
Journal of Mathematics Research March, 2009

Derivation of Augmented Arithmetic

for Computing Gradient, Hessian and Jacobian

through Forward Mode AD Using Dual Numbers

P.Senthil Vadivu (Corresponding author)

Department of Mathematics

Sona College of Technology

Salem-636005, Tamil Nadu, India

Tel: 91 − 427 − 233 − 6383 E-mail: psvoct@gmail.com

S. Ponnusamy

Department of Mathematics

Sona College of Technology

Salem-636005, Tamil Nadu, India

Tel: 91 − 427 − 409 − 9783 E-mail: ponsam@yahoo.com

Abstract

This paper presents a new approach to Automatic Differentiation (AD) for a scalar valued and twice contin-

uously differentiable function f : Rn → R. A new arithmetic is obtained based on the chain rule and using

augmented algebra of real numbers. The chain rule based differentiation arithmetic is used to find the Gradient

and Hessian. Jacobian is evaluated using Gradient arithmetic by computing Gradient for components and is ar-

ranged in matrix form to give Jacobian value. The resulting derivative evaluation uses the operator overloading

concept which uses computer programs written in C++.

Keywords: Automatic Differentiation, Augmented algebra, operator overloading, Forward mode

1. Introduction

Any efficient non-linear optimization routine needs good gradient approximations. Over the last decades, sev-

eral research groups have developed the technique of Automatic Differentiation, which generates exact deriva-

tives for a given code segment. A comprehensive introduction to this method can be found in (Griewank, A.,

2000 & 1990; Naumann, U., 2008; Moore, R.E., 1962; Rall, L.B., 2007). Automatic Differentiation can be

implemented in various ways, each of which is dependent on circumstances partially. Here, we use a new

methodology to implement AD for computing Gradient, Hessian and Jacobian. A new arithmetic is obtained

based on the chain rule and using augmented algebra of real numbers through forward mode of Automatic

Differentiation.

2. The Differentiation Arithmetic for Evaluation of Gradient and Hessian

To obtain the arithmetic for Gradients and Hessians, an ordered triples of the form U = (u f , ug, uh) with

u f ∈ R, ug ∈ Rn, uh ∈ Rn × Rn where the scalar u f denotes the function value u(x)of the twice differentiable

function u : Rn → R, the vector ugand the matrix uh denote the value of the gradient ∇u(x) and the Hessian

∇2u(x) respectively, each at a fixed point x ∈ Rn is considered. For the constant function u(x) = c, the triple

is U = (u f , ug, uh) = (c, 0, 0).For the function u(x) = xk with k ∈ {1, 2, · · · , n}, (u f , ug, uh) = (xk, e(k), 0) is

� www.ccsenet.org/jmr 35

Vol. 1, No. 1 ISSN: 1916-9795

defined, where ek ∈ Rn denotes the kth unit vector and 0 denotes the zero matrix, respectively. There are some

rules for the differentiation arithmetic similar to one dimensional case. They are

W = U + V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f + v f ,

wg = ug + vg,

wh = uh + vh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

W = U − V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f − v f ,

wg = ug − vg,

wh = uh − vh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

W = U · V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f · v f ,

wg = ugv f + u f vg,

wh = v f · uh + ug · vT
g + vg · uT

g + u f · vh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

W = U/V ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = u f /v f ,

wg = (ug − w f · vg)/v f ,

wh = (uh − wg · vT
g − vg · wT

g − w f · vh)/v f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the familiar rules of calculus have been used in second and third components, and v f � 0 is assumed

in the case of division. The operations for w f ,wg and wh in these definitions are operations on real numbers,

vectors and matrices. If the independent variables xiof a formula for a function f : Rn → R and x → f (x) are

replaced by Xi = (xi, e(i), 0), and if all constants c are replaced by their (c, 0, 0) representation, then evaluation

of f using the rules of differentiation arithmetic gives

f (X) = f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

X2

X3

·
·
·

Xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x1, e(1), 0)

(x2, e(2), 0)

(x3, e(3), 0)

·
·
·

(xn, e(n), 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (f (x),�u(x),�2u(x))

For the elementary function S : R → R and U = (u f , ug, uh), the differentiation arithmetic is

W = S (U) ⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w f = S (u f),

wg = S ′(u f) · ug,

wh = S ′′(u f) · ug · uT
g + S ′(u f) · uh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.1 Algorithmic Description

Here the algorithm for the elementary operators {+, −, ·, /} and for elementary functions S ∈ {power, exp, log,

sin, cos, tan, cot, asin, acos, atan, acot, sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth} of a Gradient and

Hessian arithmetic for a twice continuously differentiable function f : Rn → Ris discussed.

Algorithm for overloading the ± operator for U and V is given by

Step 1:
[
W f

]
=
[
u f
]
±
[
v f
]
; (Function value)

Step 2: for i = 1 : n[
Wg
]
i
=
[
ug
]
i
±
[
vg
]
i
; (Gradient component

for j = 1 : i
[Wh]i j = [uh]i j ± [vh]i j ; (Hessian component)

Step 3: return [W] ;

The algorithmic description for the multiplication operator for (U,V) is given by

36 � www.ccsenet.org/jmr

Journal of Mathematics Research March, 2009

Step 1:
[
W f

]
=
[
u f
]
·
[
v f
]
; (Function value)

Step 2: for i = 1 : n[
Wg
]
i
=
[
v f
]
·
[
ug
]
i
+
[
u f
]
·
[
vg
]
i
; (Gradient component

for j = 1 : i
[Wh]i j =

[
v f
]
· [uh]i j +

[
ug
]
i
·
[
vg
]

j
+
[
vg
]
i
·
[
ug
]

j
+
[
u f
]
· [vh]i j ; (Hessian component)

Step 3: return [W] ;

The algorithm for overloading the / operator for (U,V) is

Step 1:
[
W f

]
=
[
u f
]
/
[
v f
]

(Function value)

Step 2: for i = 1 : n[
Wg
]
i
= (
[
ug
]
i
−
[
W f

]
·
[
vg
]
i
)/
[
v f
]

; (Gradient component)

for j = 1 : i
[Wh]i j = ([uh]i j −

[
Wg
]
i
·
[
vg
]

j
−
[
vg
]
i
·
[
Wg
]

j
−
[
W f

]
· [vh]i j)/

[
v f
]

(Hessian component)

Step 3: return [W] ;

The algorithm for overloading the elementary functions for (U,V) is

Step 1:
[
W f

]
= S

[
u f
]
; (Function value)

Step 2: for i = 1 : n[
Wg
]
i
= S ′(

[
u f
]
) ·

[
ug
]
i
; (Gradient component)

for j = 1 : i
[Wh]i j = S ′′(

[
u f
]
) ·
[
ug
]
i
·
[
ug
]

j
+ S ′(

[
u f
]
); (Hessian component)

Step 3: return [W] ;

Here, W returns three components of which the first one is the function value, the second one is the Gradient

and the third one is the Hessian.
INPUT: (i) Multi-variate functions of dimension 3.

(ii) Values of the components x, y, z
OUTPUT: (i) Value of the function

(ii) Value of the Gradient

(iii) Value of the Hessian
2.2 Numerical Results

The input function is f (x) = x sin(x) + cos(y2) + z2. The function is evaluated at the point (2 · 5, 3 · 5, 4 · 5)

Value of the function = 523 · 6875

Value of the Gradient =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
210 · 875

220 · 5

149 · 625

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Value of the Hessian =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
42 91 · 45 49

91 · 75 40 · 5 42 · 75

49 42 · 75 31 · 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
3. Evaluation of Jacobians

Jacobian can be evaluated using Gradient arithmetic by computing Gradient for components fi with i =
1, 2, · · · , n. The same differentiation arithmetic, which is used for finding the functional value along with

the Gradient, is used. Then, the Gradients for each fi, i = 1, 2, · · · , n are computed and are arranged in the ma-

trix form to give the Jacobian value. Using this new technique the Jacobian is computed exactly with minimum

human effort.

4. Conclusion

Here a new technique is used for implementing AD for a scalar valued and twice continuously differentiable

function f : Rn → R. Automatic Differentiation is a useful tool as it facilitates the automatic generation of

� www.ccsenet.org/jmr 37

Vol. 1, No. 1 ISSN: 1916-9795

Gradient and Hessian which enhances the robustness of an optimization algorithm that requires derivatives. The

chain rule based differentiation arithmetic is used to find the Gradient and Hessian. Jacobian is also evaluated

using Gradient arithmetic by computing Gradient for components and is arranged in the matrix form to give the

Jacobian value.

References

Griewank, A.(2000). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM,

Philadelphia.

Griewank, A. (1990). ‘Direct calculation of Newton steps without accumulating Jacobians’, In: Coleman T.F.

and Yuying Li (eds.), Large-Scale Numerical Optimization, SIAM, Philadelphia, Penn, pp. 115-137.

Naumann, U. and Uwe (2008). Optimal Jacobian accumulation is NP-complete, Mathematical Programming,

Vol. 112, No. 2, pp. 427-441.

Moore, R.E. (1962). Interval Arithmetic and Automatic Error Analysis in Digital Computing’, Ph.D. thesis,

Department of Mathematics, Stanford University.

Rall, L.B. (2007), ‘Early Automatic Differentiation: The Ch’in-Horner Algorithm’, Reliable Computing, Springer,

Vol. 13, pp. 303-308.

38 � www.ccsenet.org/jmr

