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Abstract

In a linear programming problem involving maximization (or minimization) of the objective function the set of feasible
points is often required to be bounded above (or below). A criterion based on the simplex method which requires the
constraints coefficients of the entering variable to be zero or negative for the set of feasible points to be unbounded is
often used. In this paper, the necessary and sufficient conditions for the set of feasible points of the system of linear
inequalities to be bounded are stated and proved. These conditions which do not require the knowledge of the entering
variable are illustrated with examples.
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1. Introduction

The Boundedness of a set of feasible points of a system of linear inequalities is paramount in the solution of linear
programming problems. The operations researchers always aim at developing models that would have finite optimal
solutions. Unfortunately, some linear programming problems often results in an unbounded optimal feasible solution
which occurs due to two major reasons, namely, when the set of feasible points is unbounded, and when the gradient of
the ray directing into the cone giving the rays is orthogonal to the diverging hyperplane Eiselt, et al. (1987).

The existence of the unbounded optimal solutions in practical problems always indicates that a mistake has been made in
modeling. It would therefore be unwise to formulate problems that has unbounded optimal solutions. For a finite optimal
solution to exists, the set of feasible points is often required to be bounded above in the case of a maximization problem
or bounded below in the case of a minimization problem.

The bounded set of feasible points is not always apparent, especially, when it is not possible to display the set graphically.
Thus it is important for the Operations Researchers to know beforehand the conditions for the problems to be bounded.
A criterion based on the simplex method which requires the constraints coefficients of the entering variable to be zero or
negative for the set of feasible points to be unbounded is often used. Our interest in this paper is to derive the necessary
and sufficient conditions for the system of linear inequalities to have a bounded set of feasible points.
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2. Preliminaries

Consider the system of m linear inequalities in n variables x1, x2, · · · , xn. That is,

n∑
j=1

ai jx j ≤ bi, i = 1, 2, · · · ,m

x j ≥ 0, j = 1, 2, · · · , n

 (1)

Let

Hi =

(x1, x2, · · · , xn) :
n∑

j=1

ai jx j ≤ bi, x j ≥ 0, j = 1, 2, · · · , n

 ,
i = 1, 2, · · · ,m.

(2)

be the halfspace for each constraint i. Then the set,

Fr =

m∩
i=1

Hi (3)

may be empty or nonempty. If Fr is nonempty it defines the set of feasible points.

The set Fr is said to be bounded if there exists a finite number c ∈ R so that

∥(x1, x2, · · · , xn)∥ < c (4)

for every (x1, x2, · · · , xn) ∈ Fr (Fikhtengol’s, 1979).

3. Conditions for the Set of Feasible Points to be Bounded

Consider the following linear programming problem

minimize Z =
n∑

j=1

c jx j

n∑
j=1

ai jx j ≤ bi, i = 1, 2, · · · ,m

x j ≥ 0, j = 1, 2, · · · , n


(5)

The following lemma provides the simplex criterion for the objective function of linear programming problem (5) to be
unbounded.

Lemma 1 (Shapiro, 1979) If, for a basic feasible system, there is a nonbasic variable xs with the properties c̄s < 0 and
āis ≤ 0, for i = 1, 2, · · · ,m, then the objective function of the linear programming problem can be driven to −∞.

Theorem 3.1 (Effanga, 2009) Consider the constraint matrix

A = (ai j), i = 1, 2, · · · ,m; j = 1, 2, · · · , n

If there exists a column j∗, 1 ≤ j∗ ≤ n, such that ai j∗ ≤ 0, for all 1 ≤ i ≤ m, then the set of feasible points Fr is unbounded.

Proof: If (x1, x2, · · · , xn) ∈ Fr, then
n∑

j=1

ai jx j ≤ bi,∀i, 1 ≤ i ≤ m

Writing the above constraints as
n∑

j=1
j, j∗

ai jx j + ai j∗x j∗ ≤ bi,∀i, 1 ≤ i ≤ m

and adding a positive number λ to x j∗, we obtain

n∑
j, j∗

ai jx j + ai j∗(x j∗ + λ) ≤ bi, 1 ≤ i ≤ m
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since ai j∗ ≤ 0, ∀i, 1 ≤ i ≤ m. Hence (x1, x2, · · · , x j∗ + λ, · · · , xn) ∈ Fr ∀λ > 0. For if Fr is bounded, there exists a number
c ∈ R+ so that

∥(x1, x2, · · · , xn)∥ ≤ c, ∀(x1, x2, · · · , xn) ∈ Fr

Using a P-norm defined as follows

∥(x1, x2, · · · , xn)∥P =
 n∑

j=1

|x j|P


1
P

,

for P = 1,

∥(x1, x2, · · · , xn)∥ =
 n∑

j=1

|x j|
 .

If x j ≥ 0, ∀ j, 1 ≤ j ≤ n, then

∥(x1, x2, · · · , xn)∥ =
n∑

j=1

x j,

∥(x1, x2, · · · , x j∗ + λ, · · · , xn)∥ = ∥(x1, x2, · · · , xn)∥ + λ ≤ c + λ, ∀λ > 0.

This implies that
∥(x1, x2, · · · , x j∗ + λ, · · · , xn)∥ ≤ c,

or
∥(x1, x2, · · · , x j∗ + λ, · · · , xn)∥ > c, ∀λ > 0.

So Fr is unbounded.

Theorem 1 is equivalent to the unboundedness criterion for the simplex algorithm in Shapiro (1979), Hillier and Lieberman
(2005), Eieselt et al. (1987) or Taha (2005). This condition is only necessary but not sufficient for the detection of the
unboundedness of the set of feasible points.

Corollary 1 If Fr is bounded, then
max
1≤i≤m
{ai j} > 0, 1 ≤ j ≤ n.

Proof: If max
1≤i≤m
{ai j} ≤ 0, for any j∗, then ai j∗ ≤ 0, for all 1 ≤ i ≤ m. This implies that Fr is unbounded by Theorem 1.

Hence, if Fr is bounded, then, max
1≤i≤m
{ai j} > 0, for all 1 ≤ j ≤ n.

Example 1 Consider the set of feasibility points defined by the simultaneous linear inequalities

−2x1 + x2 ≤ 2 (I)

−x1 − 3x2 ≤ 3 (II)

x1 ≥ 0, x2 ≥ 0

The above set of feasibility points is unbounded since a11 < 0 and a21 < 0 (See figure 1)

<Figure 1>

The following example illustrates the fact that theorem 1 is not a sufficient condition for the set of feasible points to be
unbounded.

Example 2 Consider the set of feasibility points defined by the simultaneous linear inequalities

−2x1 + x2 ≤ 2 (I)

x1 − 3x2 ≤ 3 (II)

x1 ≥ 0, x2 ≥ 0

The set of feasible points represented by the above system of linear inequalities is unbounded, but there is no column of
the constraints matrix with negative entries throughout (see figure 2).

<Figure 2>

Example 3 Consider the set of feasible points represented by the system of linear inequalities below,

−2x1 + x2 ≤ 2 (I)
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x1 − 3x2 ≤ 3 (II)

2x1 + x2 ≤ 6 (III)

x1 ≥ 0, x2 ≥ 0

The above set of feasible points is bounded (see figure3), hence,

max
1≤i≤3
{ai1} = 2 > 0 and max

1≤i≤3
{ai2} = 1 > 0.

<Figure 3>

Examples 2 and 3 illustrate the fact that corollary 1 is not a sufficient condition for the set of feasible points to be bounded.
We now present a necessary and sufficient condition for the set of feasible points to be bounded.

Theorem 3.2 (Effanga, 2009) The constraints, Ax ≤ b, determines a bounded set of feasible points, if and only if there
exists a c ∈ Rn, c > 0 and T ∈ R+ such that Ax ≤ b⇒ cx ≤ T , ∀x ∈ Fr = {x : Ax ≤ b}.
Proof:Let Ax ≤ b be bounded, then there exists T ∈ R+ so that

∥x∥ =
n∑

j=1

x j ≤ T, ∀x ∈ Fr

Thus, for 0 < c j ≤ 1, ∀ j, 1 ≤ j ≤ n,
n∑

j=1

c jx j ≤
n∑

j=1

x j ≤ T.

For c j > 1, ∀ j, 1 ≤ j ≤ n, ∃T ∗ ∈ Rn ∋ ∥x∥ ≤ T ∗ with T ∗ = cT and c = max
1≤ j≤n
{c j}. Then

n∑
j=1

c jx j ≤
n∑

j=1

cx j ≤ T ∗.

Conversely, we now show that if Ax ≤ b⇒ cx ≤ T , ∀x ∈ Fr, then Fr is bounded.

Without loss of generality, we assume that there exists a row Ai∗ of the constraints matrix A such that c j = ai∗ j > 0,
1 ≤ j ≤ n and 1 ≤ i∗ ≤ m and bi∗ = T .

From the constraints Ax ≤ b, we get(
min
1≤ j≤n

ai∗ j

)
∥x∥ ≤

n∑
j=1

ai∗ jx j = Ai∗x ≤ bi∗ ≤ max
1≤i≤m

|b|i

min
1≤ j≤n

ai∗ j ≥ min
1≤ j≤n

min{1, ai∗ j} = M

Hence

∥x∥ ≤
max
1≤ j≤m

|b j|

M
This implies that Fr is bounded.

Theorem 2 provides a necessary and sufficient condition for the set of feasible points of linear system of inequalities to be
bounded.

Example 4 Consider the set of feasibility points represented by the simultaneous linear inequalities below,

x1 − x2 ≤ 2 (I)

−x1 + 24x2 ≤ 6 (II)

x1 ≥ 0, x2 ≥ 0

Multiplying (I) by 1.5 and adding to (II) yields,

0.5x1 + 0.5x2 ≤ 9.

60 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 2; April 2012

Thus,
Ax ≤ b⇒ cx ≤ T,

where

A =
(

1 −1
−1 2

)
, b =

(
2
6

)
, c =

(
0.5 0.5

)
and T = 9.

Hence, the set of feasible points is bounded (see figure 4).

<Figure 4>

Example 5 Consider the set of feasibility points represented by the simultaneous linear inequalities below,

x1 − x2 ≤ 2 (I)

−x1 + 2x2 ≤ 6 (II)

x1 + x2 ≥ 3 (III)

x1 ≥ 0, x2 ≥ 0

On multiplying (III) by -1 yields
−x1 − x2 ≤ −3 (IV)

Multiplying (I) by 1.5 and adding to (II) yields

0.5x1 + 0.5x2 ≤ 9 (V)

Adding (II) and (IV) we have
−2x1 + x2 ≤ 3 (VI)

Multiplying (V) by 5 and adding to (VI) we have

0.5x1 + 3.5x2 ≤ 48

Thus,
Ax ≤ b⇒ cx ≤ T,

where

A =

 1 −1
−1 2
−1 −1

 , b =

 2
3
−3

 , c =
(
0.5 3.5

)
and T = 48.

Hence, the set of feasible points is bounded (see shaded region in figure 5).

<Figure 5>

4. Conclusion

The unboundedness condition given in Theorem 1 is equivalent to the simplex criterion for the unboundedness of a set of
feasible points of the system of linear inequalities. In simplex algorithm the entering variable need to be known before
the unboundedness can be detected, and in most cases this will happen after a number of iterations have been performed.
In our case no knowledge of the entering variable is required to determine whether the set of feasible points is unbounded
or not. A necessary and sufficient condition for the system of linear inequalities to be bounded given in Theorem 2 can
only be applied when system of linear inequalities are stated with a less than or equal to sign. Fortunately, any system of
linear inequalities can be put in this form, thus making the condition valid for any system of linear inequalities.
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Figure 1. Showing the unbounded set of feasible points (shaded)

Figure 2. Showing the unbounded set of feasible points (shaded)

Figure 3. Showing the bounded set of feasible points (shaded)
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Figure 4. Showing the bounded set of feasible points (shaded)

Figure 5. Showing the bounded set of feasible points (shaded)
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