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Abstract

The coefficient of determination is a function of residuals in the General Linear Models. The deviance, logit, standardized
and the studentized residuals were examined in generalized linear models in order to determine the behaviour of residuals
in this class of models and thereby design a new pseudo R-squared goodness-of-fit measure. The Newton-Raphson esti-
mation procedure was adopted. It was observed that these residuals exhibit patterns that are unique to the subpopulations
defined by levels of categorical predictors. Residuals block on the basis of signs, where positive signs indicate success
responses and negative signs failure responses. It was also observed that the deviance is a close approximation of the stu-
dentized residual. The logit residual is two times the size of the standardized residuals. Borrowing from the Nagelkerke’s
improvement of Cox and Snell’s goodness-of-fit measure in generalized linear models and the coefficient of determination
counterpart of the general linear model, a new pseudo R squared goodness-of-fit test which uses predicted probabilities
and a monotonic link function is here proposed to serve both the linear and Generalized Linear Models.
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1. Introduction

A generalized linear model is one in which each component of the response variable Y has a distribution in the exponential
family, taking the form

fy(y, θ, ϕ) = exp{yθ − b(θ)
a(θ)

+ c(y, ϕ)}

for some specific function a(·), b(·) and c(·, ·) (McCullagh & Nelder, 1990). The functions a and c are such that a(ϕ) = ϕ/w
and c = c(y, ϕ/w), where w is a known weight for each observation. The model can be stated as

zi = Σ
p
j=1xi jβ j + eih′(µ) = Σ j=1xi jβ + ei(yi − µi)h′(µ), i = 1, 2, 3, ..., n (1)

where zi is the adjusted dependent variate, xi j is the (i, j)th element of the design matrix, h(µi) is the link function and ei

is the residual error. The link between yi and zi is in the expression.

hi = h(µi) (2)

Where yi is a binomial random response variable.

From (1), a residual in generalized linear model can be defined as

ei =
zi − xi jβ j

h′(µ)
(3)

ei, so defined is called Pearson residual.

Standard theory for this type of distribution expresses the mean and variance of the response y as:

E(y) = b′(θ) and var(y) =
b′′(θ)ϕ

w
=

V(µ)ϕ
w
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where V is the variance function.

The log-likelihood function, a goodness-of-fit measure is defined for the following exponential family models:

Generally, the log-likelihood function is of the form

L(y, µ, ϕ) = Σilog( f (yi, µi, ϕ))

with individual contribution for the binomial function as

li = [rilog(pi) + (ni − ri)log(1 − pi)]

2. The Newton-Raphson Method

The Newton-Raphson estimation scheme is given as

βk+1 = βk − H−1
g

where H, the Hessian matrix is given as

H = { ∂2l
∂βr∂βs

}rs

with
∂2l

∂βr∂βs
= Σ[(y − µ)

∂

∂βs
{W dη

dµ
xr} +W

dη
dµ

xr
∂

∂βs
(y − µ)]

and
∂2l
∂β2

j

= Σ[(y − µ)
∂

∂β j
{W dη

dµ
x j} +W

dη
dµ

x j
∂

∂β j
(y − µ)]

∂l
∂β j
= [

y − µ
a(ϕ)

1
v

dµ
dη

x j] =
W

a(ϕ)
(y − µ)

dη
dµ

x j

l, the loglikelihood for a binary response variable can be written as

l = l(β; y) = ΣiΣ jyixi jβ j − Σmilog(1 + expΣΣxi jβ j)

η = β0 + Σxi jβ j is the linear predictor.

W, the weight matrix is given as W = diag{mi(
dµi
dηi

)2/µi(1 − µi)}.
mi is row subtotal in the cross tabulation table. The gradient vector g is given as

g = (
∂l
∂β0

,
∂l
∂β1

, ...,
∂l
∂βn

) =
∂l
∂βr
= Σ

yi − miµi

µi(1 − µi)
dµi

dηi
= Σ(yi − miµi)xir

where the response or fitted probability µi is defined as

µi =
expΣxi jβ j

1 + expΣxi jβ j

An alternative estimation procedure is the Iterative Weighted Least Squares method which often adopted in order to avoid
the computational tedium associated with the Hessian matrix.

3. Residuals in Generalized Linear Models

The coefficient of determination R2, is a function of the residual. It was originally developed for the normal-theory
model. Cameron and Windmeijer (1996) designed an R2 for the Poisson and related count data after observing that it
was rarely used for count data. Nagelkerke (1991) generalized the definition of R2 in what is called the generalized R2.
The generalized R2 is consistent with the classical R2 and is also maximized by the maximum likelihood estimation of a
model. The generalized coefficient of determination is given as follows:

R2 = 1 − (
L(0)
L(θ)

)
2
n

where L(0) is the likelihood of the model with only intercept. L(θ) is the likelihood of the estimated model and n is the
sample size. Residuals in a logistic model can be defined as the difference between yi and the predicted probability θ for
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yi. We define the predicted probability in a cross-classified data as the probability that an object or a person selected from
a subgroup is a success (Stroke et al., 1997).

θ =
exp{β0 + Σβixi j}

1 + exp{β0 + Σβixi j}

The monotonic link function relates the predicted probability to the set of linear predictors. For the logistic regression
where the underlying distribution is binomial, the link function is a logit. The deviance, Pearson χ2, standardized, logit
and studentized residuals are the residuals normally associated with generalized linear models. The analysis of residuals
made in this paper shows that the logit residual is approximately twice the size of standandized residuals. The standardized
residual is approximately equal to the deviance residual. This can be seen in the appendix.

4. Goodness of Fit Measures in Generalized Linear Models

The deviance and the generalized Pearson χ2 statistic are two measures of goodness of fit in generalized linear models.
Both the deviance and the generalized Pearson χ2 have exact χ2 distributions for Normal-theory linear models if the
models are true (McCullagh & Nelder, 1990). The deviance uses the log of the ratio of likelihoods. Cox and Snell R
squared, another measure of goodness of fit in generalized linear models is a psudo R squared and a modification of the
deviance which configures the test interval to lie between 0 and 1 (excluding 1) such that a smaller ratio implies a greater
improvement.

The deviance for the set of distributions in generalized linear models is given as follows: for the normal distribution, it is
stated as

D = Σwi(yi − µi)2

For the poisson, binomial and gamma

we have
2
∑

i

wi[yilog(
yi

µi
) − (yi − µi)],

2
∑

i

wimi[yilog(
yi

µi
) + (1 − yi)(log

1 − yi

1 − µi
)]

and
2
∑

i

wi[−log(
yi

µi
) +

yi − µi

µi
]

respectively. For the inverse-Gaussian, multinomial and negative binomial, we have∑
i

wi(yi − µi)2

µ2
i yi∑

i

∑
j

wiyi jlog(
yi j

pi jmi
)

and
2
∑

i

wi[ylog(y/µ) − (1 + 1/k)log(
y + 1/k
µ + 1/k

)]

respectively. Cox and Snell R2 is defined as

R2 = 1 − { L(mint)
L(m f ull)

}2/N

where L(mint) is the conditional probability of the dependent variable for the intercept model. If L(m f ull) is 1 then R2 < 1.
The Nagelkerke/Gragg & Uhler’s modification is

R2 = 1 − { L(mint)
L(m f ull)

}2/N/1 − L(mint)2/N

In this paper a new goodness of fit test that makes use of fitted probabilities, a monotomic link function and the Nagelkerke
range of possible values is proposed. The test is designed to serve both the general linear and the generalized linear models.
It is given as follows:

R2
G&G = 1 − [h′(θ)]−1 ∑

(y − θ)2∑
(y − h(θ))
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R2
G&G, designed for the generalized linear models can be adapted for use as a goodness of fit measure in the general linear

model by replacing the fitted probabilities and the link function values with fitted y values and the mean of y respectively.
The value of R2

G&G range from 0 to 1, with higher values implying better fits.

5. Illustrative Example

The hypothetical data below is used for the illustration of residual analysis in generalized linear models:

<Table 1>

The probability that a person from the ith sex level and the jth location status is infected with a certain virus.

The model

Let yi j be a binomial random response variable corresponding to the ith sex status and the jth location which assumes the
value 0 or 1. The probability θi j; that a person of the hth sex and jth location is infected by the virus is modeled as

θi j = exp
exp[β0 + sex(i) + location( j)]

1 + exp[β0 + sex(i) + location( j)]

where i = 1, 2, j = 1, 2,

β0 = overall mean

sex(i) = effect of ith sex level =β1

location(j) = effect of jth location status = β2

ei j = random error associated with observation. The Newton-Raphson estimates of the illustrative example are as follows:

Solution

β0 = 1.1568, β1 = −1.2770 is the effect of the ith sex level. β2 = −1.0545 is the effect of the jth location status. The
pseudo-R squared goodness of fit test reveals the following results:

Cox and Snell R2 = 0.140

Nagelkerke/Gragg & Uhler’s R2 = 0.187

The proposed R2
G&G = 0.180

The outlined residuals associated with this example are shown in the appendix. It is observed that residuals exhibit unique
patterns in accordance with subpopulations defined by levels of the categorical variables. Residuals form blocks on the
basis of signs, where positive signs indicate success and negative signs indicate failure responses. The deviance and the
studentized residuals exhibit very close residual patterns.

Stat Computing (2011) gave three interpretations of R2 as follows: (i) R2 as explained variability: The denominator of
the ratio indicates total variation in the dependent variable while the numerator is the variability in the dependent variable
that is not predicted by the model. The ratio is the proportion of the total variability explained by the model which agrees
with R2 in Ordinary Linear Models (Koutsoyiannis, 1983). Thus a higher ratio implies a better model.

(ii) R2 as improvement from null model to fitted model: A smaller ratio implies a greater improvement.

(iii) R2 as the square of the correlation: correlation between predicted values and the actual values. A higher R2 implies a
greater improvement of fit.

It can be seen that the proposed R2 goodness-of-fit measure compares favourably with the Nagelkerke/Gragg & Uhler’s
R2 (0.180 against 0.187).

6. Conclusion

The Nagelkerke/Gragg & Uhler’s Improvement of Cox and Snell R2 is applicable in Generalized Linear models only. The
existing R squared goodness of fit measure in General Linear models is not applicable in Generalized Linear model. This
is because the model estimates from Generalized Linear models are maximum likelihood estimates which are obtained by
iterative procedures. They are not calculated to minimize variance; so the Ordinary Least Squares approach to goodness of
fit does not apply. To evaluate goodness of fit in generalized linear models a pseudo R2 is required. This paper introduces
a new pseudo R squared goodness of fit measure which has the advantage of assessing goodness of fit in both linear and
generalized linear models. The result shows that the new pseudo-R squared method designed in this paper compares
favourably with the existing Nagelkerke/Gragg & Uhler’s design.

Published by Canadian Center of Science and Education 151



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 2; April 2012

References

Cameron, A. C., & Windmeyer F. A. G. (1996). R-Squared Measures for Count Data Regression Models with Applications
to Health-Care Utilization. Journal of Business and Economic Statistic.

Koutsoyiannis, A. (1983). Theory of Econometrics: An Introductory Exposition of Econometric Methods. 2 Ed. The
Macmillan Press Ltd, London.

McCullagh, P., & Nelder, J. A. (1990). Generalized Linear Models. Chapman and Hall. Madras.

Nagelkerke, N. (1991). A note on a General Definition of the Coefficient of Determination. Biometrika, 78 (3), pp.
691-692. http://dx.doi.org/10.1093/biomet/78.3.691

Nja, M. E., & Bamiduro, T. A. (2006). Relative performance of Optimization Methods In Solutions of Generalized Linear
Models. An unpublished Ph. D thesis, University of Ibadan, Nigeria.

Stoke, M. E., Davis, C. S., & Koch, G. G. (1997). Categorical Data Analysis using the SAS system, SAS Institute Inc.,
Cary, NC, USA.

Table 1. Hypothetical data

I Sex x1 Location x2 Infected yi Not infected Total mi

1 Female Urban 4 11 15
2 Female Rural 8 10 18
3 Male Urban 9 9 18
4 Male Rural 21 6 27

Appendix: Residuals

PRE 1 COO 1 LEV 1 RES 1 LRE 1 S RE 1 ZRE 1 DEV 1 DFB0 1 DFB1 1 DFB2
1.00 .0 .0 .23601 .14361 .04248 .76399 4.23710 1.73663 1.79919 1.69934 -.05891 .12347 .12341
1.00 .0 .0 .23601 .14361 .04248 .76399 4.23710 1.73663 1.79919 1.69934 -.05891 .12347 .12341
1.00 .0 .0 .23601 .14361 .04248 .76399 4.23710 1.73663 1.79919 1.69934 -.05891 .12347 .12341
1.00 .0 .0 .23601 .14361 .04248 .76399 4.23710 1.73663 1.79919 1.69934 -.05891 .12347 .12341
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 .0 1.00 .46999 .05116 .04340 .53001 2.12770 1.25642 1.06193 1.22885 .02467 .07185 -.05169
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
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PRE 1 COO 1 LEV 1 RES 1 LRE 1 S RE 1 ZRE 1 DEV 1 DFB0 1 DFB1 1 DFB2
1.00 1.00 .0 .52555 .04097 .04341 .47445 1.90278 1.15975 .95015 1.13430 .02207 -.04625 .06428
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918

PRE 1 COO 1 LEV 1 RES 1 LRE 1 S RE 1 ZRE 1 DEV 1 DFB0 1 DFB1 1 DFB2
1.00 1.00 1.00 .76075 .00961 .02964 .23925 1.31450 .75074 .56080 .73953 .04015 -.02917 -.02918

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 .0 .23601 .01370 .04248 -.23601 -1.30892 -.74986 -.55580 -.73376 .01820 -.03814 -.03812

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584

.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584
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PRE 1 COO 1 LEV 1 RES 1 LRE 1 S RE 1 ZRE 1 DEV 1 DFB0 1 DFB1 1 DFB2
.0 .0 1.00 .46999 .04023 .04340 -.46999 -1.88676 -1.15210 -.94168 -1.12682 -.02188 -.06371 .04584
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 .0 .52555 .05027 .04341 -.52555 -2.10769 -1.24854 -1.05247 -1.22114 -.02444 .05123 -.07120
.0 1.00 1.00 .76075 .09713 .02964 -.76075 -4.17967 -1.71693 -1.78316 -1.69129 -.12768 .09276 .09280
.0 1.00 1.00 .76075 .09713 .02964 -.76075 -4.17967 -1.71693 -1.78316 -1.69129 -.12768 .09276 .09280
.0 1.00 1.00 .76075 .09713 .02964 -.76075 -4.17967 -1.71693 -1.78316 -1.69129 -.12768 .09276 .09280
.0 1.00 1.00 .76075 .09713 .02964 -.76075 -4.17967 -1.71693 -1.78316 -1.69129 -.12768 .09276 .09280
.0 1.00 1.00 .76075 .09713 .02964 -.76075 -4.17967 -1.71693 -1.78316 -1.69129 -.12768 .09276 .09280
.0 1.00 1.00 .76075 .09713 .02964 -.76075 -4.17967 -1.71693 -1.78316 -1.69129 -.12768 .09276 .09280

Key:

PRE1 Predicted probability
COO1 Analog of Cook’s influence statistics
LEV1 Leverage value
RES 1 Difference between observed and predicted probabilities
LRE1 Logit Residual
S RE1 Standard Residual
ZRE1 Normalized Residual
DEV1 Deviance value

DFB01 DFBeta for constant
DFB11 DFBeta for VAR00002(1)
DFB21 DFBeta for VAR00003(1)
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