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Abstract

Algebraic immunity and balancedness have been widely investigated as important cryptographic properties. Boolean
functions with high algebraic immunity can resist algebraic attacks. So, Boolean functions which achieve maxi-
mum algebraic immunity and balancedness are our research objects. In this paper, we present a method to study
the algebraic immunity of balanced Boolean functions on 4-variable from the rank of matrix, and indicate that all
4-variable balanced Boolean functions with algebraic degree not less than 2 have maximum algebraic immunity.
Finally, we introduce two classes balanced functions on even variables which don’t achieve maximum algebraic
immunity.
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1. Introduction

Boolean functions are the core components of stream ciphers and block ciphers. Stream ciphers form an important
class of symmetric-key encryption schemes, mainly designed for applications that require either low cost hardware
implementation or an extremely high encryption rate. The most well studied models of stream ciphers are based
on linear feedback shift registers (LFSR), namely the nonlinear combiners and the nonlinear filters, that consist of
one or more LFSRs combined with a nonlinear Boolean function. Different criteria have been proposed for both
the selection of the LFSRs and the nonlinear Boolean function, in order to resist attacks like the correlation attacks,
time/memory/data trade-offs, and distinguishing attacks. Generally speaking, before 2003, cryptographic Boolean
functions were usually required to be balanced, have high algebraic degree and high nonlinearity. Since 2003, the
algebraic attacks proposed by Courtois and Meier have received a lot of attention in cryptanalysis, the main idea
of which is to solve a system of low degree multivariate equations with unknown input keys. With this method,
some cryptographic algorithms have been successfully attacked, such as Toyocrypt, LILI-128, SFINKS and so
on. A new cryptographic property for designing Boolean functions to resist this kind of attacks, called algebraic
immunity (Al). the algebraic immunity of an n-variable Boolean function is upper bounded by [’5’-‘ Obviously, a
Boolean function with maximum algebraic immunity is better to resist the algebraic attack.

At present, two classes Boolean functions possess maximum algebraic immunity. One class is Boolean function
on even number of variables with high algebraic degree(approaching n), but not possessing balancedness. Another
is symmetric Boolean functions. We wish that the Boolean functions have both maximum algebraic immunity and
balancedness.

In this paper, we discuss the algebraic immunity of 4-variable balanced Boolean functions. The conclusion is that
all 4-variable balanced Boolean functions which algebraic degree > 2 achieve maximum algebraic immunity. We
wish that the method of matrix rank can provide an idea for the study of n-variable Boolean functions. At last, we
indicate that two classes typical balanced Boolean functions can not achieve maximum algebraic immunity though
definition.

2. Preliminaries

Let F> = {0, 1} be the binary field, F, be the n— dimensional vector space over F». A mapping from F7 into F is
called a Boolean function in n variables, denoted by f(x;,x2,- -+ ,x,), or f(x) in brief. Let B, be the set of all the
n— variable Boolean functions. One of the representations of a Boolean function f(x, x5, -+ ,x,) is by its truth
table, i.e., the binary sequence f = (v, v, -+ ,van), where the bits v;’s are the values of f(x), when x runs through
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the vectors by = (0,---,0),bp = (0,---,0,1),--- ,bon = (1,---, 1, 1) of FJ in lexicographical order. The algebraic
degree of f(x), denoted by deg(f), is defined to be the maximum degree appearing in the algebraic normal form
(ANF).

The Hamming weight of a Boolean function f € B, is the number of nonzero coordinates in its truth table, denoted
by wt(f). The support of f(x) is defined as the set supp(f) = {x € Filf(x) = 1}. We say that a Boolean function f
is balanced if its truth table contains an equal number of 1’s and 0’s, that is , if its Hamming wight equals 2"~!.

A nonzero n-variable Boolean function g € B, is called an annihilator of f if f =+ g = 0, we denote the set of all
annihilators of f by An(f) = {g € B,|fg = 0} . The algebraic immunity (AI) of f is defined as AI(f) = min{deg(g)
|0 #geAn(f) U (An(f + 1)) } . It is known that for any n-variable function , the maximum possible A7 is [g] If

Al(f) = [%W , we say it has the maximum algebraic immunity.

From f(1 + f) = f+ f> = 0, it holds , AI(f) < deg(f).for every 0 # g € B,. Thus, the algebraic degree
of Boolean functions which achieving maximum algebraic immunity must > [%] Among the set of 4-variable
balanced Boolean functions, the Boolean functions which algebraic degree > 2 will achieve maximum algebraic
immunity. As shown in previous researches, whether the 4-variable balanced Boolean functions achieve maximum

algebraic immunity is closely related to the rank of matrix B , where

1 1 1 1 1 1 1 1
ay azg asg ay) asj (23] any agy
an an asn asg asn ae2 an asgn
aps ans ass aq3 ass ae3 ars ass
ag a4 as4 Qg4 As4 Aes a4 ags

B=| anan anaxn azaxn anayn asias;  deidey d71d72  dg1dsn

aypaiz  dxdp3  Azpdsz  d41d43  dsidsz  delde3 d7idyz dg1ags
ajdl4  azidp4  Azdsz4 Q41044 As)ds4 deldes  d71074  Ag1Ag4
appd1z  dxdz3  A3pdszsz  A4pd43  dspds3  depde3  d72d73  dgrdsgs
agpdi4  Aaxpdr4  a3a34  d4p044  A52054  de20es  A72074  Ag2A34
ap3di4  axdpg  A33dz4  d43044  As53ds4  de3les  A73074 Ag3a34

is composed of arbitrarily 8 binary vectors a; = (ai1,ap, a3, ais) i = 1,2,---,8. When the rank of B is 8, the
Boolean functions whose support set is «; = (a;1, a5, a;3, aw),i=1,2,---,81is optimum algebraic immunity.

We denote y;, i = 1,2, 3,4 the 2,3,4,5 row of matrix B, respectively. According to the linear algebra, we can obtain
the following result.

Proposition 1 The matrix B has same rank,when wt(y;) = iand 8 —i,i=0,1,2,3,j=1,2,3,4.

Since the two matrices of wt(y;) = i and 8 — i are interchangeable with primary transformation, we have that the
rank of the two matrices is the same.

3. Main Results

In this section, we provide the judgement of 4-variable balanced Boolean function with maximum Al. First, we
give a conclusion about the linear correlation of vectors over the binary field.

Lemma 1 Let ay, @y, - - - , @, be a set of linearly independent vectors over the binary fields, the vector 8 is different
from ay,ay,- -, and B is linearly independent with arbitrarily n — 1 vectors in ay,as, -+ ,a,. Then, the
necessary and sufficient condition for that ay,ay, - -+ , @y, B are linearly dependent is ay + ar + -+ -+ a, + B =0.
Proof. According to the definition of linear dependent ,a, @y, - ,a,,8 are linearly dependent if and only if
kiay + khas + -+ - + kya, + bB = 0, where ki, ky, - -+, k,, b € {0, 1} not all 0.

If b =0, thenk; =k, =--- =k, = 0, which contradicts with above facts. So, b # 0.

Suppose that b # 0, ki, k,,--- ,k, are O at least one. Without loss of generality, let k; = 0, k, = --- =k, = 1,
then the corresponding vectors a»,--- ,a,, B are linear dependent, contradicts with the known condition. So,
ki =ky=---=k,=1.Thatis,a; +az+---+a, +B=0.

From lemma 1 and primary transformation of matrix, we have that

Lemma 2 The rank of matrix B < 7, if wt(y;) = 0 or 8 forany i = 1,2,3,4.
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Proof. We only prove wt(y;) = 0, and the proof of other cases is similar.

If wt(y) = 0, then
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Obviously, the rank of matrix B < 7 since B has 4 zero rows.
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From proposition 1, matrix of wt(y;) = 8 and matrix of wt(y;) = 0 have the same rank.

Lemma 3 The rank of matrix B is 8, when wt(y;) = 1,2,3 or5,6,7 foranyi = 1,2,3,4.

Proof. From the proposition 1, without loss of generality, we will discuss the case of wt(y;) = 1,2, 3, respectively.

Case 1. The rank of matrix B is 8, when wt(y;) = 1.

When vy, =1,
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From lemma 1, it is clear that the sum of column vectors for matrix is not equal to 0. Thus, the rank of matrix B is

8.

Case 2. The rank of matrix B is 8, when wt(y;) = 2.
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When y; = 2,
1 1 1 1 1 1 1
0 0 0 0 0 0 1 1
ap a asp ag asp ae arn asp
aps ans ass aq3 ass ae3 ars ass
aig azq aszq agq asq Ae4 arq asgq
B= aplapp  dzidzy  dszldszy  d41d4y  dsidsy  delde2  d71d72  dgldsgy

apaiz  axdz Az dasz  d41043  As)dsz  delde3 djidiz  dglags
ayidai4  axldp4 Az dz4  d41d44  As1ds4 deldes  d71074 Ag1Ag4
appdis  dxpdpz  azdsz  d4d43  dspds3 depde3  d7pd7z  dgrdgs
appdi4  daxpdrg  a3a34  d42d44  As53ds4  dedleq  A72074  Ag2A34
ajzdig  dzzdp4  A3z3dsz4  A43d44  As53As4 de3ded  A73074 Ag3dgy

B B2 B3 Ba Bs Be B7 Bs

It is clear that the set of vectors 31,82, -+ ,B7 is linearly independent. If 8,3, - - , 37,8 are linearly dependent,
then Bg can be linearly represented by 51,55, - ,87. The features of vectors determine the representation can be
shown as following: 8s = [181 + LB + - - - + [;87, where Iy, I, - - - ,l7 € {0, 1}. Therefore, 87 = Bg. It is inconsistent
with the known facts. Thus, 81,3, - - , 57,8 are linearly independent.

Case 3. The rank of matrix B is 8, when wt(y;) = 3.
It is easy to proof.

Lemma 4 When wt(y,) = 4, the necessary and sufficient condition of r(B) < 8 is that the sum of subset of
ai(i = 1,2,3,4) which satisfy the jth(j = 2,3,4) component is 0 and 1 is zero, respectively.

Proof. In fact, for any j = 2,3,4, when wt(y;) # 4, the rank of matrix B is 8. Thus, we consider only the case of
wi(y;) = 4,1 =2,3,4, when wit(y;) = 4. Here,
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ajzaig  dazzdp4  A3zszdsz4  A43d44  As53dsq de3ded  dA73074  Ag3dgy
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B B> B3 Ba Bs Be B Bs

The vectors 81, 5,, - - - , 87 are linearly independent, SBs is linearly independent with arbitrarily 6 vectors ofa, @z, - - , @,.
So, B1,02,- - - ,Bs are linearly dependent if and only if 8; + 8, + - - - + B = 0. Through the discussion of values of
an, ax, as, dsy, we have the following conclusion:
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B1 + B2+ -+ Bs = 0if and only if the sum of vectors is 0, and the vectors are subset of «;(i = 1,2, 3,4) which
satisfy the jth(j = 2, 3,4) component is 0 and 1. Actually, if the sum of the elements of y, where the elements of y,
is 1 is not 0. Then, the sum of the elements of the 10th row of matrix B is not 0, because the 10th row elements of
matrix B are generated respectively by the product of y, and y, elements. The results are obtained. By observing
the functions corresponding to the matrixes such that wt(y;) = 0 and the matrixes which described in lemma 4, we
can find that the functions are 4-variable linear functions. Overall, all of 4-variable balanced Boolean functions
are optimum algebraic immunity except linear functions. This is consistent with the conclusion that the algebraic
degree of n-variable optimum algebraic immunity Boolean functions > [g] Then, we have the following theorem:

Theorem 1 The 4-variable balanced Boolean functions which algebraic degree > 2 are optimum algebraic immu-
nity.

Proof. We known that any binary string can form a Boolean function. The Boolean functions of support @;,i =
1,2,---, 8 which generate matrix B are 4-variable balanced functions. So, there are relationship between 4-variable
balanced Boolean function and matrix B. When the rank of matrix B is 8, the functions which corresponding to
matrix B achieve maximum algebraic immunity. Through calculation, the Boolean function which corresponding
to the matrix B satisfy rank(B)< 8 are linear functions. Consequently, the degree of functions which corresponding
to rank(B) = 8 are 2 minimum, and they are optimum algebraic immunity.

Inspired by theorem 1, the algebraic immunity of 2m-variable balanced Boolean functions which algebraic degree
> m was discussed, and obtained the following conclusion:

Theorem 2 For f = x1x2 -+ Xpp + (Xt 1, Xms2, =+ + » Xom) (m = 4), if g is balanced function with deg(g) < (m —2)
OF 8 = Xyt 1Xm42 * ** Xom—1 + Xom. Then ,the Boolean function f is not optimum algebraic immunity.

Proof. If deg(g) < (m—2),leth = (x; + 1)(g + 1), we have fg = 0. Since deg(h) = m — 1 < m, the Boolean
function f is not optimum algebraic immunity.

If ¢ = X1 Xme2 -+ Xom—1 + Xom, let h = (x1 + 1)(Xp41 + 1)(x2, + 1), obviously, fg = 0. Since deg(h) = 3 < m, the
Boolean function f is not optimum algebraic immunity.

Theorem 3 For f = x1x2 -+ X + g(Xps1, Xp42, -+ s Xom)m = 4t = m + 1), if g is balanced function , then the
Boolean function f is not optimum algebraic immunity.

Proof. Let h = (x1 + 1)(g + 1), we have fh = 0. So, f is not optimum algebraic immunity since deg(h) < m.
4. Conclusion

The rank of matrix can be used to judgement the maximum algebraic immunity of balanced Boolean function.
Based on the case of 4-variable, we can popularize the method to 6-variable or more variables. Since the calculation
of matrix rank will be difficult with the increase of rows and columns, the algebraic immunity of Boolean functions
corresponding to the matrix will be difficult to decide.
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