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Abstract

Algebraic immunity and balancedness have been widely investigated as important cryptographic properties. Boolean

functions with high algebraic immunity can resist algebraic attacks. So, Boolean functions which achieve maxi-

mum algebraic immunity and balancedness are our research objects. In this paper, we present a method to study

the algebraic immunity of balanced Boolean functions on 4-variable from the rank of matrix, and indicate that all

4-variable balanced Boolean functions with algebraic degree not less than 2 have maximum algebraic immunity.

Finally, we introduce two classes balanced functions on even variables which don’t achieve maximum algebraic

immunity.

Keywords: Boolean function, Balanced function, Algebraic immunity, Annihilators

1. Introduction

Boolean functions are the core components of stream ciphers and block ciphers. Stream ciphers form an important

class of symmetric-key encryption schemes, mainly designed for applications that require either low cost hardware

implementation or an extremely high encryption rate. The most well studied models of stream ciphers are based

on linear feedback shift registers (LFSR), namely the nonlinear combiners and the nonlinear filters, that consist of

one or more LFSRs combined with a nonlinear Boolean function. Different criteria have been proposed for both

the selection of the LFSRs and the nonlinear Boolean function, in order to resist attacks like the correlation attacks,

time/memory/data trade-offs, and distinguishing attacks. Generally speaking, before 2003, cryptographic Boolean

functions were usually required to be balanced, have high algebraic degree and high nonlinearity. Since 2003, the

algebraic attacks proposed by Courtois and Meier have received a lot of attention in cryptanalysis, the main idea

of which is to solve a system of low degree multivariate equations with unknown input keys. With this method,

some cryptographic algorithms have been successfully attacked, such as Toyocrypt, LILI-128, SFINKS and so

on. A new cryptographic property for designing Boolean functions to resist this kind of attacks, called algebraic

immunity (AI). the algebraic immunity of an n-variable Boolean function is upper bounded by
⌈

n
2

⌉
. Obviously, a

Boolean function with maximum algebraic immunity is better to resist the algebraic attack.

At present, two classes Boolean functions possess maximum algebraic immunity. One class is Boolean function

on even number of variables with high algebraic degree(approaching n), but not possessing balancedness. Another

is symmetric Boolean functions. We wish that the Boolean functions have both maximum algebraic immunity and

balancedness.

In this paper, we discuss the algebraic immunity of 4-variable balanced Boolean functions. The conclusion is that

all 4-variable balanced Boolean functions which algebraic degree � 2 achieve maximum algebraic immunity. We

wish that the method of matrix rank can provide an idea for the study of n-variable Boolean functions. At last, we

indicate that two classes typical balanced Boolean functions can not achieve maximum algebraic immunity though

definition.

2. Preliminaries

Let F2 = {0, 1} be the binary field, Fn
2

be the n− dimensional vector space over F2. A mapping from Fn
2

into F2 is

called a Boolean function in n variables, denoted by f (x1, x2, · · · , xn) , or f (x) in brief. Let Bn be the set of all the

n− variable Boolean functions. One of the representations of a Boolean function f (x1, x2, · · · , xn) is by its truth

table, i.e., the binary sequence f = (v1, v2, · · · , v2n ), where the bits vi’s are the values of f (x), when x runs through
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the vectors b1 = (0, · · · , 0), b2 = (0, · · · , 0, 1), · · · , b2n = (1, · · · , 1, 1) of Fn
2

in lexicographical order. The algebraic
degree of f (x), denoted by deg( f ), is defined to be the maximum degree appearing in the algebraic normal f orm
(ANF).

The Hamming weight of a Boolean function f ∈ Bn is the number of nonzero coordinates in its truth table, denoted

by wt( f ). The support of f (x) is defined as the set supp( f ) =
{
x ∈ Fn

2
| f (x) = 1

}
. We say that a Boolean function f

is balanced if its truth table contains an equal number of 1’s and 0’s, that is , if its Hamming wight equals 2n−1.

A nonzero n-variable Boolean function g ∈ Bn is called an annihilator of f if f ∗ g = 0, we denote the set of all

annihilators of f by An( f ) = {g ∈ Bn| f g = 0} . The algebraic immunity (AI) of f is defined as AI( f ) = min{deg(g)

| 0 � g ∈ An( f ) ∪ (An( f + 1)) } . It is known that for any n-variable function , the maximum possible AI is
⌈

n
2

⌉
. If

AI( f ) =
⌈

n
2

⌉
, we say it has the maximum algebraic immunity.

From f (1 + f ) = f + f 2 = 0, it holds , AI( f ) � deg( f ),for every 0 � g ∈ Bn. Thus, the algebraic degree

of Boolean functions which achieving maximum algebraic immunity must �
⌈

n
2

⌉
. Among the set of 4-variable

balanced Boolean functions, the Boolean functions which algebraic degree � 2 will achieve maximum algebraic

immunity. As shown in previous researches, whether the 4-variable balanced Boolean functions achieve maximum

algebraic immunity is closely related to the rank of matrix B , where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

a11 a21 a31 a41 a51 a61 a71 a81

a12 a22 a32 a42 a52 a62 a72 a82

a13 a23 a33 a43 a53 a63 a73 a83

a14 a24 a34 a44 a54 a64 a74 a84

a11a12 a21a22 a31a32 a41a42 a51a52 a61a62 a71a72 a81a82

a11a13 a21a23 a31a33 a41a43 a51a53 a61a63 a71a73 a81a83

a11a14 a21a24 a31a34 a41a44 a51a54 a61a64 a71a74 a81a84

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is composed of arbitrarily 8 binary vectors αi = (ai1, ai2, ai3, ai4)T , i = 1, 2, · · · , 8. When the rank of B is 8, the

Boolean functions whose support set is αi = (ai1, ai2, ai3, ai4)T , i = 1, 2, · · · , 8 is optimum algebraic immunity.

We denote γi, i = 1, 2, 3, 4 the 2,3,4,5 row of matrix B, respectively. According to the linear algebra, we can obtain

the following result.

Proposition 1 The matrix B has same rank,when wt(γ j) = i and 8 − i, i = 0, 1, 2, 3, j = 1, 2, 3, 4.

Since the two matrices of wt(γ j) = i and 8 − i are interchangeable with primary transformation, we have that the

rank of the two matrices is the same.

3. Main Results

In this section, we provide the judgement of 4-variable balanced Boolean function with maximum AI. First, we

give a conclusion about the linear correlation of vectors over the binary field.

Lemma 1 Let α1, α2, · · · , αn be a set of linearly independent vectors over the binary fields, the vector β is different
from α1, α2, · · · , αn, and β is linearly independent with arbitrarily n − 1 vectors in α1, α2, · · · , αn. Then, the
necessary and sufficient condition for that α1, α2, · · · , αn, β are linearly dependent is α1 + α2 + · · · + αn + β = 0.

Proof. According to the definition of linear dependent ,α1, α2, · · · , αn, β are linearly dependent if and only if

k1α1 + k2α2 + · · · + knαn + bβ = 0, where k1, k2, · · · , kn, b ∈ {0, 1} not all 0.

If b = 0, then k1 = k2 = · · · = kn = 0, which contradicts with above facts. So, b � 0.

Suppose that b � 0, k1, k2, · · · , kn are 0 at least one. Without loss of generality, let k1 = 0, k2 = · · · = kn = 1,

then the corresponding vectors α2, · · · , αn, β are linear dependent, contradicts with the known condition. So,

k1 = k2 = · · · = kn = 1. That is, α1 + α2 + · · · + αn + β = 0.

From lemma 1 and primary transformation of matrix, we have that

Lemma 2 The rank of matrix B � 7, if wt(γi) = 0 or 8 for any i = 1, 2, 3, 4.
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Proof. We only prove wt(γ1) = 0, and the proof of other cases is similar.

If wt(γ1) = 0, then

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

a12 a22 a32 a42 a52 a62 a72 a82

a13 a23 a33 a43 a53 a63 a73 a83

a14 a24 a34 a44 a54 a64 a74 a84

a11a12 a21a22 a31a32 a41a42 a51a52 a61a62 a71a72 a81a82

a11a13 a21a23 a31a33 a41a43 a51a53 a61a63 a71a73 a81a83

a11a14 a21a24 a31a34 a41a44 a51a54 a61a64 a71a74 a81a84

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

a12 a22 a32 a42 a52 a62 a72 a82

a13 a23 a33 a43 a53 a63 a73 a83

a14 a24 a34 a44 a54 a64 a74 a84

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Obviously, the rank of matrix B � 7 since B has 4 zero rows.

From proposition 1, matrix of wt(γi) = 8 and matrix of wt(γi) = 0 have the same rank.

Lemma 3 The rank of matrix B is 8, when wt(γi) = 1, 2, 3 or 5, 6, 7 for any i = 1, 2, 3, 4.

Proof. From the proposition 1, without loss of generality, we will discuss the case of wt(γ1) = 1, 2, 3 , respectively.

Case 1. The rank of matrix B is 8, when wt(γ1) = 1.

When γ1 = 1,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1

a12 a22 a32 a42 a52 a62 a72 a82

a13 a23 a33 a43 a53 a63 a73 a83

a14 a24 a34 a44 a54 a64 a74 a84

a11a12 a21a22 a31a32 a41a42 a51a52 a61a62 a71a72 a81a82

a11a13 a21a23 a31a33 a41a43 a51a53 a61a63 a71a73 a81a83

a11a14 a21a24 a31a34 a41a44 a51a54 a61a64 a71a74 a81a84

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From lemma 1, it is clear that the sum of column vectors for matrix is not equal to 0. Thus, the rank of matrix B is

8.

Case 2. The rank of matrix B is 8, when wt(γ1) = 2.
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When γ1 = 2,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1

a12 a22 a32 a42 a52 a62 a72 a82

a13 a23 a33 a43 a53 a63 a73 a83

a14 a24 a34 a44 a54 a64 a74 a84

a11a12 a21a22 a31a32 a41a42 a51a52 a61a62 a71a72 a81a82

a11a13 a21a23 a31a33 a41a43 a51a53 a61a63 a71a73 a81a83

a11a14 a21a24 a31a34 a41a44 a51a54 a61a64 a71a74 a81a84

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

β1 β2 β3 β4 β5 β6 β7 β8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is clear that the set of vectors β1, β2, · · · , β7 is linearly independent. If β1, β2, · · · , β7, β8 are linearly dependent,

then β8 can be linearly represented by β1, β2, · · · , β7. The features of vectors determine the representation can be

shown as following: β8 = l1β1 + l2β2 + · · · + l7β7, where l1, l2, · · · , l7 ∈ {0, 1}. Therefore, β7 = β8. It is inconsistent

with the known facts. Thus, β1, β2, · · · , β7, β8 are linearly independent.

Case 3. The rank of matrix B is 8, when wt(γ1) = 3.

It is easy to proof.

Lemma 4 When wt(γ1) = 4, the necessary and sufficient condition of r(B) < 8 is that the sum of subset of
αi(i = 1, 2, 3, 4) which satisfy the jth( j = 2, 3, 4) component is 0 and 1 is zero, respectively.

Proof. In fact, for any j = 2, 3, 4, when wt(γ j) � 4, the rank of matrix B is 8. Thus, we consider only the case of

wt(γi) = 4, i = 2, 3, 4, when wt(γ1) = 4. Here,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

a12 a22 a32 a42 a52 a62 a72 a82

a13 a23 a33 a43 a53 a63 a73 a83

a14 a24 a34 a44 a54 a64 a74 a84

0 0 0 0 a52 a62 a72 a82

0 0 0 0 a53 a63 a73 a83

0 0 0 0 a54 a64 a74 a84

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

β1 β2 β3 β4 β5 β6 β7 β8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−−→row

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

a12 a22 a32 a42 0 0 0 0

a13 a23 a33 a43 0 0 0 0

a14 a24 a34 a44 0 0 0 0

0 0 0 0 a52 a62 a72 a82

0 0 0 0 a53 a63 a73 a83

0 0 0 0 a54 a64 a74 a84

a12a13 a22a23 a32a33 a42a43 a52a53 a62a63 a72a73 a82a83

a12a14 a22a24 a32a34 a42a44 a52a54 a62a64 a72a74 a82a84

a13a14 a23a24 a33a34 a43a44 a53a54 a63a64 a73a74 a83a84

β1 β2 β3 β4 β5 β6 β7 β8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The vectors β1, β2, · · · , β7 are linearly independent, β8 is linearly independent with arbitrarily 6 vectors ofα1, α2, · · · , αn.

So, β1, β2, · · · , β8 are linearly dependent if and only if β1 + β2 + · · · + β8 = 0. Through the discussion of values of

a12, a22, a32, a42, we have the following conclusion:
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β1 + β2 + · · · + β8 = 0 if and only if the sum of vectors is 0, and the vectors are subset of αi(i = 1, 2, 3, 4) which

satisfy the jth( j = 2, 3, 4) component is 0 and 1. Actually, if the sum of the elements of γ4 where the elements of γ2

is 1 is not 0. Then, the sum of the elements of the 10th row of matrix B is not 0, because the 10th row elements of

matrix B are generated respectively by the product of γ2 and γ4 elements. The results are obtained. By observing

the functions corresponding to the matrixes such that wt(γ1) = 0 and the matrixes which described in lemma 4, we

can find that the functions are 4-variable linear functions. Overall, all of 4-variable balanced Boolean functions

are optimum algebraic immunity except linear functions. This is consistent with the conclusion that the algebraic

degree of n-variable optimum algebraic immunity Boolean functions �
⌈

n
2

⌉
. Then, we have the following theorem:

Theorem 1 The 4-variable balanced Boolean functions which algebraic degree � 2 are optimum algebraic immu-
nity.

Proof. We known that any binary string can form a Boolean function. The Boolean functions of support αi, i =
1, 2, · · · , 8 which generate matrix B are 4-variable balanced functions. So, there are relationship between 4-variable

balanced Boolean function and matrix B. When the rank of matrix B is 8, the functions which corresponding to

matrix B achieve maximum algebraic immunity. Through calculation, the Boolean function which corresponding

to the matrix B satisfy rank(B)< 8 are linear functions. Consequently, the degree of functions which corresponding

to rank(B) = 8 are 2 minimum, and they are optimum algebraic immunity.

Inspired by theorem 1, the algebraic immunity of 2m-variable balanced Boolean functions which algebraic degree

� m was discussed, and obtained the following conclusion:

Theorem 2 For f = x1x2 · · · xm + g(xm+1, xm+2, · · · , x2m) (m � 4), if g is balanced function with deg(g) � (m − 2)

or g = xm+1xm+2 · · · x2m−1 + x2m. Then ,the Boolean function f is not optimum algebraic immunity.

Proof. If deg(g) � (m − 2), let h = (x1 + 1)(g + 1), we have f g = 0. Since deg(h) = m − 1 < m, the Boolean

function f is not optimum algebraic immunity.

If g = xm+1xm+2 · · · x2m−1 + x2m, let h = (x1 + 1)(xm+1 + 1)(x2m + 1), obviously, f g = 0. Since deg(h) = 3 < m, the

Boolean function f is not optimum algebraic immunity.

Theorem 3 For f = x1x2 · · · xt + g(xt+1, xt+2, · · · , x2m)(m � 4, t � m + 1), if g is balanced function , then the
Boolean function f is not optimum algebraic immunity.

Proof. Let h = (x1 + 1)(g + 1), we have f h = 0. So, f is not optimum algebraic immunity since deg(h) < m.

4. Conclusion

The rank of matrix can be used to judgement the maximum algebraic immunity of balanced Boolean function.

Based on the case of 4-variable, we can popularize the method to 6-variable or more variables. Since the calculation

of matrix rank will be difficult with the increase of rows and columns, the algebraic immunity of Boolean functions

corresponding to the matrix will be difficult to decide.
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