise disjoint such

that ym+1 ∈ Vm+1, ym+2 ∈ Vm+2, . . . , yn+1 ∈ Vn+1 and Vm+1,Vm+2, . . . ,Vn+1 ⊂ U1 ∩ FA(X).

For each j ∈ {2, 3, . . . ,m}, let Wj = U j; and for each j ∈ {m + 1,m + 2, . . . , n + 1}, let Wj = Vj. For each

j ∈ {2, 3, . . . , n + 1}, there is I j a free arc of X such that y j ∈ intX(I j). For each j ∈ {2, 3, . . . , n + 1} there

exists an arc Lj such that y j ∈ intX(Lj) ⊂ Lj ⊂ I j ∩ Wj. Let B = {y2, y3, . . . , yn+1}. Notice that |B| = n and

B ∈ 〈intX(L2), intX(L3), . . . , intX(Ln+1)〉n. By Theorem 2.1, the set 〈L2, L3, . . . , Ln+1〉n is an n−cell. Therefore,

B ∈ En(X) ∩U. We Conclude that En(X) is dense in Fn(X).

By Acosta et al. (2009, Theorem 4.9), we obtain (b) implies (c).

Suppose that each open subset of X nonempty contains a free arc of X. We will see that clX(G(X)) = X. Let x ∈ X
and let U be an open subset of X such that x ∈ U. Then there exists a free arc I of X such that I ⊂ U. Let

y ∈ I − E(I). Since I − E(I) is open subset of X, we have that y ∈ intX(I). Thus, y ∈ G(X) and so U ∩ G(X) � ∅.
Therefore, clX(G(X)) = X, this implies that, X is almost meshed.

Theorem 3.2 The class of Peano continua X such that En(X) is dense in Fn(X) (n ∈ N) contains the class of local
dendrites whose set of ordinary points is open.

Proof. The proof of this theorem is similar to the proof of (a) implies (b) in Theorem 3.1.

Given a continuum X and n ∈ N, let

Pn(X) = {A ∈ Fn(X) : A ∩ P(X) � ∅},
Rn(X) = {A ∈ Fn(X) : A ∩ R(X) � ∅},

and

Λn(X) = Fn(X) − (Pn(X) ∪ Rn(X)).

Notice that A ∈ Λn(X) if and only if |A| ≤ n and A ⊂ [E(X) ∪ O(X)] − P(X), moreover, if A � Pn(X), then there

exists a finite graph T in X such that A ⊂ intX(T ).
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Theorem 3.3 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N. If A ∈ Fn(X) andU is
a neighborhood of A in Fn(X), then for each k ∈ N with |A| ≤ k ≤ n, there exists C ⊂ O(X)−P(X) such that |C| = k
and C ∈ intFn(X)(U). Thus, clFn(X)({A ⊂ O(X) − P(X) : |A| ≤ n}) = Fn(X).

Proof. Let |A| = m. Since U is a neighborhood of A in Fn(X), by Theorem 2.5, there exists a finite collection

V1,V2, . . . ,Vm of pairwise disjoint open subsets of X such that A ∈ 〈V1,V2, . . . ,Vm〉n ⊂ intFn(X)(U). By Theorem

3.1, for each i ∈ {1, 2, . . . ,m} there exists a free arc Ii of X such that Ii ⊂ Vi. For each i ∈ {1, 2, . . . ,m}, we take

oi ∈ (Ii−E(Ii))∩O(X). Let C1 = {o1, o2, . . . , om}. Since Ui are pairwise disjoint, the points oi are pairwise different.

So, |C1| = m. If m < k, we take k − m different points of (I1 − E(I1)) ∩ O(X). Let C = C1 ∪ {om+1, om+2, . . . , ok}.
Hence, |C| = k. Notice that C ∈ 〈V1,V2, . . . ,V|A|〉n and so, C ∈ intFn(X)(U). Notice that, C ⊂ O(X). Moreover,

since oi ∈ Ii − E(Ii), we conclude that oi ∈ intX(Ii) and so, C ∩ P(X) = ∅.
Corollary 3.4 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N. Then

F1(X) = clFn(X)(F1(X) ∩ Λn(X)).

Proof. Suppose that {p} ∈ F1(X). By Theorem 3.3, there exists a sequence {Ak}∞k=1
⊂ O(X)−P(X) such that {Ak}∞k=1

converges to {p} and |Ak | = 1, for each k ∈ N. Notice that Ak ∈ F1(X)∩Λn(X), and so {p} ∈ clFn(X)(F1(X)∩Λn(X)).

Thus, F1(X) ⊂ clFn(X)(F1(X) ∩ Λn(X)). Since the other inclusion also holds, we have that F1(X) = clFn(X)(F1(X) ∩
Λn(X)).

The following result generalize (Castañeda & Illanes, 2006, Lemma 4.3) for Peano continua such that En(X) is

dense in Fn(X).

Theorem 3.5 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N− {2, 3}. If A ∈ Fn−1(X),
then no neighborhood of A in Fn(X) can be embedded in Rn.

Proof. We show first that

(I) if C ∈ Fn−1(X) − Pn(X), then no neighborhood of C in Fn(X) can be embedded in Rn.

To show (I), let C ∈ Fn−1(X) − Pn(X) and assume that there is a neighborhood V of C in Fn(X) that can be

embedded in Rn. Thus, there is a finite graph T in X such that C ⊂ intX(T ). Then V ∩ Fn(T ) is a neighborhood

of C in Fn(T ) that can be embedded in Rn, this contradicts (Castañeda & Illanes, 2006, Lemma 4.3). So, claim (I)

holds.

To show the theorem let A ∈ Fn−1(X). Assume that there is a neighborhoodU of A in Fn(X) that can be embedded

in Rn. By Theorem 3.3, there is C ⊂ O(X) − P(X) such that |C| = |A| and C ∈ intFn(X)(U). Hence, C ∈
Fn−1(X) − Pn(X). Then, by (I), no neighborhood of C in Fn(X) that can be embedded in Rn. However, since

C ∈ intFn(X)(U), the set U is a neighborhood of C in Fn(X) that can be embedded in Rn. This contradiction

completes the proof of the theorem.

A simple triod is a continuum G that can be written as the union of three arcs I1, I2 and I3 such that I1∩I2∩I3 = {p},
p is an end point of each arc Ii and (Ii − {p}) ∩ (I j − {p}) = ∅, if i � j. The point p is called the core of G.

Given a continuum X, let

T (X) = {p ∈ X : p is the core of a simple triod in X}.
Theorem 3.6 Let X be a Peano continuum and let n ∈ N. If A ∈ En(X), then A ∩ clX(T (X)) = ∅.
Proof. Let |A| = m and let A = {x1, x2, . . . , xm}. We see that A ∩ clX(T (X)) = ∅. Assume the contrary and assume

that x1 ∈ A ∩ clX(T (X)). Then there is a sequence {rk}∞k=1
⊂ T (X) that converges to x1. By (Castañeda & Illanes,

2006, Lemma 3.1), notice that rk � A, for each k ∈ N. Since A ∈ En(X), there is a neighborhoodV of A in Fn(X)

such thatV is an n−cell. By Theorem 2.5, there is a finite collection U1,U2, . . . ,Um of open subsets of X such that

xi ∈ Ui, for each i ∈ {1, 2, . . . ,m} and A ∈ 〈U1,U2, . . . ,Um〉n ⊂ intFn(X)(V). Since x1 ∈ U1, there is N ∈ N such that

if k ≥ N, then rk ∈ U1. If m = n, let B = (A − {xm}) ∪ {rN} and if m < n, let B = A ∪ {rN}. In both cases notice that

B ∈ En(X) and B ∩ T (X) � ∅, this contradicts (Castañeda & Illanes, 2006, Lemma 3.1). Thus, A ∩ clX(T (X)) = ∅.
Theorem 3.7 Let X be a Peano continuum. If p ∈ P(X) ∩ [E(X) ∪O(X)], then there is a sequence in R(X) − {p} of
pairwise different points that converges to p.

Proof. Let p ∈ P(X) ∩ [E(X) ∪ O(X)] and let d be a metric of X. By (Nadler, 1992, Theorem 9.10), for ε1 = 1,

there is r1 ∈ R(X) such that r1 ∈ BX(p, ε1). Notice that r1 � p. Let ε2 = min{d(p, r1), 1
2
}, again by Nadler (1992,

Theorem 9.10), there is r2 ∈ R(X) such that r2 ∈ BX(p, ε2). Notice that r2 � r1. Let ε3 = min{d(p, r1), d(p, r2), 1
3
},
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again by Nadler (1992, Theorem 9.10), there is r3 ∈ R(X) such that r3 ∈ BX(p, ε3). Notice that r3 � r2 and r3 � r1.

Proceeding of this form, we obtain a sequence {rk}∞k=1
in R(X)− {p} of pairwise different points such that converges

to p. This completes the proof of the theorem.

The following result generalize (Acosta et al., 2009, Theorem 4.5) for Peano continua such that En(X) is dense in

Fn(X).

Theorem 3.8 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N. Then

(a) En(X) ⊂ Λn(X);

(b) if n ∈ N − {2, 3}, then En(X) = Λn(X) − Fn−1(X).

Proof. For showing (a) let A ∈ En(X). By Theorem 3.6, A∩ clX(T (X)) = ∅. Since R(X) ⊂ T (X) (Kuratowski, 1968,

Theorem 8, p. 277), we obtain that A∩R(X) = ∅. We see that A∩P(X) = ∅. Suppose the contrary, let p ∈ A∩P(X).

Notice that p � R(X). By Theorem 3.7, there is a sequence {rk}∞k=1
in R(X) − {p} of pairwise different points that

converges to p. This implies that {rk}∞k=1
is contained in T (X) and so p ∈ clX(T (X)), this is a contradiction. Thus,

A ∩ P(X) = ∅. We conclude that A ∈ Λn(X). This show (a).

For show (b), we show first that En(X) ⊂ Λn(X) − Fn−1(X). Let A ∈ En(X). By (a), we have that A ∈ Λn(X). LetU
be a neighborhood of A in Fn(X) such that U is an n−cell. Thus, U can be embedded in Rn, and so by Theorem

3.5, A � Fn−1(X). Thus, En(X) ⊂ Λn(X) − Fn−1(X).

We see that Λn(X) − Fn−1(X) ⊂ En(X). Let A ∈ Λn(X) − Fn−1(X). Thus, |A| = n and so we can put A =
{x1, x2, . . . , xn}. Since A ∈ Λn(X), we obtain that A ⊂ (O(X) ∪ E(X)) − P(X). Let xi ∈ A. Since xi � P(X), we have

that xi ∈ G(X). Hence, there is a finite graph Gi ⊂ X such that xi ∈ intX(Gi). Moreover, since A ⊂ O(X) ∪ E(X),

there is an arc Ji in Gi such that xi ∈ intX(Ji). Without loss of generality, suppose that the arcs Ji are pairwise

disjoint. By Theorem 2.1, we have that 〈J1, J2, . . . , Jn〉n is a neighborhood of A in Fn(X) which is an n−cell.

Hence, A ∈ En(X). This completes the proof of the theorem.

Theorem 3.9 Let X be a Peano continuum such that X is neither an arc or a simple closed curve and let n ∈ N.
Then the components of Λn(X) are the nonempty sets of the form:

〈intX(I1), intX(I2), . . . , intX(Im)〉n,where m ≤ n,

the sets intX(I1), intX(I2), . . . , intX(Im) are pairwise disjoints and I j ∈ US (X) for each j ∈ {1, 2, . . . ,m}
Proof. Let I1, I2, . . . , Im ∈ US (X) such that intX(I1), intX(I2), . . . , intX(Im) are pairwise disjoint. Notice that

intX(I1), intX(I2), . . . , intX(Im) are open and connected subsets of X. By Martı́nez-Montejano (2002, Lemma 1), we

have that 〈intX(I1), intX(I2), . . . , intX(Im)〉n, is an open connected subset of Fn(X). Notice that if {I1, I2, . . . , Im} �
{J1, J2, . . . , Jr}, then 〈intX(I1), intX(I2), . . . , intX(Im)〉n ∩ 〈intX(J1), intX(J2), . . . , intX(Jr)〉n = ∅ By Theorem 2.4,

X−(P(X)∪R(X)) =
⋃{intX(I) : I ∈ US (X)}, and so the union of all sets of the form 〈intX(I1), intX(I2), . . . , intX(Im)〉n

is equal to Λn(X). This completes the proof of the theorem.

The following result generalize (Herrera-Carrasco, de J. López, & Macı́as-Romero, 2009, Theorem 2.9) for Peano

continua such that En(X) is dense in Fn(X).

Theorem 3.10 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N. If A ∈ Pn(X), then for
every basis β of open sets of A in Fn(X) and eachV ∈ β, the setV ∩ En(X) has infinitely many components.

Proof. Let A ∈ Pn(X) and let β be a basis of open sets of A in Fn(X). Assume that |A| = m and let A =
{x1, x2, . . . , xm}, where x1 ∈ P(X). Let U1,U2, . . . ,Um be a finite collection of pairwise disjoint open and con-

nected subsets of X such that xi ∈ Ui, for each i ∈ {1, 2, . . . ,m}.We take V ∈ β such that V ⊂ 〈U1,U2, . . . ,Um〉n
and a finite collection V1,V2, . . . ,Vm of pairwise disjoint open and connected subsets of X such that xi ∈ Vi ⊂ Ui,
for each i ∈ {1, 2, . . . ,m}, and 〈V1,V2, . . . ,Vm〉n ⊂ V.
We consider the following cases:

(1) Let x1 ∈ P(X)∩ [E(X)∪O(X)]. By Theorem 3.7, there is a sequence {rk}∞k=1
in R(X)− {x1} of different points

that converges to x1. Let L1, L2, . . . , Lk, . . . be pairwise disjoint open and connected subsets of X such that rk ∈ Lk,

diam(Lk) < 1
k for each k ∈ N and Lk ∩ Lj = ∅, if k � j. Thus, we can assume that Lk ⊂ V1 for each k ∈ N. By

Lemma 2.2, there is Jk ∈ US (X) such that intX(Jk) ∩ Lk � ∅. For each k ∈ N let Tk = intX(Jk) ∩ U1. Again, by

Lemma 2.2, for each i ∈ {2, 3, . . . ,m} there is Ii ∈ US (X) such that intX(Ii) ∩ Vi � ∅. For each i ∈ {2, 3, . . . ,m}, let
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Hi = intUi (Ii ∩ Ui). For every k ∈ N, let

Wk = 〈H2,H3, . . . ,Hm,Tk,Tk+1, . . . ,Tk+n−m〉n.
Notice that Wk is connected. By Theorem 2.1, we obtain that Wk ⊂ 〈U1,U2, . . . ,Um〉n ∩ En(X). Let C be the

component of Λn(X) such thatWk ⊂ C. By Theorem 3.9, we have that C ∩ (〈U1,U2, . . . ,Um〉n ∩ En(X)) =Wk.
Thus,Wk is a component of 〈U1, . . . ,Um〉n∩En(X). Notice thatWk ∩V � ∅, for each k ∈ N. SinceWk ∩Wl = ∅
if k � l, the setV ∩ En(X) has infinitely many components. This completes the case (1).

(2) Let x1 ∈ P(X) ∩ R(X). We consider the following subcases:

(2a) There is a sequence {rk}∞k=1
⊂ R(X) − {x1} that converges to x1.

This case is similar to case (1).

(2b) There is not a sequence {rk}∞k=1
⊂ R(X) − {x1} that converges to x1.

We consider the following subcases:

(i) There is a sequence {ek}∞k=1
⊂ E(X) − {x1} that converges to x1.

(ii) There is not a sequence {ek}∞k=1
⊂ E(X) − {x1} that converges to x1.

In both cases, (i) and (ii), from the proof of Nadler (1992, Lemma 9.11), there is a space L homeomorphic to Fω
(where Fω is the dendrite with only one ramification point whose order is ω) such that x1 is the core of L. Let

L =
⋃
i∈N

[x1, ei]. Since there is not a sequence {rk}∞k=1
⊂ R(X) − {x1} that converges to x1, we can assume that [x1, ei]

is a free arc of X contained in V1, for each i ∈ N. For every k ∈ N, let

Wk = 〈H2,H3, . . . ,Hm, [x1, ek] − {x1, ek}, [x1, ek+1] − {x1, ek+1}, . . . , [x1, ek+n−m] − {x1, ek+n−m}〉n,
where H2,H3, . . . ,Hm are as in the case (1). Proceeding as in the case (1), we have that V ∩ En(X) has infinitely

many components.

4. The Main Result

We are ready to prove that a Peano continuum X such that En(X) is dense in Fn(X) has unique hyperspace Fn(X),

for each n ∈ N − {2, 3}, but first we present two results needed that use the following set.

Given a continuum X, let

Γn(X) = {A ∈ Fn(X) − En(X) : A has a basis β of open sets of Fn(X) such that for eachV ∈ β,
the setV ∩ En(X) is arcwise connected.

Theorem 4.1 Let X and Y be continua and let n ∈ N. If h : Fn(X)→ Fn(Y) is a homeomorphism, then h(Γn(X)) =

Γn(Y) and h(En(X)) = En(Y).

The following result is the generalization of (Herrera-Carrasco, de J. López, & Macı́as-Romero, 2009, Theorem

2.10) for Peano continua such that En(X) is dense in Fn(X).

Theorem 4.2 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N − {2, 3}. Then

Γn(X) = F1(X) ∩ Λn(X).

Proof. We show first that Γn(X) ⊂ F1(X) ∩ Λn(X). Let A ∈ Γn(X) and let β be a basis of open sets of Fn(X) such

that for eachV ∈ β, the setV ∩ En(X) is arcwise connected. By Theorem 3.10, A � Pn(X). Thus, there is a finite

graph T in X such that A ⊂ intX(T ). Since A ∈ 〈intX(T )〉n, we can assume that all the members of β are subsets

of Fn(T ) and so open subsets of Fn(T ). Moreover, for eachV ∈ β, we have thatV ∩ En(T ) = V ∩ En(X), and so

V ∩ En(T ) is also arcwise connected. By Castañeda and Illanes (2006, Lemma 4.5), A ∈ F1(T ) − Rn(T ). Thus,

A ∈ F1(X) − Rn(X) and so, A ∈ F1(X) ∩ Λn(X). We conclude that Γn(X) ⊂ F1(X) ∩ Λn(X).

To show F1(X) ∩ Λn(X) ⊂ Γn(X) let A ∈ F1(X) ∩ Λn(X). By Theorem 3.8 (b), we obtain that A � En(X). Since

A � Pn(X), there is a finite graph T in X such that A ⊂ intX(T ), we can assume that T ∩ P(X) = ∅. Notice that

A ∈ F1(T ) − Rn(T ), and so by (Castañeda & Illanes, 2006, Lemma 4.5), there is a basis β of open subsets of Fn(T )

such that for each V ∈ β, the set V ∩ En(T ) is arcwise connected. Since A ⊂ intX(T ) we can assume that all the
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members of β are contained in Fn(intX(T )) = 〈intX(T )〉n. Since 〈intX(T )〉n is an open set in Fn(X), then β is also

a basis of open sets of A in Fn(X). For each V ∈ β, we have that V ∩ En(X) = V ∩ En(T ) so this intersection is

arcwise connected. This completes the proof of the theorem.

We are ready to give the main result.

Theorem 4.3 Let X be a Peano continuum such that En(X) is dense in Fn(X), where n ∈ N − {2, 3}. If Y is a
continuum such that Fn(X) is homeomorphic to Fn(Y), then X and Y are homeomorphic.

Proof. Let h : Fn(X) → Fn(Y) be a homeomorphism. Since X is a Peano continuum, by Charatonik and Illanes

(2006, Theorem 6.3) we obtain that Y is also a Peano continuum. By Theorem 4.1, we have that h(En(X)) = En(Y)

and so En(Y) is dense in Fn(Y). Again, by Theorem 4.1, we obtain that h(Γn(X)) = Γn(Y) and so by Theorem 4.2,

it follows that h(F1(X) ∩ Λn(X)) = F1(Y) ∩ Λn(Y). Thus, h(clFn(X)(F1(X) ∩ Λn(X))) = clFn(Y)(F1(Y) ∩ Λn(Y)). By

Corollary 3.4, we obtain that h(F1(X)) = F1(Y). We conclude that X is homeomorphic to Y .

Using Hernández et al. (in press), Theorem 3.1, Theorem 3.2 and Theorem 4.3, we have the following result.

Corollary 4.4 If n ∈ N − {2, 3} and X is a Peano continuum almost meshed, then X has unique hyperspace Fn(X).
In particular, if X is a continuum that belongs to some of the following classes:

(a) meshed (remember G,D,LD ⊂ M);

(b) local dendrites whose set of ordinary points is open,

then X has unique hyperspace Fn(X), too.

We conclude this paper with the following three problems.

Question 4.5 Let X be an dendrite such that En(X) is not dense in Fn(X) and let n ∈ N − {1}. Does X have unique

hyperspace Fn(X)?

Question 4.6 Let X be a Peano continuum such that En(X) is dense in Fn(X) and let n ∈ {2, 3}. Does X have unique

hyperspace Fn(X)?

Question 4.7 Does there exists a continuum X (not Peano continuum) such that En(X) is dense in Fn(X), but X is

not almost meshed, for some n ∈ N?
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