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Abstract

This article presented the direct block predictor-corrector method for solving general higher order initial value

problems of ordinary differential equation. Method of collocation and interpolation of power series approximate

solution was used to derive a continuous linear multistep method. Block method was later used to generate the

non overlapping solution at selected grid points. The method developed, is self starting, consistent, symmetric,

zero-stable and convergent. The performance of the new block method was tested with some fourth order initial

value problems and it was found to compare favorably with the existing methods.

Keywords: Linear Multistep Methods (LMMs), fourth order, Initial Value Problems (IVPs), Ordinary Differential

Equations (ODEs), interval of periodicity, predictor-corrector (P-C)

1. Introduction

Consider the higher order initial value problems of ordinary differential equations of the form;

yn = f (x, y, y′, y′′, · · · , yn−1), y(a) = y0, yi(a) = yi, i = 1, ..., n − 1, n ≥ 4. (1.1)

This class of problems has a lot of applications in science and engineering especially in mechanical systems without

dissipation, control theory and celestial mechanics. Conventionally, Equation (1.1) is usually reduced to systems

of first order differential equations before an approximate method is applied to solve it (Lambert, 1973; Fatunla,

1988).

Direct method of solving higher order ordinary differential equations in predictor-corrector mode have been stud-

ied by many scholars including: Awoyemi (2003), Adee et al. (2005), Awoyemi and Idowu (2005), Fatunla (1994),

Kayode (2009), Awoyemi and Kayode (2005) to mention but a few. Awoyemi (2003) investigated a p-stable linear

multistep method for general third order initial value problems of ordinary differential equations. Awoyemi and

Idowu (2005) developed a class of hybrid collocation method for third order ordinary differential equations. These

authors respectively proposed some linear multistep methods with continuous coefficients using Taylor series ex-

pansion to supply the starting values. These methods were implemented in predictor-corrector mode, although

they yielded good results but the implementation is too costly, because the predictors are developed in the same

way as the correctors and subroutines are very complicative to write since they require special techniques to supply

the starting values. This eventually leads to longer computer time and human effort. In order to circumvent the set

backs of the predictor-corrector methods, this article therefore proposes the direct block predictor-corrector method

for solving general fourth order initial value problems of ordinary differential equation. This block method is capa-

ble of giving evaluations at different grids points without overlapping as in the predictor-corrector method, hence

does not require the development of separate predictors, starting values. The method is consistent, symmetric,

zero-stable and it is more accurate than the existing methods.

Definition 1.1 The block method is said to be stable if as h→ 0 the roots r j, j = 1, 2, ..., k of the first characteristic

polynomial ρ(R) = 0, that is ρ(R) = det[
∑

AiRk−1] = 0, satisfy |R| ≤ 1 and for these roots with |R| ≤ 1 must have

multiplicity equal to unity.

Definition 1.2 If the block method be R×R matrix, then, it is zero-stable, if as hμ → 0,
∣∣∣RA0 − Ai

∣∣∣ = Rr−μ(R−1) = 0.

For those root with
∣∣∣Rj

∣∣∣ ≤ 1, the multiplicity must not exceed the order of the differential equation (Fatunla 1991).
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In recent time, authors have adopted the block method for solving higher order ordinary differential equations.

Among them are Jator (2007), Jator and Li (2009), Omar and Suleiman (2009), Badmus and Yahaya (2009),

Olabode (2009a & b), Olabode and Yusuph (2009), Siamak (2010), Zarina et al. (2009) and Awoyemi et al.

(2011). In Zanariah et al. (2012) a two-point four step direct implicit block method of order 7 for solving third

order ordinary differential equations using variable step size strategy was proposed. In this paper, the works of

Shampine and Watt (1969) and Abbas (2006) were adopted. They gave the general discrete block formula as:

A(0)Ym = eyn + hd f (yn) + hμB f (Y0
m) (1.2)

where the prediction equation is given by

Y0
m = eyn + hμd f (yn) (1.3)

Putting (1.3) into (1.2) one obtains

A(0)Ym = eyn + hd f (yn) + hμB f (eyn + hμd f (yn) ) (1.4)

According to Abbas (2006), (1.4) is called block predictor-corrector method and self-starting since the prediction

equation is obtained directly from the general block formula (1.2).

2. Method

Following Abbas (2006), the general discrete block formula is as follow:

A(0)Ym = eyn + hd f (yn) + hμB f (Y0
m) (2.1)

where e and d are R-vectors, A0 and B are R × R identity matrices, f is also a R-vectors whose j th entry is

fn+ j = f (xn+ j; yn+ j); 1 < j < R. Equation (2.1) is implicit in Ym and it has to be solved iteratively by predicted

solution values. A predictor equation for Ym can be expressed in the form:

Y0
m = eyn +

m∑

λ=0

hμ+λ f λ(yn) (2.2)

where f λ (yn) = ∂λ

∂xλ f (x, y, y′, y′′, y′′′). Putting (2.2) into (1.2) one obtains

A(0)Ym = eyn + hd f (yn) + hμB f (eyn +

m∑

λ=0

hμ+λ f λ(yn)). (2.3)

where μ is the order of the differential Equation (1.1) and m = 4 in this work. Equation (2.3) is the new block

predictor-corrector method. Moreover, consider a monomial power series of the form:

P (x) =

r+s−1∑

j=0

a jx j (2.4)

r is the interpolation point and s is the collocation point. Equation (2.4) is used as the basis or trial function to

provide the approximate solution in the form:

y (x) =

r+s−1∑

j=0

a jx j (2.5)

a j ∈ R, j = 0, 1, 2, ..., r + s − 1, y ∈ Cm, (a, b) ⊂ P(x), whose higher derivatives are

y′ (x) =

r+s−1∑

j=0

ja jx j−1 (2.6)

y′′ (x) =

r+s−1∑

j=0

j ( j − 1))a jx
j−2 (2.7)
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y
′′′

(x) =

r+s−1∑

j=0

j ( j − 1) ( j − 2) a jx
j−3 (2.8)

y
′′′′

(x) =

r+s−1∑

j=0

j ( j − 1) ( j − 2) ( j − 3)a jx
j−4 (2.9)

substituting (2.9) into (1.1) one obtains

f (x, y, y′, y′′, y′′′) =
r+s−1∑

j=0

j ( j − 1) ( j − 2) ( j − 3)ajx j−4 (2.10)

Interpolating (2.5) at x = xn+ j, j = 0, 1, 2, ..., k − 1 and collocating (2.10) at x = xn+ j, j = 0, 1, 2, ..., k one obtains a

system of equations which after solving for a′j s and substituting into (2.5), with some manipulation yields, a linear

multistep method with continuous coefficients in the form:

y(x) =

r∑

j=0

α j(x)yn+ j + h4
s∑

j=0

β j(x) fn+ j (2.11)

The coefficients α j(x) and β j(x) are expressed as function of t = x−xn+3

h as follows:

α0(t) = − 1
3

(
32t3−48t2+22t−3

)

α1(t) = 32t3−40t2+12t

α2(t) = −32t3+32t2−6t

α3(t) = 1
3

(
32t3−24t2+4t

)

β0(t) = h4

15120

(
24576t8−122880t7+250880t6−268800t5+161280t4−53424t3+8926t2−579t

)

β1(t) = h4

3780

(
24576t8−1105924t7+186368t6−129024t5+46368t3−21062t2+2715t

)

β2(t) = h4

2520

(
24576t8−98304t7+136192t6−64512t5+1680t3+2654t2−627t

)

β3(t) = h4

3780

(
24576t8−86016t7+100352t6−43008t5+4032t3−566t2+21t

)

β4(t) = h4

15120

(
24576t8−73728t7+78848t6−32256t5+3024t3−482t2−3t

)
.

(2.12)

Evaluating (2.12) at t = 1 gives the discrete method

yn+4 − 4yn+3 + 6yn+2 − 4yn+1 + yn =
h4

720
(− fn+4 + 124 fn+3 + 474 fn+2 + 124 fn+1 − fn) . (2.13)

Equation (2.13) is of order seven, symmetric, consistent and zero-stable. The first, second and the third derivatives

of (2.12) were obtained.

2.1 Impelementation of the Block Method

In this section, we present the implementation strategy of our work. Differentiating (2.12) and evaluating it, at

t = 0(1)4 we obtain the following

hy′n = −
11

6
yn + 3yn+1 − 3

2
yn+2 +

1

3
yn+3 + h4

(

− 193

20160
fn − 181

1008
fn+1 − 209

3360
fn+2 +

1

720
fn+3 − 1

20160
fn+4

)

(2.14)

hy′n+1 = −
1

3
yn− 1

2
3yn+1+yn+2− 1

6
yn+3+h4

(

− 31

6048
fn − 727

15120
fn+1 +

397

10080
fn+2 − 13

3024
fn+3 +

41

60480
fn+4

)

(2.15)

hy′n+2 =
1

6
yn − yn+1 +

1

2
yn+2 +

1

3
yn+3 + h4

(
11

12096
fn − 493

15120
fn+1 − 79

1440
fn+2 +

59

15120
fn+3 − 41

60480
fn+4

)

(2.16)

hy′n+3 = −
1

3
yn+

3

2
yn+1−3yn+2+

11

6
yn+3+h4

(

− 23

20160
fn − 311

5040
fn+1 +

121

672
fn+2 +

47

5040
fn+3 +

1

20160
fn+4

)

(2.17)
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hy′n+4 = −
11

6
yn + 7yn+1 − 19

2
yn+2 +

13

3
yn+3 + h4

(

− 151

60480
fn +

679

2100
fn+1 +

12793

10080
fn+2 +

7489

15120
fn+3 +

85

12096
fn+4

)

(2.18)

Evaluating the second derivative of (2.12) at t = 0(1)4 we obtain the following

h2y′′n = 2yn − 5yn+1 + 4yn+2 − yn+3 + h4

(
4463

60480
fn +

10531

15120
fn+1 +

1327

10080
fn+2 +

283

15120
fn+3 − 241

60480
fn+4

)

(2.19)

h2y′′n+1 = yn − 2yn+1 + yn+2 + h4

(

− 157

60480
fn − 1187

15120
fn+1 − 17

10080
fn+2 − 11

15120
fn+3 +

11

60480
fn+4

)

(2.20)

h2y′′n+2 = yn+1 − 2yn+2 + yn+3 + h4

(
11

60480
fn − 53

15120
fn+1 − 773

10080
fn+2 − 53

15120
fn+3 +

11

60480
fn+4

)

(2.21)

h2y′′n+3 = −yn+4yn+1−5yn+2+2yn+3+h4

(

− 73

60480
fn +

2593

15120
fn+1 +

6619

10080
fn+2 +

1417

15120
fn+3 − 241

60480
fn+4

)

(2.22)

h2y′′n+4 = −2yn + 7yn+1 − 8yn+2 + 3yn+3 + h4

(

− 409

60480
fn +

5491

15120
fn+1 +

14599

10080
fn+2 +

15739

15120
fn+3 − 859

60480
fn+4

)

(2.23)

Evaluating the third derivative of (2.12) at t = 0(1)4 gives,

h3y′′′n = −yn + 3yn+1 − 3yn+2 + yn+3 + h4

(
53

160
fn − 23

20
fn+1 +

1

16
fn+2 − 1

10
fn+3 +

3

180
fn+4

)

(2.24)

h3y′′′n+1 = −yn + 3yn+1 − 3yn+2 + yn+3 + h4

(
5

280
fn − 91

360
fn+1 − 73

240
fn+2 +

17

360
fn+3 − 11

1440
fn+4

)

(2.25)

h3y′′′n+2 = −yn + 3yn+1 − 3yn+2 + yn+3 + h4

(

− 13

1440
fn +

41

180
fn+1 +

79

240
fn+2 − 1

18
fn+3 +

11

1440
fn+4

)

(2.26)

h3y′′′n+3 = −yn + 3yn+1 − 3yn+2 + yn+3 + h4

(
1

160
fn +

1

8
fn+1 +

77

80
fn+2 +

17

40
fn+3 − 3

160
fn+4

)

(2.27)

h3y′′′n+4 = −yn + 3yn+1 − 3yn+2 + yn+3 + h4

(

− 29

1440
fn +

49

180
fn+1 +

143

240
fn+2 +

119

90
fn+3 +

95

288
fn+4

)

(2.28)

Putting (2.13), (2.14), (2.19) and (2.24) into (2.28) and simplifying, the coefficients of (1.2) are as follows

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2

1
6

1 2 2 4
3

1 3 9
2

9
2

1 4 8 32
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 3373
120960

0 0 0 296
945

0 0 0 9
2

0 0 0 32
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

139
6048

− 283
20160

179
30240

− 131
120960

472
945

− 2
9

88
945

− 16
945

2889
1120

− 1539
2240

81
224

− 297
4480

1024
135

− 256
315

1024
945

32
189

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.29)

Writing (2.29) explicitly one obtains the following

yn+1 = yn + hy′n +
1

2
h2y′′n +

1

6
h3y′′′n + h4

(
3373

120960
fn − 139

6048
fn+1 − 283

20160
fn+2 +

179

30240
fn+3 − 131

120960
fn+4

)

(2.30)

yn+2 = yn + 2hy′n + 2h2y′′n +
4

3
h3y′′′n + h4

(
296

945
fn +

472

945
fn+1 − 2

9
fn+2 +

88

945
fn+3 − 16

945
fn+4

)

(2.31)

yn+3 = yn + 3hy′n +
9

2
h2y′′n +

9

2
h3y′′′n + h4

(
5319

4480
fn +

2889

1120
fn+1 − 1539

2240
fn+2 +

81

224
fn+3 − 297

4480
fn+4

)

(2.32)
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yn+4 = yn + 4hy′n + 8h2y′′n +
32

3
h3y′′′n + h4

(
2816

945
fn +

1024

135
fn+1 − 256

315
fn+2 +

1024

945
fn+3 − 32

189
fn+4

)

(2.33)

Equations (2.30) - (2.33), in block form, are implemented using a MATLAB algorithm, gives solution at selected

grid points within the integration interval were obtained.

2.2 Analysis of the Block Method

The basic properties of the block method which include the order, zero stability and the convergence of the method

was investigated.

2.2.1 Order of the Method

The methods proposed by Lambert (1973) and Fatunla (1995) were employed in obtaining the order of the new

block method as: [7, 7, 7, 7]T with the error constants
[

1469
1814400

, 176
14175
, 1107

22400
, 256

2025

]T
.

2.2.2 Zero Stability of the Block Method

For the new method

A = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

A = z4 − z3 = 0, z = 0, 0, 0, 1 (2.34)

which implies zero stability (see Definition 1.2). The block method is also consistent, as it has the order p greater

than 1. Hence the convergence of the method is asserted (Henrici, 1962).

2.2.3 Region of Absolute Stability

In this article, the Locus method was used to determine the region of absolute stability. The boundary locus method

is given by

h (θ) =
ρ(eiθ)

σ(eiθ)
=
ρ(r)

σ(r)
(2.35)

Where ρ(r) and σ(r) are the first and second characteristics polynomial respectively as

r = eiθ = cos θ + isin θ (2.36)

Applying (2.35) and (2.36) to the derived scheme, we have

h (r) =
r4 − 4r3 + 6r2 − 4r + 1

1
720

(−r4 + 124r3 + 474r2 + 124r − 1)
(2.37)

h (θ) =
(cos 4θ − 4cos 3θ + 6cos 2θ − 4cos θ + 1) + i(sin 4θ − 4sin3θ + 6sin 2θ − 4sin θ )

1
720

[(−cos 4θ + 124cos 3θ + 474cos 2θ + 124cos θ − 1) + i(−sin4θ + 124sin 3θ + 474sin 2θ + 124sin θ ]
(2.38)

Multiplying by conjugate, considering the real part and evaluating at intervals of (00, 1800) we have (00, 9.520).

3. Numerical Experiments, Results and Discussion

This section deals with numerical experiments and results, using the algorithm proposed for fourth order ordinary

differential equations.

Problem 3.1
y
′′′′
+ y′′= 0, 0 ≤ x ≤ π

2
, y (0)= 0, y′ (0)=

1.1

72−50π
,

y′′ (0)=− 1

144−100π
, y′′′ (0)=

1.2

144−100π
, h=

1

320

Exact solution: y (x) = 1−x−cos x−1.2 sin x
144−100π

.
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Problem 3.2
y
′′′′
=
−(8 + 25x + 30x2 + 12x3 + x4)

(1 + x2)

y (0) = 0, y′ (0) = 1, y′′ (0) = 0, y′′′ (0) = −3, h =
1

320

Exact solution: y (x) = x (1 − x) ex

Problem 3.3
y
′′′′
= (y′)2 − yy′′′ − 4x2 + ex

(
1 − 4x + x2

)
; ; 0 ≤ x ≤ 1,

y (0) = 1, y′(0) =, y′′(0) = 3, y′′′ = 1, h =
1

320

Exact solution y (x) = x2 + ex

Table 3.1. Accuracy comparison of the new method with Kayode (2008), h = 1/320

X y-Exact y-Approximate Error in New

method (k = 4 )

Error in Kayode

(2008) (k =4)

0.103125 0.13007993D-02 0.13007996D-02 0.2168404D-020 0.4987329D-15

0.206250 0.25317732D-02 0.25317737D-02 0.4336809D-020 0.6765210D-15

0.306250 0.36524788D-02 0.36524790D-02 0.13001043D-19 0.3135079D-14

0.406250 0.46959532D-02 0.46959532D-02 0.2602085D-019 0.9436028D-14

0.506250 0.56576413D-02 0.56576424D-02 0.1734723D-019 0.2211685D-13

0.603125 0.65077534D-02 0.65077576D-02 0.8673617D-020 0.4337936D-13

0.703125 0.72983134D-02 0.72983147D-02 0.2602085D-019 0.7787086D-13

0.803125 0.79985187D-02 0.79985202D-02 0.5204170D-019 0.1286349D-12

0.903125 0.86072451D-02 0.86072467D-02 0.1214306D-018 0.1992711D-12

1.003125 0.91242822D-02 0.91242840D-02 0.1734723D-018 0.2932324D-12

Table 3.1 shows that, the maximum absolute error of the new block predictor -corrector method of the problem1 is

0.2168404D − 20 while the maximum absolute error of Kayode (2008) is 0.4987329D − 15 for the same Problem

3.1 which implies that they compare favorably. Both methods are of the same step k = 4 and were developed for

solving fourth order ODEs.

Table 3.2. The y-Exact, y-Approximate and error in of Problem 3.2, with h = 1/320

X y-Exact y-Approximate Error of the New

Block method

0.0031 0.0031249847093845 0.0031249847094044 1.990205E-014

0.0063 0.0062498774198671 0.0062498774205050 6.379298E-013

0.0094 0.0093745854286995 0.0093745854335519 4.852393E-012

0.0125 0.0124990152612047 0.0124990152816868 2.048206E-011

0.0156 0.0156230726662503 0.0156230727288605 6.261025E-011

0.0188 0.0187466626116994 0.0187466627677537 1.560543E-010

0.0219 0.0218696892798386 0.0218696896176985 3.378600E-010

0.0250 0.0249920560627830 0.0249920567226018 6.598189E-010

0.0281 0.0281136655578585 0.0281136667488685 1.191010E-009

0.0313 0.0312344195629611 0.0312344215833281 2.020367E-009

In Table 3.2, y-exact, the approximate value and the error of the new block predictor-corrector method for Problem

3.2 are shown.
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Table 3.3. The y-Exact, y-Approximate and error in of Problem 3, with h = 1/320

X y-Exact y-Approximate Error in New method

0.103125 1.1192647447875919 1.1192647447875916 2.220446E-016

0.206250 1.2715994931980485 1.2715994931980492 6.661338E-016

0.306250 1.4521109070650133 1.4521109070650140 6.661338E-016

0.406250 1.6662168625001232 1.6662168625001246 1.332268E-015

0.506250 1.9153471099209172 1.9153471099209194 2.220446E-015

0.603125 2.1915815936062044 2.1915815936062075 3.108624E-015

0.703125 2.5144402933336951 2.5144402933337013 6.217249E-015

0.803125 2.8775163877466037 2.8775163877466143 1.065814E-014

0.903125 3.2829361588050943 3.2829361588051129 1.865175E-014

1.003125 3.7330495114951674 3.7330495114951967 2.930989E-014

Table 3.3 shows y-exact, the approximate value and the error of the new block predictor-corrector method for

Problem 3.3.

4. Conclusion

In this paper, a new block method for the direct solution of general higher order ordinary differential equations

which is better than the conventional method has been presented. Also, the methods derived were analyzed and

found to be consistent, zero-stable and convergent. The numerical experiments were given and the results obtained

were compared with Kayode (2008) and were found to be better in accuracy than the existing methods.
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