Generalized Fibonacci Sequences Generated from a k-Fibonacci Sequence

Sergio Falcon
Department of Mathematics and Institute for Applied Microelectronics (IUMA)
University of Las Palmas de Gran Canaria
PO box 35017, Las Palmas de Gran Canaria, Spain
Tel: 34-928-458-827 E-mail: sfalcon@dma.ulpgc.es

Received: January 29, 2012 Accepted: February 15, 2012 Published: April 1, 2012
doi:10.5539/jmr.v4n2p97 URL: http://dx.doi.org/10.5539/jmr.v4n2p97
The research is financed in part by CICYT Project number MTM2008-05866-C03-02 from Ministerio de Educación y Ciencia of Spain

Abstract

In this paper we will prove that all k-Fibonacci sequence contains generalized Fibonacci sequences and we will indicate the form of obtain them.

Keywords: k-Fibonacci sequences, Recurrence relations, k-Lucas sequences

1. Introduction

k-Fibonacci numbers are defined (Falcon, S., 2007 (32) and (38) \& 2009) by the recurrence equation $F_{k, n+1}=k F_{k, n}+$ $F_{k, n-1}$ with the initial conditions $F_{k, 0}=0$ and $F_{k, 1}=1$.

The k-Fibonacci sequences, for $k=1,2, \ldots, 100$ are listed in The Online Encyclopedia of Integer Sequences (Sloane, N. J. A., 2006), from now on OEIS.

Characteristic equation of the initial recurrence relation is $r^{2}-k r-1=0$ and its solutions are $\sigma_{1}=\frac{k+\sqrt{k^{2}+4}}{2}$ and $\sigma_{2}=\frac{k-\sqrt{k^{2}+4}}{2}$. As particular cases (Spinadel, V. W., 2002), 1. If $k=1, \sigma_{1}=\frac{1+\sqrt{5}}{2}$ is called the Golden Ratio, Φ
2. If $k=2, \sigma_{1}=1+\sqrt{2}$ is called the Silver Ratio
3. If $k=3, \sigma_{1}=\frac{3+\sqrt{13}}{2}$ is called the Bronze Ratio

Characteristic solutions verify these properties: $\sigma_{1} \sigma_{2}=1, \sigma_{1}+\sigma_{2}=k, \sigma_{1}-\sigma_{2}=\sqrt{k^{2}+4}, \sigma^{2}=k \sigma+1$.
Among other properties, we have proved Binet's Identity (Falcon, S., 2007 (38)): $F_{k, n}=\frac{\sigma_{1}^{n}-\sigma_{2}^{n}}{\sigma_{1}-\sigma_{2}}$ and the formula of Honsberger (Honsberger, R. A., 1985) or Convolution formula (Falcon, S., 2007 (32) and (38) \& 2009) for the k-Fibonacci numbers: $F_{k, m+r}=F_{k, r} F_{k, m+1}+F_{k, r-1} F_{k, m}$.
Finally, by summing up two alternate terms of the k-Fibonacci sequence, we obtain the corresponding k-Lucas sequence: $\left\{L_{k, n}\right\}=\left\{F_{k, n-1}+F_{k, n+1}\right\}$ (Falcon, S., 2011).
k-Lucas numbers are defined (Falcon, S. 2011) by the recurrence equation $L_{k, n+1}=k L_{k, n}+L_{k, n-1}$ with the initial conditions $L_{k, 0}=2, L_{k, 1}=k$.

2. On the k, l-Fibonacci Sequences Contained in the k-Fibonacci Sequences

A generalized Fibonacci sequence (k, l-Fibonacci sequence) is a recurrent sequence $F(k, l)=\left\{F_{n}(k, l)\right\}$ such that $F_{n+1}(k, l)=k F_{n}(k, l)+l F_{n-1}(k, l)$, with the initial conditions $F_{0}(k, l)=0$ and $F_{1}(k, l)=1$. If $l=1$, then we obtain the k-Fibonacci sequence.

In (Falcon, S., 2009) we have proved that for any $r, n \in N$ the k-Fibonacci number $F_{k, r n}$ is multiple of $F_{k, n}$. Then, for a fixed value of r, we can find out the sequence $\frac{F_{k, r n}}{F_{k, n}}=\left\{0,1, \frac{F_{k, 2 r}}{F_{k, r}}, \ldots\right\}$. With object to simplify the writing, we will put

$$
\begin{equation*}
G_{k, n}(r)=\frac{F_{k, r n}}{F_{k, r}} \tag{1}
\end{equation*}
$$

and the sequence generated is $G_{k}(r)=\left\{G_{k, n}(r)\right\}$.
For instance: for $k=3$ and $r=2$, it is $F_{3,2}=11, F_{3,4}=33, F_{3,6}=360$, etc. Then, $G_{3,2}(2)=\frac{F_{3,4}}{F_{3,2}}=\frac{33}{3}=11$, $G_{3,3}(2)=\frac{F_{3,6}}{F_{3,2}}=\frac{360}{3}=120$, etc. and we obtain the sequence $\{0,1,11,120,1309,14279, \ldots\}$. But this sequence is a $(11,-1)$ generalized Fibonacci sequence wich terms verify the recurrence relation $G_{3, n+1}(2)=11 G_{3, n}(2)-G_{3, n-1}(2)$.
In Corollary 1, we will prove that if r is an odd number, we obtain a new k-Fibonacci sequence, so and as they have been studied in (Falcon, S., 2007 (32), (38)). For instance, if $r=3$ and $k=4$, the $G_{4}(3)$ sequence is $\{0,1,76,5777,439128, \ldots\}$ listed in OEIS as A049669. The elements of this sequence verify the recurrence relation $G_{4, n+1}(3)=76 G_{4, n}(3)+G_{4, n-1}(3)$ so this is the 76 -Fibonacci sequence F_{76}.
Lemma 2.1 The elements of the sequence $\left\{G_{k, n}(r)\right\}=\left\{\frac{F_{k, r n}}{F_{k, r}}\right\}$ verify the recurrence relation $G_{k, n+1}(r)=F_{k, r-1} G_{k, n}(r)+$ $F_{k, r n+1}$.
Proof: From Honsberger's identity, if $m=r n$, then $F_{k, r n+r}=F_{k, r} F_{k, r n+1}+F_{k, r-1} F_{k, r n}$. So, $G_{k, n+1}(r)=\frac{F_{k, r(n+1)}}{F_{k, r}}=$ $F_{k, r n+1}+F_{k, r-1} \frac{F_{k, r n}}{F_{k, r}}=F_{k, r n+1}+F_{k, r-1} G_{k, n}(r)$
With the help of this Lemma, we will prove the main theorem of this paper.
Theorem 2.2 The elements of the sequence $G_{k}(r)$ verify the recurrence relation

$$
\begin{equation*}
G_{k, n+1}(r)=G_{k, 2}(r) G_{k, n}(r)-(-1)^{r} G_{k, n-1}(r) \tag{2}
\end{equation*}
$$

for $n \geq 1$, with the initial conditions $G_{k, 0}(r)=0$ and $G_{k, 1}(r)=1$.
Proof: Initial conditions are obvious.
By applying the Binet's identity to the Right Hand Side (RHS) of Equation (2), and taking into account $\sigma_{1} \sigma_{2}=-1 \rightarrow$ $\frac{\sigma_{2}}{\sigma_{1}}=-\sigma_{2}^{2}$, it is

$$
\begin{aligned}
(R H S)= & \frac{F_{k, 2 r}}{F_{k, r}} \cdot \frac{F_{k, r n}}{F_{k, r}}-(-1)^{r} \frac{F_{k, r(n-1)}}{F_{k, r}} \\
= & \frac{1}{F_{k, r}}\left(\frac{\sigma_{1}^{2 r}-\sigma_{2}^{2 r}}{\sigma_{1}^{r}-\sigma_{2}^{r}} \cdot \frac{\sigma_{1}^{r n}-\sigma_{2}^{r n}}{\sigma_{1}-\sigma_{2}}-(-1)^{r} \frac{\sigma_{1}^{r n-r}-\sigma_{2}^{r n-r}}{\sigma_{1}-\sigma_{2}}\right) \\
= & \frac{1}{F_{k, r}} \frac{1}{\sigma_{1}^{r}-\sigma_{2}^{r}} \frac{1}{\sigma_{1}-\sigma_{2}}\left[\sigma_{1}^{r n+2 r}+\sigma_{2}^{r n+2 r}-\sigma_{1}^{r n} \sigma_{2}^{2 r}-\sigma_{1}^{2 r} \sigma_{2}^{r n}\right. \\
& \left.-(-1)^{r}\left(\sigma_{1}^{r n}+\sigma_{2}^{r n}-(-1)^{r} \sigma_{1}^{r n} \sigma_{2}^{2 r}-(-1)^{r} \sigma_{1}^{2 r} \sigma_{2}^{r n}\right)\right] \\
= & \frac{1}{F_{k, r}} \frac{1}{\sigma_{1}-\sigma_{2}} \frac{1}{\sigma_{1}^{r}-\sigma_{2}^{r}}\left[\sigma_{1}^{r n+2 r}-(-1)^{r} \sigma_{1}^{r n}+\sigma_{2}^{r n+2 r}-(-1)^{r} \sigma_{2}^{r n}\right] \\
= & \frac{1}{F_{k, r}} \frac{1}{\sigma_{1}-\sigma_{2}} \frac{1}{\sigma_{1}^{r}-\sigma_{2}^{r}}\left[\sigma_{1}^{r n+r}\left(\sigma_{1}^{r}-\sigma_{2}^{r}\right)-\sigma_{2}^{r n+r}\left(\sigma_{1}^{r}-\sigma_{2}^{r}\right)\right] \\
= & \frac{1}{F_{k, r}} \frac{\sigma_{1}^{r n+r}-\sigma_{2}^{r n+r}}{\sigma_{1}-\sigma_{2}}=\frac{F_{k, r(n+1)}}{F_{k, r}}=G_{k, n+1}(r)
\end{aligned}
$$

because $(-1)^{r} \sigma_{1}^{r n}=\left(\sigma_{1} \sigma_{2}\right)^{r} \sigma_{1}^{r n}=\sigma_{1}^{r n+r} \sigma_{2}^{r}$
Corollary If r is an odd number, the sequence $F_{k}(r)$ is a k-Fibonacci sequence.
On the other hand, as a consequence of the Honsberger's formula, it is $F_{k, 2 r}=F_{k, r}\left(F_{k, r-1}+F_{k, r+1}\right)=F_{k, r} L_{k, r}$ and the constant of these k-Fibonacci sequences takes the form $G_{k, 2}(r)=\frac{F_{k, 2 r}}{F_{k, r}}=F_{k, r-1}+F_{k, r+1}$, being r an odd number: all subsequence obtained from the k-Fibonacci sequence when r is odd is a bisection of the corresponding k-Lucas sequence.

This circumstance does more easy to find the k-Fibonacci sequences that we can obtain of this form. For instance, for $k=2$ (Pell sequence) and $r=5$, it is $F_{2,4}=12$ and $F_{2,6}=70$ so we get the 82-Fibonacci sequence.

2.3 Table of the Generalized Fibonacci Sequences Extracted from the k-Fibonacci Sequence

2.3.1 First case

Let us suppose $r=3,5,7,9, \ldots$. The second term of the generalized Fibonacci sequence obtained ($n=2$), determines the order of the k-Fibonacci sequence according to the following relation proved in (Falcon, S. 2011):

$$
G_{k, 2}(2 p+1)=\frac{F_{k, 2(2 p+1)}}{F_{k, 2 p+1}}=L_{k, 2 p+1}
$$

Finally, for $k=1,2,3,4,5 \ldots$, we find the generalized Fibonacci sequences $G_{k, n}(r)$ contained in the k-Fibonacci sequence $F_{k, n}$. In the Table 1, the first generalized Fibonacci sequences obtained of this form are related, where the inner number indicates the obtained k-Fibonacci sequence:
<Table 1>
It is interesting to indicate that all the row sequences of this table are bisections of the corresponding k-Lucas sequence.
For instance, the sequence of the firs row, $\{1,4,11,29,76, \ldots\}$ is the bisection of the classical Lucas sequence, $L_{2 n+1}$, while the sequence of the second row $\{2,14,82,478, \ldots\}$ is the bisection $P L_{2 n+1}$ of the Pell-Lucas sequence.

2.3.2 Lemma

For $n \geq 2: L_{k, 2 p+1}=\left(k^{2}+2\right) L_{k, 2 p-1}-L_{k, 2 p-3}$
Proof: From the definition of the k-Lucas numbers:

$$
\begin{aligned}
L_{k, 2 p+1} & =k L_{k, 2 p}+L_{k, 2 p-1}=\left(k^{2}+1\right) L_{l, 2 p-1}+k L_{k, 2 p-2} \\
& =\left(k^{2}+1\right) L_{k, 2 p-1}+k \frac{L_{k, 2 p-1}-L_{k, 2 p 3}}{k}=\left(k^{2}+2\right) L_{k, 2 p-1}-L_{k, 2 p-3}
\end{aligned}
$$

Then, the row sequences of this last table verify the recurrence relation
$G_{k, n+1}=\left(k^{2}+2\right) G_{k, n}-G_{k, n-1}=L_{k, 2} G_{k, n}-G_{k, n-1}$ for $n \geq 1$ with the initial conditions $G_{k, 1}=k=L_{k, 1}$ and $G_{k, 2}=k^{3}+3 k=L_{k, 3}$ for $k \in \mathcal{N}$.
With respect to the classical Fibonacci sequence, in OEIS it is indicated that $F_{4}=\left\{\frac{F(3 n)}{2}\right\}, F_{11}=\left\{\frac{F(5 n)}{5}\right\}, F_{29}=\left\{\frac{F(7 n)}{13}\right\}$, $F_{76}=\left\{\frac{F(9 n)}{34}\right\}$, etc. where the denominators are the terms of the bisection classical Fibonacci sequence $\left\{F_{2 n+1}\right\}$.

2.3.3 Second case

Let us suppose $r=2,4,6,8,10, \ldots$. The second term of the generalized Fibonacci subsequence obtained ($n=2$), determines the order of the k-Fibonacci sequence according to the preceding formula $G_{k, m r}=F_{k, m r+1}+F_{k, m r-1}=L_{k, m r}$ and taking into account $F_{k,-1}=F_{k, 1}=1$:
Then, for $k=1,2,3,4,5 \ldots$, we find the generalized Fibonacci subsequences $G_{k, n}(r)$ contained in the k-Fibonacci sequence $F_{k, n}$. The following table shows the first of these sequences:
<Table 2>
All the row sequences are listed in OEIS and are the even bisection of the k-Lucas sequence, $L_{k, 2 n}$.
These row sequences verify the recurrence relation $G_{k, n+1}=\left(k^{2}+2\right) G_{k, n}-G_{k, n-1}=L_{k, 2} G_{k, n}-G_{k, n-1}$ for $n \geq 1$ with the initial conditions $G_{k, 1}=2=L_{k, 0}$ and $G_{k, 2}=k^{2}+2=L_{k, 2}$ with $k \in \mathcal{N}$.

3. Conclusion

Here we have proved that any k-Fibonacci sequence contains infinite generalized Fibonacci sequences and we have indicated a form to obtain them.

References

Falcon, S. (2011). On the k-Lucas numbers. Int. J. Contemp. Math. Sciences, 6 (21), 1039-1050.
Falcon S., \& Plaza A. (2007). On the Fibonacci k-numbers. Chaos, Solitons \& Fractals, 32 (5), 1615-1624.
Falcon S., \& Plaza A. (2007). The k-Fibonacci sequence and the Pascal 2-triangle. Chaos, Solitons \& Fractals, 33 (1), 38-49.

Falcon S., \& Plaza A. (2009). k-Fibonacci sequences modulo m. Chaos, Solitons \& Fractals, 41, 497-504. http://doi:10.1016/j.chaos.2008.02.014
Honsberger R. A. (1985). Second look at the Fibonacci and Lucas numbers. Ch. 8 in Mathematical Gems III, Washington DC, Math. Assoc. Amer.

Horadam A. F. (1961). A generalized Fibonacci sequence. Math. Mag., 68, 455-459.
Sloane N. J. A. (2006). The on - line encyclopedia of integer sequences. [Online] Available: http://www.research.att.com/ njas/sequences/
Spinadel V. W. (2002). The metallic means family and forbidden symmetries. Int. Math. J., 2 (3), 279-88.
Table 1. Generalized Fibonacci sequences for r odd

$\mathbf{k} \backslash \mathbf{r}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	$\mathbf{9}$
$\mathbf{1}$	1	4	11	29	76
$\mathbf{2}$	2	14	82	478	2786
$\mathbf{3}$	3	36	393	4287	46764
$\mathbf{4}$	4	76	1364	24476	439204
$\mathbf{5}$	5	140	3775	101785	2744420

Table 2. Generalized Fibonacci subsequences for r even

$\mathbf{k} \backslash \mathbf{r}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
$\mathbf{1}$	2	3	7	18	47
$\mathbf{2}$	2	6	34	198	1154
$\mathbf{3}$	2	11	119	1298	14159
$\mathbf{4}$	2	18	322	2778	103682
$\mathbf{5}$	2	27	727	19602	528527

