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Abstract

A mathematical model is formulated and analysed to study the dynamics of a one predator - two prey eco-system

using the logistic equation in which the predator switches between habitats and is being harvested. Constant ef-

fort and Constant yield harvesting functions are applied to the predators. The Constant effort strategy as opposed

constant yield strategy may lead to an additional equilibrium in which the predators are extinct, whereas in the Con-

stant yield stategy the only equilibrium is the coexistence one. In both cases, computer simulations are performed

to study the effects of various parameters on the dynamics of the system. These studies show that depending on

parameter values, a stable equilibrium or a limit cycle orbit is possible with both harvesing types.

Keywords: predator prey model, switching, group defense, harvesting

1. Introduction

When choosing a victim, criminals like predators in nature will seek out the more vulnerable prey. Prey in response

to this threat may organise themselves in groups to protect themselves. This is known as group defense and may

result in the predator switching to a habitat with fewer prey. Similarly, group defense in the form of neighborhood

watches and cooperation may be a strong deterrent to criminals, and result in the movement of criminals from

one area to another. This switching of territory or habitat is known as spatial crime displacement (Eck, 1993).

Concomitant with crime is its nemesis the police, who remove or harvest the criminals from the system. In

mathematical ecology, there are two standard harvesting strategies (Brauer & Castillo-Chavez, 2001) - constant

effort harvesting and constant yield harvesting. In proportional or constant effort harvesting, a fixed proportion

of the predators are removed. In comparison, in constant yield or constant - rate harvesting a constant number of

individuals per unit of time are removed from the system. In this research we examine both strategies of crime

control. Our goals in this paper are to explore the dynamics of such a predator - prey ecosystem, and to determine

how the different harvesting policies affect the existence and stability properties of equilibria and periodic solutions.

Models of this form have been studied (Khan et al.,1998 & 2004; Bhatt et al., 2005; Bhattacharyya & Mukhopad-

hyay, 2006). Khan et al. (2004) and Bhatt et al. (2005) both considered a two-prey one-predator model with

migration, switching and prey group defence. Whilst Bhatt et al. (2005) considered a prey growth rate propor-

tional to the number of prey, Khan et al. (2004) considered logistic growth in the prey. This resulted in a hopf

bifurcation for switching index n = 1 for certain parameter values. Bhattacharyya & Mukhopadhyay (2006) con-

sidered a similar model to (Khan et al., 2004) for the switching indexes n = 1 and n = 2 with and without prey

migration. However, unlike switching models, he modelled migration of the prey population between the habitats

through the process of physical diffusion by spatially extending the models. We consider a general form of this

model as well as constant yield and constant effort harvesting of the predators. Khan et al. (2004) also considered

a bifurcation analysis using the carrying capacity k as the bifurcation parameter, whereas our emphasis is on the

harvesting terms which are analogous to the removal of criminals by the police.

The paper is organized as follows: Section 2 contains a description of the model. The different equilibria and

their stability for constant effort harvesting and constant yield harvesting are analysed in Section 3 and Section 4.
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Section 5 presents the discussion and the conclusion is given in Section 7.

2. The Model

A one-predator two-prey model is considered. The prey V1 and V2 are assumed to grow with a logistic growth

rate since there are limits to growth, such as finite space or food supply and each population competes with itself

for resources. However, the two prey species do not compete against each other. The population dynamics of the

predator y are dependent on the conversion of prey to predator from the foraged prey (α1, α2) and the harvesting

function h(y). The prey may migrate between the two areas with a probability ε1 p12 and ε2 p21. The parameters are

described in Table 1.

Table 1. Parameters used in the switching model

Parameter Description

r1, r2 intrinsic growth rates of prey species inside the two areas

K1,K2 carrying capacities of the prey species inside the two areas

εi Normal migration rates inversion barrier strength in going out of

habitat εi - from one area to the other

pi j the probability of successful transition from the ith to the jth area

εi pi j probability of migrating from the ith to the jth area

m constant such that 0 � m � 1

m = 0⇒ no attacked prey leaves the system

m = 1⇒ all those attacked leave the system

β1, β2 the predator response rate towards the prey - the hunting rates

α1, α2 the rate of conversion of prey to predator

h(y) harvesting function - removal of criminals by police

n switching index

All the parameters are assumed to be nonnegative

We consider the general model:

V
′
1 = r1V1(1 − V1

K1

) + ε2 p21V2 − ε1V1 − mβ1V1y

1 +
(

V1

V2

)n , (1)

V
′
2 = r2V2(1 − V2

K2

) + ε1 p12V1 − ε2V2 − mβ2V2y

1 +
(

V2

V1

)n , (2)

y′ =
α1β1V1y

1 +
(

V1

V2

)n + α2β2V2y

1 +
(

V2

V1

)n − h(y)y, (3)

V1, V2, y � 0. (4)

For constant effort harvesting h(y) = h. Here hy in Equation (3) is the harvesting yield per unit time with h a

measure of the effort expended in harvesting. For n = 1, the system becomes:

V
′
1 = r1V1(1 − V1

K1

) + ε2 p21V2 − ε1V1 − mβ1V1V2y
V1 + V2

, (5)

V
′
2 = r2V2(1 − V2

K2

) + ε1 p12V1 − ε2V2 − mβ2V1V2y
V1 + V2

, (6)

y′ =
α1β1V1V2y

V1 + V2

+
α2β2V1V2y

V1 + V2

− hy. (7)

In the harvesting industry, constant effort is not the only method of harvesting. Another way of harvesting is

removal at the constant rate H per unit time known as constant rate or constant yield harvesting. For n = 1, the

system of Equations (1) to (3) becomes:

V
′
1 = (r1 − ε1) V1 −

r1V2
1

K1

+ ε2 p21V2 − mβ1V1V2y
V1 + V2

,
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V
′
2 = (r2 − ε2) V2 −

r2V2
2

K2

+ ε1 p12V1 − mβ2V1V2y
V1 + V2

,

y′ =
yV1V2

V1 + V2

(α1β1 + α2β2) − H.

2.1 The Switching Functions

The functions
β1V1y

1 +
(

V1

V2

)n and
β2V2y

1 +
(

V2

V1

)n have the characteristic property of the switching mechanism. When one

of the prey population becomes large, the predator switches the predation to the other species. Thus switching

behaviour occurs where the predators attack the habitat in which there are fewer preys.

k1 =
mβ1V1y

1 +
(

V1

V2

)n , k2 =
mβ2V2y

1 +
(

V2

V1

)n .

When V1 � V2 :

k1 =
mβ1V1y

1 +
(

V1

V2

)n → 0, k2 =
mβ2V2y

1 +
(

V2

V1

)n → mβ2V2y.

When V2 � V1 :

k1 =
mβ1V1y

1 +
(

V1

V2

)n → mβ1V1y, k2 =
mβ2V2y

1 +
(

V2

V1

)n → 0.

3. Constant Effort Harvesting h(y) = h

3.1 Boundedness

The Boundedness of a system implies that the system is biologically well behaved. Boundedness may be inter-

preted as a natural restriction to growth due to limited resources. Let

ϕ = V1 + V2 + y, R = max(r1, r2), r = min(r1, r2), K = max(K1,K2).

and let 0 < η < h be a constant. Also assume that m > αi for i = 1, 2.

Adding Equation (5), Equation (6) and Equation (7):

ϕ
′
+ ηϕ = V1(r1 − ε1 + ε1 p12 + η) −

r1V2
1

K1

+ V2(r2 − ε2 + ε2 p21)

− r2V2
2

K2

− V1V2y
V1 + V2

[
β1 (m − α1) + β2 (m − α2)

] − (h − η) y

< V1(r1 − ε1 + ε1 p12 + η) + V2(r2 − ε2 + ε2 p21 + η) −
r1V2

1

K1

− r2V2
2

K2

.

Completing the square of the right hand side of the inequality and letting

τ1 = r1 − ε1 + ε1 p12 + η

and

τ2 = r2 − ε2 + ε1 p21 + η

leads to:

ϕ
′
+ ηϕ � M,

where

M =
K1

4r1

τ2
1 +

K2

4r2

τ2
2

is a positive constant which is written in terms of the parameters. This results in a differential inequality that can

be solved leading to:

0 < ϕ � M
η

(
1 − e−ηt

)
+ M0e−ηt,
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where M0 is the value of M at t = 0. As t → ∞, 0 < ϕ � M
η
. Hence all trajectories are bounded.

3.2 Equilibrium Points

These are obtained by setting Equation (5), Equation (6) and Equation (7) equal to zero, and solving the resultant

algebraic equations. Three possible cases - origin, boundary and interior equilibria - are found. We have:

(r1 − ε1) V1 −
r1V2

1

K1

+ ε2 p21V2 − mβ1V1V2y
V1 + V2

= 0, (8)

(r2 − ε2) V2 −
r2V2

2

K2

+ ε1 p12V1 − mβ2V1V2y
V1 + V2

= 0, (9)

(
α1β1V1V2

V1 + V2

+
α2β2V1V2

V1 + V2

− h
)

y = 0. (10)

From Equation (10), we see that either

y = 0,

or
α1β1V1V2

V1 + V2

+
α2β2V1V2

V1 + V2

− h = 0. (11)

We study these two cases below.

3.2.1 Case 1: The Origin E0 and the Boundary Equilibrium E1

Substituting y = 0 in Equation (8) and Equation (9), we get

r1V1(1 − V1

K1

) + ε2 p21V2 − ε1V1 = 0, (12)

r2V2(1 − V2

K2

) + ε1 p12V1 − ε2V2 = 0. (13)

One solution is at the origin E0 when

V1 = V2 = y = 0.

Using Equation (12), another equilibrium value E1 may be found at

V2 = V1

(
r1

ε2 p21K1

V1 − r1 − ε1
ε2 p21

)
, (14)

where

V1 >
(r1 − ε1) K1

r1

.

Substituting for V2 in Equation (13) leads to an equation of the form:

b1V3
1 + b2V2

1 + b3V1 + +b4 = 0,

where

b1 =
r2

1r2

ε2
2

p2
21

K2
1
K2

> 0,

b2 = −2r1r2 (r1 − ε1)

ε2
2

p2
21

K1K2

< 0,

b3 =
(r1 − ε1)2 r2

ε2
2

p2
21

K2

− (r2 − ε2) r1

ε2 p21K1

,

b4 =
(r2 − ε2) (r1 − ε1)

ε2 p21

− ε1 p12.
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Descartes’ Rule of Signs indicates that a unique positive solution occurs when

(r1 − ε1)2 r2

ε2
2

p2
21

K2

<
(r2 − ε2) r1

ε2 p21K1

and
(r2 − ε2) (r1 − ε1)

ε2 p21

< ε1 p12.

Using Equation (14), V2 can be calculated.

3.2.2 Case 2: The Interior Coexistence Equilibrium E2

Solving Equation (11) for V2 :

V2 =
hV1

(α1β1 + α2β2) V1 − h
,

where

V1 >
h

α1β1 + α2β2

.

To simplify, let

φh = α1β1 + α2β2

to get

V2 =
V1

φV1 − 1
.

Substituting in Equation(8) and using Equation(11) , we get

y =
(
(r1 − ε1) − r1V1

K1

+
ε2 p21

φV1 − 1

)
φV1

mβ1

.

Substituting for y and V2 in Equation (9) leads to an equation of the form:

a1V3
1 + a2V2

1 + a3V1 + a4 = 0,

where

a1 =
β2r1φ

2

K1β1

> 0,

a2 = φ
2ε1 p12 − 2r1β2

K1β1

φ − β2

β1

φ2 (r1 − ε1) ,

a3 =
β2r1

β1K1

+ φ (r2 − ε2) − 2φε1 p12 +
2φβ2

β1

(r1 − ε1) − φ
β1

β2ε2 p21 − r2

K2

,

a4 = ε1 p12 − (r2 − ε2) − β2

β1

(r1 − ε1 − ε2 p21) .

This can be solved for V1, and hence for y and V2.

3.3 Stability Analysis

We are interested in the asymptotic stability of the steady states of system. We linearise the system about its

steady states and determine the associated characteristic equation. We use the following two conditions in order to

determine stability of the different equilibria. For the eigenvalues of a 2 × 2 matrix to have negative real part, its

determinant must be positive and its trace must be negative. For a 3 × 3 matrix, the Routh-Hurwitz conditions are

used.

The Jacobian matrix J is found to be⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r1 − ε1) − 2V1r1

K1

− mβ1yV2
2

(V1 + V2)2
ε2 p21 −

mβ1yV2
1

(V1 + V2)2
−mβ1V1V2

V1 + V2

ε1 p12 −
mβ2yV2

2

(V1 + V2)2
(r2 − ε2) − 2V2r2

K2

− mβ2yV2
1

(V1 + V2)2
−mβ2V1V2

V1 + V2

α1β1yV2
2

(V1 + V2)2
+
α2β2yV2

2

(V1 + V2)2

α1β1yV2
1

(V1 + V2)2
+
α2β2yV2

1

(V1 + V2)2

α1β1V1V2

V1 + V2

+
α2β2V1V2

V1 + V2

− h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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3.3.1 Case E0 : V1 = V2 = y = 0

Here, Jacobian J reduces to ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1 − ε1 ε2 p21 0

ε1 p12 r2 − ε2 0

0 0 −h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
with eigenvalues −h, and the eigenvalues of

[
(r1 − ε1) ε2 p21

ε1 p12 (r2 − ε2)

]
.

The characteristic polynomial of this is

X2 − τX + det = 0

with trace:

τ = (r1 − ε1) + (r2 − ε2) > 0

and determinant:

det = (r1 − ε1) (r2 − ε2) − ε1ε2 p12 p21.

Hence there will be at least one positive eigenvalue. Thus this case is always unstable.

3.3.2 Case E1 : y = 0, V1 � 0, V2 � 0

Here, the Jacobian J reduces to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r1 − ε1) − 2V1r1

K1

ε2 p21 −mβ1V1V2

V1 + V2

ε1 p12 (r2 − ε2) − 2V2r2

K2

−mβ2V1V2

V1 + V2

0 0 V1V2

α1β1 + α2β2

V1 + V2

− h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The eigenvalues are found to be

V1V2

α1β1 + α2β2

V1 + V2

− h,

and the eigenvalues of ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1 − 2V1r1

K1

− ε1 ε2 p21

ε1 p12 r2 − 2V2r2

K2

− ε2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Using Equation (12) and Equation (13) and substituting in J, we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−ε2 p21

V2

V1

− V1r1

K1

ε2 p21

ε1 p12 −ε1 p12

V1

V2

− V2r2

K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The characteristic polynomial here is

X2 − τX + det = 0

with trace

τ = −ε2 p21

V2

V1

− V1r1

K1

− ε1 p12

V1

V2

− V2r2

K2

< 0

and determinant

det =

(
ε2 p21

V2

V1

+
V1r1

K1

) (
ε1 p12

V1

V2

+
V2r2

K2

)
− ε1ε2 p12 p21 > 0.

This means that there are two negative eigenvalues. However, the stability depends on whether

V1V2

α1β1 + α2β2

V1 + V2

< h.
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3.3.3 Case E2 : V2 =
V1

φV1 − 1
, y =

(
(r1 − ε1) − r1V1

K1

+
ε2 p21

φV1 − 1

)
φV1

mβ1

When
α1β1V1V2

V1 + V2

+
α2β2V1V2

V1 + V2

− h(y) = 0,

the Jacobian J reduces to:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r1 − ε1) − 2V1r1

K1

− mβ1yV2
2

(V1 + V2)2
ε2 p21 −

mβ1yV2
1

(V1 + V2)2
−mβ1

φ

ε1 p12 −
mβ2yV2

2

(V1 + V2)2
(r2 − ε2) − 2V2r2

K2

− mβ2yV2
1

(V1 + V2)2
−mβ2

φ
hy
φV2

1

hy
φV2

2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From Equation (8), we can show that

ε2 p21 −
mβ1yV2

1

(V1 + V2)2
= −V1

V2

(
q − r1V1

K1

)
,

where

q = (r1 − ε1) − myβ1V2
2

(V1 + V2)2
.

Similarly using Equation (9), we have

ε1 p12 −
mβ2yV2

2

(V1 + V2)2
= −V2

V1

(
s − r2V2

K2

)
,

where

s = (r2 − ε2) − myβ2V2
1

(V1 + V2)2
.

Substituting these expressions in J, and letting

L = (φV1 − 1) > 0,

M = q − 2V1r1

K1

= (r1 − ε1) − 2V1r1

K1

− mβ1y
φ2V2

1

,

N = s − 2V2r2

K2

= (r2 − ε2) − 2V2r2

K2

− mβ2y (φV1 − 1)2

φ2V2
1

,

Q =
hy
φV2

1

> 0,

we get

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M −L
(
M +

r1V1

K1

)
−mβ1

φ

− 1

L
(N +

r2V1

LK2

) N −mβ2

φ
Q QL2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding characteristic polynomial has the form:

X3 + b1X2 + b2X + b3 = 0, (15)

where

b1 = (−M − N) =
2

K1

V1r1 − s − q +
2

K2

V2r2,

b2 = MN −
(
N +

1

LK2

V1r2

) (
M +

1

K1

V1r1

)
+ Q

m
φ
β1 + L2Q

m
φ
β2,
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b3 =

⎛⎜⎜⎜⎜⎜⎝ Q
(
M m
φ
β1 − L m

φ
β2

(
M + 1

K1
V1r1

))
−
(
Q m
φ
β1 + L2Q m

φ
β2

)
(M + N)

+L2Q
(
N m
φ
β2 − 1

L
m
φ
β1

(
N + 1

LK2
V1r2

))
⎞⎟⎟⎟⎟⎟⎠ .

Using the Routh-Hurwitz criteria, the eigenvalues will have negative real parts if

b1 > 0, b3 > 0, b1b2 − b3 > 0

for stability. Now if b1 > 0, then we have

2

K1

V1r1 +
2

K2

V2r2 > s + q.

Since we know that

s + q = −ym
φ2

⎛⎜⎜⎜⎜⎝ β1

V2
2

+
β2

V2
1

⎞⎟⎟⎟⎟⎠ + (r1 − ε1) + (r2 − ε2) ,

it follows that if b1 > 0, we get

r1

(
2

K1

V1 − 1

)
+ r2

(
2

K2

V2 − 1

)
+ my

β1V2
2 + β2V2

1

V2
1
V2

2

+ ε1 + ε2 > 0,

where

b2 =
1

LφK1K2

(
Qmβ2K1K2L3 − NφK2r1LV1 + Qmβ1K1K2L − φr1r2V2

1 − MφK1r2V1

)
,

b3 = − Qm
φK1K2

(β1K1V1r2 + Lβ2K2V1r1 + K1K2 (L + 1) (Nβ1 + LMβ2)) .

Given that
Qm
φK1K2

> 0,when b3 > 0 we have

β1K1V1r2 + Lβ2K2V1r1 + K1K2 (L + 1) (Nβ1 + LMβ2) < 0,

and

b1b2 − b3 =
1

φK1K2L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
LQmK1K2 (β1 − Lβ2) (−M + LN)

+φV1 (M + N) (MK1r2 + V1r1r2 + LNK2r1)

+LQmV1 (β1K1r2 + Lβ2K2r1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

For b1b2 − b3 > 0 since
1

φK1K2L
> 0, it follows that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
LQmK1K2 (β1 − Lβ2) (LN − M)

+φV1 (M + N) (MK1r2 + V1r1r2 + LNK2r1)

+LQmV1 (β1K1r2 + Lβ2K2r1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ > 0.

3.4 Numerical Analysis

We consider numerical simulations using the three datasets in Table 2, chosen so as to reflect different scenarios

associated with crime. The model is run for three datasets - a base Dataset 1- and two other Datasets (Dataset 2

and Dataset 3), one representing a decrease in the conversion rate of the prey, and the other representing r j < ε j

for j = 1, 2. For the base dataset, there was a decrease in both prey populations with the criminals or predators

eventually outnumbering both prey populations. Decreasing the rate of incoming predators as in Dataset 2, leads to

an increase in prey populations and a smaller predator population. If the emigration rate is higher than the growth

rate of the prey - Dataset 3, this leads to few people remaining in the prey habitats or villages. These equilibrium

values are as given in Table 3. Figures 1-3 show the time series of the populations for the different datasets, which

all tend to a stable equilibrium value as shown by the eigenvalues.
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Table 2. Datasets 1-3

Parameter Dataset 1 Dataset 2 Dataset 3

r1 0.75 0.75 0.2
r2 0.7 0.7 0.4
K1 100 100 100

K2 150 150 150

ε1 0.7 0.7 0.7
ε2 0.65 0.65 0.65

p12 0.9 0.9 0.9
p21 0.9 0.9 0.9
m 0.5 0.5 0.5
α1 0.5 0.009 0.5
α2 0.4 0.006 0.4
β1 0.3 0.3 0.3
β2 0.5 0.5 0.5
h 0.2 0.2 0.2

Table 3. Equilibrium values for Datasets 1-3

Equilibrium Values Dataset 1 Dataset 2 Dataset 3

V1 (Prey) 1.5111 67.1733 1.0499

V2 (Prey) 0.9194 73.4575 1.2539

y (Predator) 6.9562 2.3726 2.4076

eigenvalue 1 −0.6639 −1.4198 −0.9923

eigenvalue 2 −0.0444 + 0.3333i, −0.2029 + 0.0794i −0.0003 + 0.2209i
eigenvalue 3 −0.0444 − 0.3333i −0.2029 − 0.0794i −0.0003 − 0.2209i
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Figure 1. Timeseries for Dataset 1
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Figure 2. Timeseries for Dataset 2
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Figure 3. Timeseries for Dataset 3

3.5 Bifurcation Analysis

The main objective in this section is to show numerically that all the three species can coexist either in the form

of oscillatory solution (stable limit cycle) or in the form of a steady state solution (stable focus or node) for some

range of parameters.

3.5.1 Dataset 1

Hopf bifurcations were found on varying r1, r2, ε1 and ε2. The bifurcation points are given in Table 4.

Table 4. Hopf Bifurcation Points for Dataset 1

Parameter Hopf Bifurcation

r1 0.276759 Hopf -1st lyapunov coefficient > 0 (subcritical)

0.511503 Hopf - 1st lyapunov coefficient < 0 (supercritical)

r2 1.031463 Hopf - 1st lyapunov coefficient < 0 (supercritical)

1.287846 Hopf - 1st lyapunov coefficient < 0 (supercritical)

ε1 0.908070 Hopf -1st lyapunov coefficient > 0 (subcritical)

0.982621 Hopf - 1st lyapunov coefficient < 0 (supercritical)

ε2 0.419703 Hopf -1st lyapunov coefficient > 0 (subcritical)

0.484760 Hopf - 1st lyapunov coefficient < 0 (supercritical)
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3.5.2 Dataset 2

Transcritical bifurcation are found as shown in Table 5. At the transcritical points, the equilibrium shifts from the

coexistence equilibrium to the boundary one. There are no Hopf bifurcations.

Table 5. Bifurcation Points for Dataset 2

Parameter BP Region of coexistence

ε1 0.082042 > BP

ε2 0.082991 > BP

β1 0.068311 > BP

β2 0.152466 > BP

h 0.315371 < BP

p12 0.322527 > BP

p21 0.349059 > BP

3.5.3 Dataset 3

Hopf bifurcations are found on varying α1, α2, β1 and β2 as shown in Table 6.

Table 6. Bifurcation points for Dataset 3

Parameter Hopf Bifurcation

α1 0.276759 Hopf -1st lyapunov coefficient > 0 (subcritical)

α2 0.530483 Hopf - 1st lyapunov coefficient < 0 (supercritical)

β1 0.140039 Hopf -1st lyapunov coefficient > 0 (subcritical)

0.272108 Hopf - 1st lyapunov coefficient < 0 (supercritical)

β2 0.529815 Hopf -1st lyapunov coefficient > 0 (subcritical)

4. Constant Rate or Constant Yield Harvesting: h(y) = H
y

The system is now analysed for n = 1 and h(y) =
H
y

. The system becomes:

V
′
1 = (r1 − ε1) V1 −

r1V2
1

K1

+ ε2 p21V2 − mβ1V1V2y
V1 + V2

, (16)

V
′
2 = (r2 − ε2) V2 −

r2V2
2

K2

+ ε1 p12V1 − mβ2V1V2y
V1 + V2

, (17)

y′ =
yV1V2

V1 + V2

(α1β1 + α2β2) − H. (18)

4.1 Equilibrium Points and Stability

These are obtained by setting the system equations equal to zero, and solving the resultant algebraic equations.

Unlike the previous case, there is only one equilibrium and no equilibrium at the origin or boundary equilibrium.

We consider

(r1 − ε1) V1 −
r1V2

1

K1

+ ε2 p21V2 − mβ1V1V2y
V1 + V2

= 0, (19)

(r2 − ε2) V2 −
r2V2

2

K2

+ ε1 p12V1 − mβ2V1V2y
V1 + V2

= 0, (20)

(
α1β1V1V2

V1 + V2

+
α2β2V1V2

V1 + V2

)
y = H. (21)

From Equation (21),

y =
H (V1 + V2)

V1V2 (α1β1 + α2β2)
=

(V1 + V2)

φV1V2

> 0, (22)
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where
1

φ
=

H
α1β1 + α2β2

.

Substituting for y in Equation (19) we can get an expression for V2 :

V2 =
1

ε2 p21

⎛⎜⎜⎜⎜⎝ r1V2
1

K1

− (r1 − ε1) V1 + k1

⎞⎟⎟⎟⎟⎠ , (23)

where
mβ1

φ
= k1.When V2 > 0,

V2
1 −

(r1 − ε1) K1

r1

V1 + k1

K1

r1

> 0.

which means that either

(r1 − ε1) K1

r1

+

⎛⎜⎜⎜⎜⎝ (r1 − ε1)2 K2
1

r2
1

− 4k1

K1

r1

⎞⎟⎟⎟⎟⎠
1
2

> 0 ,

or

(r1 − ε1) K1

r1

−
⎛⎜⎜⎜⎜⎝ (r1 − ε1)2 K2

1

r2
1

− 4k1

K1

r1

⎞⎟⎟⎟⎟⎠
1
2

< 0.

Using Equations (20) and (23), we obtain an equation of the form

c1V4
1 + c2V3

1 + c3V2
1 + c4V1 + c5 = 0

where:

c1 =
1

ε2
2
K2

1
K2

1

p2
21

(
r2

1r2

)
> 0,

c2 =
2

ε2
2
K1K2

r1

r2

p2
21

(ε1 − r1) ,

c3 =
1

ε2
2
K2

r2

p2
21

(
(ε1 − r1)2 +

2

K1

k1r1

)
+

1

ε2K1

r1

p21

(ε2 − r2) ,

c4 = −ε1 p12 +
1

ε2 p21

(ε1 − r1) (ε2 − r2) +
2

ε2
2
K2

k1

r2

p2
21

(ε1 − r1) ,

c5 = k2 +
1

ε2

k1

p21

(ε2 − r2) +
1

ε2
2
K2

k2
1

r2

p2
21

.

Since this is a quartic equation there may be four, two or zero real solutions. The Jacobian matrix J is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r1 − ε1) − 2V1r1

K1

− mβ1yV2
2

(V1 + V2)2
ε2 p21 −

mβ1yV2
1

(V1 + V2)2
−mβ1V1V2

V1 + V2

ε1 p12 −
mβ2yV2

2

(V1 + V2)2
(r2 − ε2) − 2V2r2

K2

− mβ2yV2
1

(V1 + V2)2
−mβ2V1V2

V1 + V2

yV2
2

α1β1 + α2β2

(V1 + V2)2
yV2

1

α1β1 + α2β2

(V1 + V2)2

H
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This may be further simplified using Equation (22) and by letting

s = (r2 − ε2) − mβ2yV2
1

(V1 + V2)2
, q = (r1 − ε1) − mβ1yV2

2

(V1 + V2)2
,

to obtain

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q − 2V1r1

K1

−V1

V2

(
q − r1V1

K1

)
−mβ1

φy

−V2

V1

(s − r2V2

K2

) s − 2V2r2

K2

−mβ2

φy
yV2

2
φH

(V1+V2)2 yV2
1

φH
(V1+V2)2

H
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The characteristic polynomial has the form:

X3 + b1X2 + b2X + b3 = 0, (24)

where

b1 =
2

K1

V1r1 − s − H
y
− q +

2

K2

V2r2,

b2 = − 1

yK1K2

(
2HK2V1r1 − HsK1K2 − HqK1K2 + 2HK1V2r2 − 3yV1V2r1r2

+qyK1V2r2 + syK2V1r1

)
+ Hm

β1V2
2 + β2V2

1

(V1 + V2)2
,

b3 =
1

yK1K2

(HV2r2 (qK1 − V1r1) + HV1r1 (sK2 − V2r2) − HV1V2r1r2)

+
Hm

K1K2 (V1 + V2)2

(
β1K1V3

2
r2 + β2K2V3

1
r1 + β1K1V2 (V1 + V2) (V2r2 − sK2)

+β2K2V1 (V1 + V2) (V1r1 − qK1)

)
.

Using the Routh-Hurwitz criteria, the eigenvalues will have negative real parts (thus implying stability) when

b1 > 0, b3 > 0, b1b2 − b3 > 0.

4.2 Numerical Analysis

Using the values in the previous models and keeping a constant harvest rate 0.2, the only stable equilibrium values

exist for Dataset 2 (see Table 7 and Figure 4). This results in a greater number of prey in V2 than in V1.

Table 7. Equilibrium values for constant yield harvesting

Dataset 1 Dataset 1 Dataset 2 Dataset 3

V1 0.22 100.91 13.9005 0.43

V2 0.128 122.07 10.2935 0.5147

y 7.05 0.010 5.9366 2.4392

eigenvalue 1 −0.7386 −1.9118 −0.7653 −0.9876

eigenvalue 2 0.0080 + 0.1183i −0.6412 −0.0283 + 0.1229i 0.0401 + 0.1359i
eigenvalue 3 0.0080 − 0.1183i 19.3341 −0.0283 − 0.1229i 0.0401 − 0.1359i
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Figure 4. Timeseries for Dataset 2; Constant yield harvesting
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4.3 Bifurcation Diagrams

Using these values, the bifurcation points are found - Table 8. Hopf bifurcations in α1 and α2 occur for small values

of these parameters - otherwise there are no stable equilibrium points. For p/q/h, the bifurcation points allow for

the determination of Limit Points, beyond which there exists no equilibrium points.

Table 8. Bifurcation points for Dataset 2

Parameter Bifurcation Point Region of coexistence

α1 0.083418 Hopf -1st lyapunov coefficient > 0 (subcritical)

α2 0.050651 Hopf -1st lyapunov coefficient > 0 (subcritical)

p 0.372478 > Branch Point

q 0.301398 > Branch Point

H 0.5014 < Branch Point

5. Discussion

Like their animal counterparts, criminal predators often prey on the weak and vulnerable (Cooper et al., 2007).

In the animal kingdom, one of the factors influencing group behaviour is the threat from predation (Heg et al.,

2004)-there is safety in numbers. Group defense occurs when the prey work together to defend themselves against

predators. In this model, we assume that criminals acting as predators seek out areas with smaller populations to

prey upon. Thus there is a reduced hunting rate on the larger population. This may result in a strain on available

resources in that population and may result in migration to the other area. Also, the other population may rush

to its defense. This will then cause numbers there to increase and the predator switches predation to the smaller

population. Thus switching behaviour occurs and the predator attacks the habitat in which there are fewer prey.

Our model differs in two ways from standard predator - prey models. Firstly the functional response includes a

term 0 � m � 1 that describes whether people or prey will leave the system after being attacked by criminals.

m = 1 corresponds to the situation in nature where prey are killed. In predator prey models, the numerical response

describing the growth rate of the predator is usually proportional to the number of prey attacked. We use a similar

numerical response since an increase in criminal activity in an area may lead to the area being perceived as an easy

target and may result in a corresponding influx of criminals. Though this may result in an increase in security,

when the temptation is great, there may be perpetrator displacement (Barr & Pease, 1990) and an influx of new

criminals. The model also includes a harvesting function h (y) , where the criminals are removed by the police.

The terms ε1 p12 and ε2 p21 represent the migration rate out of the area. ε1 p12 and ε2 p21 represent the probability of

migrating to the other area. It is not unusual for people to leave an area when they feel threatened and migrate to a

perceived safer area. In predator prey models, ε1 p12 and ε2 p21 indicates migration rates/inversion barrier strength

in going from one habitat to the other where the probability of survival during a change of habitat may be less than

one.

In constant effort harvesting, there are three equilibrium values - the origin E0, the boundary equilibrium E1 in

which there are no criminals and the coexistence equilibrium E2. Of these, E0 is always unstable and there are

conditions on the stability of the other two equilibria. This means that the prey population will never be driven to

extinction - though the predators may be reduced to zero.

For Dataset 1, Hopf bifurcations are found on varying r1, r2, ε1 and ε2. This corresponds to the growth and

the migration rates of the population. The Hopf bifurcation means for that range, the system exhibits unstable

behavior and undergoes a transition from stationary to oscillatory behavior, and the prey populations will oscillate

alternately. The system will become stable when the prey in one habitat outnumbers that in the other habitat. For

Dataset 2, since the predator growth rate is small, both prey populations grow. The bifurcation points give the

values at which a switch to the boundary equilibrium occurs. For a harvesting proportion, h < 0.315371, it is

possible to eliminate all the predators from the system. In Dataset 3, where the prey migration rate is greater than

the growth rate, hopf bifurcations are found on varying α1, α2, β1 and β2. These are related to the interaction

between prey and predator. Both large α2 and large β2 are unstable for a wide range of values α2, β2 > 0.53. So an

increase in the hunting or conversion rates may lead to oscillations in the predator and prey populations.

This second section analysed the same model as before, but used a constant harvesting function H. This form

is used to describe the removal of prey when there is a quota (Brauer & Castillo-Chavez, 2001). The numerical
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simulations showed that only Dataset 2 possessed stable equilibrium values. From Figure 4, we note that the

populations exhibit oscillatory behavior for a certain time, and then they settle down at their equilibrium level.

Unlike constant effort harvesting, with constant rate or constant yield harvesting, it is not possible to reduce the

number of predators to extinction since the only equilibrium is only the coexistence equilibrium. In both harvesting

types, it is not possible for all the populations to go to extinction - the extinction equilibrium is also unstable in

constant effort harvesting. Considering Dataset 2, a bifurcation analysis showed bifurcations for α1/α2/p/q/h.

Comparing this with the constant effort harvesting function, a Hopf bifurcation occurs for α1 and α2. Assuming

that the only parameter over which any control can be exerted is the harvesting one, then values beyond H = 0.5014

will lead to unstable equilibrium values for constant rate harvesting and to the no-criminal equilibrium for the

constant effort harvesting function h = 0.315371. In the case of criminals attacking a population, the case of

no-criminals is desirable. Hence changing the parameters to these values may be used to control the predators if a

constant effort harvesting function is used.

6. Conclusion

Crime displacement, perpetrator displacement and group defense are important considerations in the crime fighting

initiative. Displacement, rather than prevention, of crime is an unfortunate, unintended consequence of crime

control (Barr & Pease, 1990). We use an approach borrowed from mathematical ecology - predator prey systems

with group defense, switching and harvesting. A harvest rate proportional to the population size (constant effort) or

a constant harvest rate (constant yield) is studied to determine the best harvesting strategies of the predators. The

Constant effort strategy may result in an additional equilibrium in which the predators or criminals are extinct. This

equilibrium is not present in the Constant yield harvesting strategy where the only equilibrium is the coexistence

one. Also, depending on parameter values a stable equilibrium or a limit cycle orbit is possible with both harvesting

types.
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