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Abstract

For two-way contingency tables with nominal categories in which the explanatory and response variables are not

defined clearly, Goodman and Kruskal (1954) considered a proportional reduction in error (PRE) measure, which

describes the relative decrease in the probability of making an error in predicting the value of one variable when the

value of the other is known, as opposed to when it is not known. The present paper proposes a new PRE measure

for two-way contingency tables with ordered categories in which the explanatory and response variables are not

defined clearly. The proposed measure lies between 0 and 1. The proposed measure is useful for comparing the

degree of PRE in several tables with ordered categories. Examples are given.
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1. Introduction

Consider an r × c contingency table in which one is an explanatory variable and the other is a response variable.

Then, the measures which describe the relative decrease in the probability of making an error in predicting the

value of either variable when the value of the other variable was known, as opposed to when it was not known,

have been proposed by e.g., Goodman and Kruskal (1954), Everitt (1992) and Yamamoto, Nozaki and Tomizawa

(2011). The measures are called proportional reduction in error (PRE) measures. In this situation, we assume that

we can define which of the variables are the explanatory and response variables.

In some situations, the explanatory and response variables are not defined clearly. For this case with especially

both nominal variables, Goodman and Kruskal (1954) and Yamamoto and Tomizawa (2010) considered some PRE

measures. Let pi j denote the probability that an observation will fall in the ith category of X and the jth category

of Y (i = 1, . . . , r; j = 1, . . . , c). Goodman and Kruskal (1954) measure is given by
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⎧⎪⎪⎨⎪⎪⎩
(
1 − p•m0

) −
r∑

i=1

pi•
(
1 − pimi

pi•

)⎫⎪⎪⎬⎪⎪⎭ +
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 − pM0•

) −
c∑

j=1

p• j

(
1 − pM j j

p• j

)⎫⎪⎪⎪⎬⎪⎪⎪⎭
2 − p•m0

− pM0•

=

⎛⎜⎜⎜⎜⎜⎝
r∑

i=1

pimi − p•m0

⎞⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎝

c∑
j=1

pM j j − pM0•

⎞⎟⎟⎟⎟⎟⎟⎠
2 − p•m0

− pM0•
,

where

pimi = max
j

(pi j), p•m0
= max

j
(p• j), pM j j = max

i
(pi j), pM0• = max

i
(pi•), pi • =

c∑
t=1

pit, p• j =

r∑
s=1

ps j.

Also see Yamamoto and Tomizawa (2010).
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However, these measures cannot be applied to two-way contingency tables with both ordinal variables when one

wants to use the information about the category ordering of the variables. So we are interested in a PRE measure

for contingency tables with ordinal categories in which the explanatory and response variables are not defined

clearly.

This paper proposes a PRE measure for such a situation (Section 2). Section 3 gives an approximate variance for

the estimated measure and Section 4 analyzes unaided distance vision data.

2. A New PRE Measure

Consider an r × c contingency table with ordinal categories in which the explanatory and response variable are not

defined clearly.

Then, we shall consider the following measure which represents the PRE in predicting the category of either

variable as between knowing and not knowing the category of the other variable, defined by
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The measure Λ has the properties that (i) Λ lies between 0 and 1, (ii) Λ = 0 if and only if the information about one

variable does not reduce the probability of making an error in predicting the categories of the other variable, and

(iii) Λ = 1 if and only if no error is made, given knowledge of one variable; namely there is complete predictive

association. In addition, we note that if the variables X and Y are independent, then the measure Λ takes 0, but the

converse does not necessarily hold (also see Section 6).

3. Approximate Confidence Interval for the Measure

Let ni j denote the observed frequency in the ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , c).

Assuming that a multinomial distribution applies to the r × c table, we consider an approximate standard error and

large-sample confidence interval for Λ, using the delta method, descriptions of which are given by, e.g., Bishop et

al. (1975, Sec. 14.6). The sample version of Λ, i.e., Λ̂, is given by Λ with {pi j} replaced by { p̂i j}, where p̂i j = ni j/n
and n =

∑∑
ni j. Using the delta method,

√
n(Λ̂ − Λ) has asymptotically (as n → ∞) a normal distribution with

41



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 4; 2012

mean zero and variance σ2[Λ], where
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and I(·) is the indicator function.

Let σ̂2[Λ] denote σ2[Λ] with {pi j} replaced by {p̂i j}. Then, σ̂[Λ]/
√

n is an estimated standard error for Λ̂, and

Λ̂ ± zp/2σ̂[Λ]/
√

n is an approximate 100(1 − p)% confidence interval for Λ, where zp/2 is the (1 − p/2) percentile

of the standard normal distribution.

4. An Example

Consider the data in Table 1 on unaided distance vision. Table 1a is the data, taken from Tomizawa (1984), on

unaided distance vision of 4746 students aged 18 to about 25 including about 10% women in Faculty of Science

and Technology, Science University of Tokyo in Japan examined in April 1982. Table 1b is the data, taken from

Tomizawa (1985), on unaided distance vision of 3168 pupils comprising nearly equal number of boys and girls

aged 6-12 at elementary schools in Tokyo, Japan, examined in June 1984.

For the data in Tables 1a and 1b, two variables, right and left eye grades, in each of tables have ordinal categories

and we cannot define clearly which of the right and left eye grades is the explanatory variable and the response

variable. Thus for these data, we are interested in applying the measure Λ. The value of Λ̂ is 0.735 for Table 1a and

0.496 for Table 1b (see Table 2). This shows that the information about either eye grades reduces the probability

of making an error in predicting the other by 73.5% for Table 1a, and by 49.6% for Table 1b, as opposed to when

it is not known.

When the degrees of the relative decrease for Tables 1a and 1b are compared by using the 95% confidence interval

for Λ, the value of Λ̂ is greater for Table 1a than for Table 1b. Namely, the information about either eye grades

reduces the probability of making an error in prediction more for college students than for pupils.
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Table 1. Unaided distance vision data of (a) 4746 students (Tomizawa, 1984) and (b) 3168 pupils (Tomizawa,

1985)

(a) Students

Left eye grade

Right eye Best Second Third Worst

grade (1) (2) (3) (4) Total

Best (1) 1291 130 40 22 1483

Second (2) 149 221 114 23 507

Third (3) 64 124 660 185 1033

Worst (4) 20 25 249 1429 1723

Total 1524 500 1063 1659 4746

(b) Pupils

Left eye grade

Right eye Best Second Third Worst

grade (1) (2) (3) (4) Total

Best (1) 2470 126 21 10 2627

Second (2) 96 138 33 5 272

Third (3) 10 42 75 15 142

Worst (4) 12 7 16 92 127

Total 2588 313 145 122 3168

Table 2. Values of Λ̂, approximate standard errors for them and approximate 95% confidence intervals for Λ,

applied to Tables 1a and 1b

Table Λ̂ Standard error Confidence interval

Table 1a (Students) 0.735 0.008 [0.718, 0.751]

Table 1b (Pupils) 0.496 0.027 [0.444, 0.549]

Note: Though the measure λ should be used for nominal case, we apply λ to the data in Tables 1a and 1b for

comparison of Λ and λ. The values of estimated λ are 0.625 for Table 1a and 0.299 for Table 1b.

5. Simulation Study

Consider now random variables Z1 and Z2 having a joint bivariate normal distribution with means E(Z1) = μ1 and

E(Z2) = μ2, variances Var(Z1) = σ2
1 and Var(Z2) = σ2

2, and correlation Corr(Z1,Z2) = ρ. Suppose that there

is an underlying bivariate normal distribution with the conditions, for example, μ2 = μ1 + 0.2, σ2
2 = 1.2σ2

1, and

suppose that a 4×4 table is formed using cutpoints for each variable at μ1, μ1±0.6σ1. Then, in terms of simulation

studies, each subtable of Table 3 gives a 4 × 4 table of sample size 10000, formed from an underlying bivariate

normal distribution with a fixed ρ (ρ = 0,±0.3,±0.6,±0.9). Table 4 gives the estimated values of Λ for each value

of ρ. From Table 4, we see that the estimated value of Λ increases as |ρ| increases. Therefore, when there is an

underlying bivariate normal distribution, the proposed measure Λ may be appropriate as a PRE measure which

describes the relative decrease in the probability of making an error in predicting the value of one variable when

the value of the other is known, as opposed to when it is not known.

6. Concluding Remarks

For analyzing the ordinal-ordinal contingency table in which the explanatory and response variables are not defined

clearly, we have proposed the measure Λ. The measure Λ is not invariant under the arbitrary permutations of row

and/or column categories. Thus this measure should be applied for the ordinal-ordinal contingency table. On the

other hand, the measure λ is invariant under the arbitrary permutations of row and/or column categories. Thus λ
would not be appropriate for the ordinal-ordinal contingency table.

As described in Section 2, the measure Λ = 0 if and only if the information about categories of either variable

does not reduce the probability of making an error in predicting the categories of the other. However, Λ = 0 is not

always equivalent to the independence between two variables. We illustrate such an example in Table 5. Obviously,
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X is not independent of Y , but the measure Λ takes 0. Namely, X is not always independent of Y just because the

measure Λ takes 0.

Table 3. The 4×4 tables of sample size 10000, formed by using cutpoints for each variable at μ1, μ1±0.6σ1, from an

underlying bivariate normal distribution with the conditions μ2 = μ1+0.2, σ2
2 = 1.2σ2

1, and ρ = 0,±0.3,±0.6,±0.9

(a) ρ = −0.9

2 20 279 2442

37 352 901 925

357 953 821 185

1956 622 133 15

(b) ρ = −0.6

127 294 555 1824

310 433 621 853

568 546 571 572

1390 660 424 252

(c) ρ = −0.3

342 417 618 1396

472 425 528 888

553 413 484 686

1044 595 553 586

(d) ρ = 0

687 537 582 949

537 457 512 805

508 421 483 810

638 535 575 964

(e) ρ = 0.3

999 598 577 589

566 472 505 755

466 449 510 828

322 425 600 1339

(f) ρ = 0.6

1374 703 427 276

556 541 539 575

279 490 606 916

105 280 522 1811

(g) ρ = 0.9

1994 637 135 9

335 935 781 176

43 323 925 955

3 23 275 2451

Table 4. The values of Λ̂ applied to each subtable of Table 3

Values of ρ
−0.9 −0.6 −0.3 0 0.3 0.6 0.9

Λ̂ 0.597 0.232 0.071 0.001 0.062 0.231 0.606

Table 5. An artificial data on cell probabilities
{
pi j

}

Y
X 1 2 3 4 Total

1 0.35 0.13 0.09 0.03 0.6

2 0.16 0.1 0.03 0.01 0.3

3 0.06 0.02 0.01 0.01 0.1

Total 0.57 0.25 0.13 0.05 1
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