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Abstract

This paper describes a single species model, which followed by two stages, a mature and an immature stage. Conditions

for existence of equilibrium points and their stability are discussed. The model in this paper has been developed on the

concept of optimal management of resources based on the criterion of maximization of present values of net economic

revenues. Using the data from the North-East Atlantic cod fishery, the results of the optimal stock, harvest and effort level

are derived. Our simulation results show that optimal harvesting policy is much superior than the MSY policy and optimal

paths always take less time than the suboptimal path to reach the optimal steady state. Our analysis also shows that, if it

is insisted that a closure is take place for one of the two sub-stocks,it will be optimal to reduce fishing on the immature

sub-stock rather than the mature sub-stock.
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1. Introduction

In the natural world, most of the species go through two or more life stages as they proceed from birth to death. Immature

and mature are such two important stages that are to be taken into consideration. Most population models in the literature

ignore such reality and assume that all individuals are identical and do not take into account any stage structure. It

has been recognized that mortality, fertility and feeding depend on the size of the individuals. Some biological factors

and some important rates (like rates of survival, reproduction) of individuals in a population almost always depend on

stage-structure.

A stage-structured model of population growth consisting of immature and mature individuals was analyzed by Freedman

and Gopalsamy (1986), where the stage-structured was modeled by introduction of a constant time delay. A prey-predator

model with stage-structure for prey was established by Zhang et al. (2000) and obtained the necessary and sufficient

condition of the permanence of the system. An overview on stage-structured models can be found in the recent book by

Murdoch et al (2003). Recent papers of Kar (2003), Kar and Matsuda (2006), and Wiken (2004) study the stage-structure

of species with or without time delays.

Harvesting has generally a strong impact on the population dynamics of a harvested species. The study of population dy-

namics with harvesting is a subject of mathematical bio-economics, and it is related to optimal management of renewable

resources (Clark, 1990). Clark has also considered harvesting of a single species in a two fish ecologically competing pop-

ulation model. Chaudhuri (1986, 1988) studied combined harvesting and considered the perspectives of bio-economics
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and dynamic optimization of a two species fishery. Dai and Tang (1998) considered a prey-predator system with constant

rate of harvesting. They showed how to approximate the region of asymptotic stability in biological terms in the initial

states that ultimately lead to co-existence of the two species.

In recent years, the optimal management of renewable resources, which has direct relationship to sustainable development

has been studied extensively by some authors. Generally, speaking, the exploitation of a species should be determined by

the economic and biological values of the population. In this paper we aim to find an optimal harvesting policy which

ensures a lasting exploitation of the biological resource and maximize the benefit resulting from the harvesting.

To develop a mathematical model for describing the interaction among immature and mature species we make the follow-

ing assumptions:

(i) The recruitment of the mature species depends on the size of the immature species.

(ii) Two substocks interact via cannibalism.

(iii) Immature fish, which are product of mature fish, also become mature.

Cod fishery is a good example of the above model. An ecological interpretation of the cod cannibalism is that the cod has

adopted to the cyclic recruitment pattern of capelin by eating its own offspring when the capelin stock is depleted and is

in a state of rebuilding. It seems obvious if the nearly one and half a million tonnes of young cods eaten by older brothers

and sisters in 1995-1997 had survived this could have prevented rebuilding of the capelin stocks in the subsequent years

and thus threatened the food supply of the coming generations of cod. According to Eide (1993), following model is

closely describing the North-East Atlantic cod stock.

In our model we consider the stage-structure of immature and mature of a single species. To establish a constructive man-

agement of commercial exploitation of biological resources we shall consider a special type linearly dependent harvesting

efforts on both stages of the species. Let x1, x2 be the densities of immature, mature species respectively at any time t.

Then our proposed model is of the form

dx1

dt
= r1x1(1 − x1

a1x2

) − b1x1x2, (1)

dx2

dt
= r2x2(1 − x2

a2x1

), (2)

where r1, r2, a1, a2 and b1 are all positive constants. Now considering the harvesting of both the species our model takes

the form,

dx1

dt
= r1x1(1 − x1

a1x2

) − b1x1x2 − h1, (3)

dx2

dt
= r2x2(1 − x2

a2x1

) − h2. (4)

We take the two forms of harvesting as follows:

h1 = q1(1 − α) Ex1, h2 = q2 α Ex2, (5)

h1 = q1E1α1x1, h2 = q2E2α2x2. (6)

In (5), we consider the harvesting efforts (1 − α)E and αE to the immature and mature species (where 0 < α < 1)

respectively i.e. some part of harvesting effort is applied for mature species and rest of the harvesting effort is for immature

species and q1, q2 are respective catchability coefficient. In (6), the harvest hi = qiEiαi xi where qi is the catchability

coefficient, Ei is the effort, and αi is the fraction of the stock available to harvesting, with 0 < αi ≤ 1.

2. Results and discussion of the model taking hi(i = 1, 2) given in (5)

2.1 Equilibrium analysis

We can analytically derive the equilibrium values of populations. Recalling equations (3) and (4), the equilibria are given

by the intersection of the isoclines ẋ1 = 0 = ẋ2.

It can be easily verified that the shape of the isocline ẋ1 = 0 is a parabola but the ẋ2 = 0 is a straight line and both depends

on the effort E. The slope of the isocline ẋ2 = 0 depends upon sign of the term r2 −q2 αE. To allow the population to grow

under such conditions, r2 −q2 αE is assumed to be positive, so that the isocline ẋ2 = 0 has a positive slope. r2 −q2 αE > 0
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implies that αE < r2/q2 = BT Px2
(biotechnical productivity of x2). It follows from these considerations that there will be

one strictly positive equilibrium (x∗
1, x

∗
2) at most, where

x∗
1 =

r2

a2(r2 − q2αE)

[
r1{a1a2(r2 − q2αE) − r2}

b1a1a2(r2 − q2αE)
− q1(1 − α) E

b1

]
(7)

x∗
2 =

r1[a1a2(r2 − q2αE) − r2]

b1a1a2(r2 − q2αE)
− q1(1 − α) E

b1

(8)

<Table 1>

<Figure 1>

<Figure 2>

Parameters ri & ki (i = 1, 2) and b1 are taken from Eide (1993) and other parameters are taken from Armstrong and

Sumalia (2000).

This equilibrium (x∗
1, x

∗
2) lies in R2

+ if

r1[a1a2(r2 − q2αE) − r2]

b1a1a2(r2 − q2αE)
>

q1(1 − α) E
b1

(9)

and

E < r2/q2α. (10)

The condition (9) is equivalent to

f (E) = q1q2α(1 − α) E2 − [q1r2 (1 − α) + r1q2α] E +
(
r1r2 − r1r2

a1a2

)
> 0.

<Figure 3>

<Figure 4>

That is, E lies outside the interval [λ, μ] where

λ, μ =
[q1r2(1 − α) + q2r1α] ∓ √[r2q1(1 − α) − r1q2α]2 + 4r1r2q1q2α(1 − α)/a1a2

2 q1q2α(1 − α)
(11)

μ > 0 and we consider a1a2 > 1 to make λ > 0. it is obvious that

r2/q2α < μ (12)

and

r2/q2α > λ (13)

otherwise
4 r1r2q1q2 α(1 − α)

a1a2

< 0

which is not true, because r1, r2, q1, q2, a1, a2, α are all positive and α < 1.

Thus from (9) & (10) the equilibrium point (x∗
1, x

∗
2) given in (7) and (8) lies in the interior of R2

+ if E lies in [0, λ]. Let

λ = E0, then the sufficient condition that the system has a positive equilibrium is that

E < E0 (14)

For E = 0, the equilibrium (x
′
1, x

′
2) is given by

x
′
1 =

r1(a1a2 − 1)

b1a1a2
2

, x
′
2 =

r1(a1a2 − 1)

b1a1a2

where a1a2 > 1.

The equilibrium curve for E = 0 is then x2 = a2x1. Thus for E = 0, the equilibrium curve originates from natural

equilibrium (x
′
1, x

′
2). As we increase harvesting effort the equilibrium point moves downwards and both the species

become more extensively exploited. Both species will persist up to an effort level E < E0.
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2.2 Stability analysis

We now inspect the local nature of equilibrium point (x∗
1, x

∗
2) in terms of stability. The Jacobian matrix of the system is

J[x1, x2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r1

(
1 − 2x1

a1x2

)
− b1x2 − q1(1 − α)E

r1x2
1

a1x2
2

− b1x1

r2x2
2

a2x2
1

r2

(
1 − 2x2

a2x1

)
− q2Eα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

At P(x∗
1, x

∗
2) its characteristic equation is the quadratic in ζ, given by

ζ2 +

(
r1x∗

1

a1x∗
2

+
r2x∗

2

a2x∗
1

)
ζ +

r2b1

a2

x∗2
2

x∗
1

= 0 (16)

By Hurwitz - Routh’s condition the roots of this quadratic equation are real negative or complex with negative real parts

if

(
r1x∗

1

a1x∗
2

+
r2x∗

2

a2x∗
1

)
> 0 and

r2b1

a2

x∗2
2

x∗
1

> 0
}

(17)

These conditions are true if P(x∗
1, x

∗
2) exists in R2

+. Thus the interior equilibrium P(x∗
1, x

∗
2) is locally stable if it exists. In

otherwards we can say that the equilibrium remains stable up to a maximum effort level E0 beyond which the system

ceases to have a locally stable equilibrium.

<Figure 5>

<Figure 6>

To establish the non-existence of periodic orbit encircling (x∗
1, x

∗
2), we use Bendixon-Dulac criterion.

Let h(x1, x2) = 1/x1x2. Obviously h(x1, x2) > 0 for all x1, x2 > 0. We define

f1(x1, x2) = r1x1

(
1 − x1

a1x2

)
− bx1x2 − q1(1 − α) Ex1

f2(x1, x2) = r2x2

(
1 − x2

a2x1

)
− q2 α Ex2

Now we find that

∂

∂x1

( f1h) +
∂

∂x2

( f2h) = − r1

a1x2
2

− r2

a2x2
1

< 0

for all x1, x2 > 0, since all other parameters are strictly positive. Therefore, by Benedixon-Dulac criterion, there will be no

periodic orbit within the interior of the first quadrant of state of space around (x1, x2). So local stability of the equilibrium

point (x∗
1, x

∗
2) implies the global asymptotic stability. From the point of view of ecological managers, it may be desirable to

have an unique positive equilibrium which is globally asymptotic stable, in order to plan harvesting and keep sustainable

development of ecosystem.

2.3 Bionomic equilibrium

The term bionomic equilibrium is the combined concept of biological equilibrium as well as economic equilibrium. For

biological equilibrium ẋ1 = 0 and ẋ2 = 0, which implies, x1 = 0 or, E =
r1

q1(1 − α)

(
1 − x1

a1x2

)
− b1

q1(1 − α)
x2,

and x2 = 0 or, E =
r2

q2α

(
1 − x2

a2x1

)
.

Therefore, for non-trivial biological equilibrium the solution lies on the curve,[
r1

q1(1 − α)
− r2

q2α

]
− r1

q1 (1 − α)

x1

a1x2

+
r2

q2a2α

x2

x1

− b1

q1(1 − α)
x2 = 0 (18)

At an economic equilibrium the total revenue (TR) obtained by selling the harvested biomass is equal to the total cost

(TC) for effort devoted to harvest.
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If c1 = unit effort cost of immature species, c2 = unit effort of mature species, p1 = constant price per unit of biomass

of immature species, p2 = constant price per unit of biomass of mature species, then the economic rent i.e. net revenue

(TR-TC) at any time t is given by

π(x1, x2, E) = [p1q1(1 − α)x1 + p2q2αx2 − c] E

Thus at economic equilibrium

[p1q1(1 − α)x1 + p2q2αx2 − c] E = 0 (19)

where c = c1(1 − α) + c2α and the bionomic equilibrium is the intersection of (18) and (19).

From (19) we get

x1 =
c − p2 q2 αx2

p1 q1 (1 − α)
(20)

which exists in R2
+ if

x2 < c/ p2q2 α (21)

At the intersection of (20) and (18)

[
r1

q1(1 − α)
− r2

q2 α

]
− r1

q1(1 − α)a1

c − p2q2αx2

p1q1x2(1 − α)
+

r2

q2a2α

x2 p1q1(1 − α)

c − p2q2αx2

− b1x2

q1(1 − α)
= 0. (22)

Simplifying this we get the cubic equation in x2,

Ax3
2 + Bx2

2 +Cx2 + D = 0 (23)

where

A = a1 a2 A3 A4 A5

B = −[a1 a2 A3(A1 − A2) A4 + A1 A2
4 a2 − a1 A2 A2

3 + a1 a2 A3 A5 c]

C = a1 a2 A3(A1 − A2) c + 2 A1 A4 a2 c

D = −A1 a2 c

and A1 =
r1

q1(1 − α)
, A2 =

r2

q2 α
, A3 = p1 q1(1 − α), A4 = p2 q2 α, A5 =

b1

q1(1 − α)
.

Since a1, a2, q1, q2, r1, r2, α, p1, p2, c are all positive we have A > 0 and D < 0. The co-efficient B and C may be positive,

negative or zero. So the following cases may appear:

Case I. When both B and C are positive then all the co-efficients of (23) are positive except the last co-efficient D. Hence

by Descarte’s rule of signs (23) has exactly one positive root. That is in this case unique positive bionomic equilibrium

exists if (21) is satisfied.

Case II. When both B and C are negative then all the co-efficients of (23) are negative except the leading coefficient which

is essentially positive. Hence (23) has only one positive root and so unique interior bionomic equilibrium exists if (21) is

satisfied.

Case III. When B > 0 and C < 0, first two co-efficients of (23) are positive and last two are negative. Hence by Descarte’s

rule of signs (23) has exactly one positive root that is in turn unique positive bionomic equilibrium exists if (21) is true.

<Figure 7>

<Figure 8>

Case IV. When B < 0, C > 0 then equation (23) may have more than one positive roots and system may have non-unique

interior bionomic equilibrium if (21) is also true.

Case V. In all the cases when B = 0 & either C > 0 or < 0 and C = 0, B > 0 or < 0 and B = 0, C = 0 the equation (23)

has exactly one positive root i.e. the system has unique interior bionomic equilibrium if (21) is also true.
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From all the cases studied above it is clear that equation (23) has at least one positive root. If this positive root be less

than c/p2 q2 α we denote it by x2∞ and from (20) we get a value of x1 denoted by x1∞ and the bionomic equilibrium

point R(x1∞, x2∞) is obtained. Now (23) will have a positive root less than c/p2 q2 α i.e. a root in (0, c/p2 q2 α) if

(Ax3
2
+ Bx2

2 +Cx2 + D) has opposite signs for x2 = 0 and x2 = c/p2 q2 α that is if

(a1 a2 p1 p2 q2 b1 α) (c/p2 q2 α)3

−
⎡⎢⎢⎢⎢⎣a1 a2 p1 p2 {r1q2 α − r2 q1(1 − α)} + r1 a2 p2

2 q2
2 α

2

q1

− r2

q2 α
a1 p2

1 q2
1(1 − α)2 + a1 a2 p1 b1 c

⎤⎥⎥⎥⎥⎦(
c

p2 q2 α

)2
+

[
a1 a2 p1 c

q2 α
{r1 q2 α − r2 q1 (1 − α)} + 2r1 a2 p2 q2 α c

q1(1 − α)

(
c

p2 q2 α

)
− a2 r1 c

q1 (1 − α)

]
> 0. (24)

Thus the system has a bionomic equilibrium if (24) is satisfied by the parameters of the model.

Then for 40% and 60% of the effort level devoted to mature species i.e. for α = 0.4 and α = 0.6 the inequation (23) is

satisfied. For α = 0.4 the bionomic equilibrium point is (0.33, 0.37) and for α = 0.6 the bionomic equilibrium is attained

at the point (0.31, 0.32).

2.4 Optimal harvest policy

In this section we shall discuss the optimal harvest policy. For that we consider the present value J of a continuous

time-stream of revenues as

J =
∫ ∞

0

e−δ t
[
p1q1 (1 − α) x1 + p2q2α x2 − c

]
Edt (25)

where, δ denotes the instantaneous annual rate of discount. Our problem is to maximize J subject to the state equation (3)

and (4) by invoking Pontryagin et al. (1962). The control variable E(t) is subjected to the constraint set 0 ≤ E ≤ Emax.

We consider the current value of Hamiltonian as

H =
[
p1q1(1−α) x1+p2q2αx2−c

]
E+μ1

[
x1

{
r1

(
1 − x1

a1x2

)
− b1x2 − q1(1 − α) E

}]
+μ2

[
x2

{
r2

(
1 − x2

a2x1

)
− q2α E

}]
(26)

where μ1(t), μ2(t) are adjoint variables. The adjoint equations are

dμ1

dt
= δμ1 − ∂H

∂x1

dμ2

dt
= δμ2 − ∂H

∂x2

. (27)

Here we use the steady state solution as we are concerned with optimal equilibrium and we consider x1, x2 as constants in

the subsequent steps.

Then using the steady state solution the adjoint equations (27) become,

dμ1

dt
=

(
δ +

r1x1

a1x2

)
μ1 − μ2

r2 x2
2

a2 x2
1

− p1q1(1 − α) E,

dμ2

dt
=

(
δ +

r2x2

a2x1

)
μ2 − μ1

⎛⎜⎜⎜⎜⎝ r1 x2
1

a1 x2
2

− b1x1

⎞⎟⎟⎟⎟⎠ − p2q2 α E. (28)

We write these equations as

(D − m1) μ1 + m2 μ2 = −m3

(D − m4) μ2 + m5 μ1 = −m6 (29)

where D ≡ d/dt, and

m1 = δ +
r1x1

a1x2

, m2 =
r2 x2

2

a2 x2
1

, m3 = p1q1(1 − α) E,
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m4 = δ +
r2x2

a2x1

, m5 =
r1 x2

1

a1 x2
2

− b1x1, m6 = p2q2 α E.

Eliminating μ1 from the equation (29) we get the differential equation

[D2 − (m1 + m4) D + m1m4 − m2m5] μ2 = m1m6 + m3m5

∴ μ2 = A eλ1t + B eλ2t +
m1m6 + m3m5

m1m4 − m2m5

(30)

where A,B are arbitrary constants and λ1, λ2 are the roots of

λ2 − (m1 + m4)λ + m1m4 − m2m5 = 0.

It is clear that μ is bounded if A,B, are zero or λ1, λ2 < 0. We consider, for simplicity, that A,B are zero.

∴ μ2 =
m1m6 + m3m5

m1m4 − m2m5

. Similarly we can derive that μ1 =
m3m4 + m2m6

m1m4 − m2m5

.

Now ∂H/∂E = 0 implies

p1q1(1 − α)x1 + p2q2αx2 − c = μ1q1(1 − α)x1 + μ2q2αx2.

Using the values of μ1, μ2 we get,

(p1q1(1 − α)x1 + p2q2αx2 − c)((δ +
r1x1

a1x2

)(δ +
r2x2

a2x1

) − r2x2
2

a2x2
1

(
r1x2

1

a1x2
2

− b1x1))

=

⎡⎢⎢⎢⎢⎣(δ + r2x2

a2x1

)
p1q1(1 − α) +

r2x2
2

a2x2
1

p2q2α

⎤⎥⎥⎥⎥⎦ Eq1(1 − α)x1

+

⎡⎢⎢⎢⎢⎣(δ + r1x1

a1x2

)
p2q2α + pq(1 − α)

⎛⎜⎜⎜⎜⎝ r1x2
1

a2x2
2

− b1x1

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ Eq2αx2.

(31)

Solving (31), (10) & (11) we can get a value of E, the optimal harvesting effort.

Since the optimal control problem is linear of its control variable E, the optimal harvesting policy will be a combination

of bang-bang and singular controls. Let T be the time taken to reach the optimal state by using the bang-bang control.

Then the optimal control policy will be

E(t) =
{

Ẽ for 0 ≤ t ≤ T
E∗ for t > T,

where

Ē(t) =
{

Emax for σ(t) > 0

Emax for σ(t) < 0,

here

σ(t) = p1q1(1 − α)x1 + p2q2αx2 − c − μ1q1(1 − α)x1 − μ2q2αx2

is the switching function.

<Figure 9-11>

Phase diagram showing the changes in the equilibrium biomass as a response to changes in the effort allocation. Both the

equilibrium biomass tends to zero with the efforts increases. Here α = 0.4for (a) and α = 0.6 for (b).

<Figure 12> <Figure 13>
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Then the following table shows the interior equilibrium (x∗
1, x

∗
2) & optimal harvest E∗, Emax, Emin for 40% and 60% of the

effort devoted to the mature species.

<Table 2>

The following table shows the time taken by different approach paths to reach an equilibrium point.

<Table 3>

Management of renewable resources has generally been relied on the concept of Maxium Sustainable Yield (MSY).

Recently, several objections have been raised against the use of MSY on both biological and socioeconomic grounds

(Matsuda and Abrams, 2006). One of the most serious objection is obviously the non-recognition of the cost factor. The

inadequacy of MSY concept has resulted in a trend to replace it with a concept of optimal resource management based

on criterion of maximization of present values of net economic revenues. In this paper we have attempted to find optimal

steady state solution (i.e. optimal stock, optimal harvest and effort level) that ensures the long run sustainability of the

resource and excludes the possibility of depletion due to over exploitation and give maximum benefit.

Approach paths of optimal and suboptimal harvesting policy are depicted in figures 12 and 13. Optimal paths always take

less time than the suboptimal path to reach the optimal steady state.

In both the cases for α = 0.4 and α = 0.6, it is observed that optimal harvesting effort E∗ < EMS Y < Emax. The MSY

are 0.084 (for α = 0.4 ) and 0.16 (for α = 0.6 ) and the effort for producing the said amounts are 95.1 units and 129.6

units respectively. Also for the optimal harvesting effort E∗ , the optimal steady state is globally asymptotically stable.

Optimal catch are (0.2136 + 0.0722)=0.2858 (for α = 0.4) and (0.2236+0.0649)=0.2885 (for α = 0.6 ). Optimal efforts

for producing the said optimal catch are 48.06 and 74.511 respectively. It clearly implies that the higher level of effort

causes overfishing which, in turn, causes lower stock. As a consequence, even higher level of effort in later years does not

get adequate quantity of catch.

3. Results and discussion of the model using catch functions

hi = qiEiαi xi, i = 1, 2 given in (6)

In recent years, serious stock decline or collapse is a major risk for most of the world fisheries. Marine reserve may be

a possible way to reduce this risk by increasing the equilibrium stock size and other effects such as preserving spawning

and nursery growths. It may influence biomass growth in various ways. It is for instance possible that marine reserves,

by providing some of the fish with a sanctuary from distributing fishing activity may actually enhance biomass growth.

The same effect may occur if marine reserves manage to protect fast growing immature fish or conserve habitat variables

important for fish survival and growth.

The management goal is overall profit maximization with the profit function

π = p1q1E1α1x1 + p2q2E2α2x2 − c1E1 − c2E2. (32)

The mathematical formulation is given by

maximize
∫ ∞

0

πe−δtdt

subject to

dx1

dt
= r1x1(1 − x1

a1x2

) − b1x1 − q1E1α1x1 (33)

dx2

dt
= r2x2(1 − x2

a2x1

) − q2E2α2x2,

0 ≤ Ei ≤ Eimax.

We have applied the maximum principle to the optimal control problem (as in section 2) and the parameter values of Table

1.

Equilibrium profits for different closure alternatives are given below.

<Table 4-8>

It is already established that marine reserves are a practical means of managing resource populations and are therefore,

beneficial for conserving the ecological environment and resource populations (Kar & Matsuda, 2008). Using the data
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from North-East Atlantic cod fishery, our analysis shows that, if it is insisted that a closure is to take place for one of

the two sub-stocks, it will be optimal to reduce fishing on the immature sub-stock rather than the mature sub-stock. This

supports the case for greater focus on regulation of harvest upon juvenile fish, as may be claimed to be the case in most

fisheries in recent times. For the cod fishery, there is very little difference in resulting profits from a fishery with no

reserves and a fishery where half of the immature fish stock is projected.

Introduction of marine reserves uniformly increases the optimal equilibrium and reduce the profitability of harvesting for

a given biomass. Both effects serve to increase the equilibrium biomass level. Due to these opposing forces, the impact of

marine reserves on optimal fishing effort level is indeterminate. Thus for the cod fishery, introduction of marine reserves

is more likely to reduce net benefits from the fishery. Thus, inspite of a certain increase in stock biomass, introducing

marine reserves in the cod fishery seems rather not attractive in general.

4. Conclusions

Past experience has shown that over fishing may cause extinction or near extinction of different species of fishes, like

Antarctic blue whales, Peruvian anchoveta and Canadian cod fishery etc. North-East Atlantic cod stocks have suffered

from both over fishing and food shortages, as stocks of their prey species herring and capelin have fluctuated. The whole

stock is so unstable that the threat of a collapse is imminent unless fisheries scientists recommendations are followed.

According to ICES, the current fishing levels are unstable. ICES has consequently called for a recovery plan to protect

these stocks. In 2003, ICES stated that there is a high risk of stock collapse if current exploitation levels continue and

recommended a zero catch of Atlantic cod in the year 2004. In the year 2004, estimated cod stock size was 1.6 million

tones. Experts from the International Council for the Exploitation of Seas (ICES) have proposed that cod catches should

be limited to 50% of catch levels in 2006 to enable young fish to mature and build up the population.

We assume that one of the objectives of the fishery is to find an optimal harvesting policy which ensures a lasting exploita-

tion of the resource and other is to maximize the benefit resulting from the harvesting.

If we analyze our results and compare these with the real situation that exists in the last year of the period, it is clear that

the North-East Atlantic cod fishery is being exploited in an inefficient way, from an economic view point as well as with

the conservation of the resource. By comparing optimal stock and harvest with its actual stock and harvest, this study

indicates the fact that both stocks and harvest at the current level is much lower than its optimal level. Over fishing during

the earlier period may have had some consequences on population dynamics of the species. The biomass level in 2004

was significantly lower than the optimal equilibrium level. Therefore in order to achieve optimal steady solution, it is

necessary to proper regulation of the fishery and reduction of fishing pressure on it.

The results of the study presented in this paper conclude that (i) North-East Atlantic cod fishery is not managed and

utilized optimally, (ii) present condition of less biomass stock indicates that the danger of depletion of the resource can

not be ruled out, (iii) if corrective measures are taken, NEAC stock would take less time to reach its optimal steady state,

(iv) The quickest possible means of reaching an efficient solution is by means of so-called bang-bang controls, i.e., not

exercising fishing effort in the fishery until the resource recovers its optimum levels, (v) Herring and capelin are the most

important prey for Atlantic cod, so the survival of their stocks also vital for cod. Thus the interaction between cod and

its preys like capelin and herring are of fundamental importance to the dynamic of the processes which govern the fish

production in the region.

In the present model many important variables such as the environmental effects and interaction with other species are

disregarded. Hence, the results obtained in this study should be taken with care.
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Table 1. Estimated values of the parameters

Parameters r1 r2 a1 a2 b1 q1 q2 p1 p2

Values 0.5003 0.6728 8.7608 1.1880 0.2023 0.006650 0.001175 7579 8655

Parameters c1 c2 δ

Values 18.602103 1.452341 0.01

Table 2.

α x∗
1 x∗

2 E∗ Emax Emin

0.4 1.113845 1.279392 48.06224 112.3152 0

0.6 1.128144 1.235587 74.51134 166.2006 0

Table 3.

Figure no. Co-ordinates of Path type Time taken to reach

Initial point End point the end point

(α = 0.4) (0.2, 0.3) (1.114, 1.278) Optimal 11.67

Figure 12 (1.1150, 1.2791) Suboptimal 20

(α = 0.6) (0.2, 0.3) (1.129, 1.255) Optimal 10.83

Figure 13 (1.1346, 1.236) Suboptimal 20.8

Table 4.

α1 = 1, α2 = 1 α1 = 0.5, α2 = 0.5

Profit 6660.24 5938.74

Optimal equi-

librium

(3.71, 1.38) (3.85, 1.47)

Table 5. α1 = 1

α2 0.3 0.7 0.8 0.9

Profit 5343.18 6415.10 6517.08 6596.56

Optimal equi-

librium

(3.58, 1.43) (3.69, 1.39) (3.7, 1.38) (3.7,1.38)

Table 6. α2 = 1

α1 0.3 0.4 0.5 0.6 0.9

Profit 6451.15 6447.46 6509.1 6555.04 6641.52

Optimal equi-

librium

(4.15, 1.54) (4.00, 1.48) (3.91, 1.45) (3.84,1.42) (3.73,1.38)
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Table 7. α1 = 0.5

α2 0.1 0.3 0.4 0.5 0.6 0.9 1

Profit 1790.16 5191.5 5656.73 5938.59 6127.92 6445.09 6508.81

Optimal

equilibrium

(3.08, 1.74) (3.77, 1.51) (3.82, 1.48) (3.85,1.47) (3.87,1.46) (3.90,1.45) (3.91,1.45)

Table 8. α2 = 0.5

α1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Profit 5798.16 4901.05 5938.77 5984.93 6020.59 6048.8 6071.6

Optimal equi-

librium

(4.1, 1.57) (3.95, 1.51) (3.85, 1.47) (3.79,1.45) (3.74,1.45) (3.71,1.42) (3.68,1.41)
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Figure 1. Isoclines ẋ1 = 0 and ẋ2 = 0 for α = 0.4
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Figure 2. Isoclines ẋ1 = 0 and ẋ2 = 0 for α = 0.6
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Figure 3. This figure shows that f (E) > 0 for E < 112.3 and so it make some sense (here α = 0.4.)
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Figure 4. This figure shows that f (E) > 0 for E < 166.2 and so it make some sense (here α = 0.6)
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Figure 5. Phase plane trajectories with α = 0.4.
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Figure 6. Phase plane trajectories with α = 0.6.
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Figure 7. Phase diagram showing the unique bionomic equilibrium exists for α = 0.4.
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Figure 8. Phase diagram showing the unique bionomic equilibrium exists for α = 0.6.

176 � www.ccsenet.org



Journal of Mathematics Research September, 2009

0 50 100 150 200
0

0.05

0.1

Effort

h

h
msy

E
msy

Figure 9. The Maximum Sustainable Yield (MSY) for α = 0.4. Here EMS Y = 95.10 units and hMS Y = 0.084.
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Figure 10. The Maximum Sustainable Yield (MSY) for α = 0.6. Here EMS Y = 129.6 units and hMS Y = 0.16.
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Figure 11a.
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Figure 11b.
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Figure 12. Optimal and suboptimal approach paths for α = 0.4
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Figure 13. Optimal and suboptimal approach paths for α = 0.6
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