Relation Between the Smallest and the Greatest Parts of the Partitions of n

I. Ramabhadra Sarma
Department of Mathematics, K L University
Vaddeswaram, A.P-522502, India
E-mail: irbsarma44@yahoo.com
K. Hanuma Reddy
Department of Mathematics, Hindu College
Guntur, A.P-522002, India
E-mail: hanumareddy_k@yahoo.com
S. Rao Gunakala (Corresponding author)
Department of Mathematics and Statistics, The University of the West Indies
St. Augustine, Trinidad and Tobago
Tel: 1-868-662-2002 Ext (84491) E-mail: sreedhara.rao@sta.uwi.edu
D.M.G. Comissiong
Department of Mathematics and Statistics, The University of the West Indies
St. Augustine, Trinidad and Tobago
E-mail: donna.comissiong@sta.uwi.edu

Received: April 12, 2011 Accepted: April 30, 2011 Published: November 1, 2011
doi:10.5539/jmr.v3n4p133 URL: http://dx.doi.org/10.5539/jmr.v3n4p133

Abstract

In this paper the formulae for the number of smallest parts of partitions of $n \in N$ and relations between the i th smallest parts and the ith greatest parts are obtained.

Keywords: Partition, Conjugate partition, Ferrer diagram, Smallest part of partition, ith smallest part of a partition, Greatest part of a partition, Rank of a partition

1. Introduction

We adopt the common notation on partitions as used in (Andrews, G.E., 1976) and (Andrews, G. E., to appear). A partition of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}$ such that $\sum_{i=1}^{r} \lambda_{i}=n$ and it is denoted by $n=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}\right)$. The λ_{i} are called the parts of the partition. The number of parts of λ is called the length of λ, and is denoted by $l(\lambda) \cdot \lambda_{1}-I(\lambda)$ is called the rank of the partition. Throughout this paper, λ stands for a partition of $n, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{r}\right), \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}$.
Ferrer (Andrews, G.E., 1976) introduced a representation of a partition by a diagram made of dots "." or squares " \square " as follows. Each λ_{i} is represented as a row of λ_{1} dots (or squares) and these are arranged in parallel rows in the decreasing order of $\lambda^{\prime} s$. For example, the diagrammatic representation for $11=(5,3,2,1)$ is given by Figures 1 and 2. These diagrams help us in formulating the definition of the conjugate λ^{*} of a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \lambda_{r}\right)$. The conjugate $\lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \lambda_{3}^{*}, \ldots \lambda_{s}^{*}\right)$ is a s-partition of n. Where λ_{i}^{*} is the number of dots (squares) in the ith column in the Ferrer diagram for λ. This if $\lambda=(5,3,2,1)$, then $\lambda^{*}=(4,3,2,1,1)$.
Let $\operatorname{spt}(n)$ denote the number of smallest parts including repetitions in all partitions of n. For $i \geq 1$ let us adopt the
following notation $n_{s}(\lambda)=$ number of smallest parts of λ.

$$
\operatorname{spt}(n)=\sum_{\lambda \in \xi(n)} n_{s}(\lambda)
$$

If $\left\langle\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right\rangle$ are the distinct parts in λ where $\mu_{1}>\mu_{2}>\ldots>\mu_{k}$, then $\mu_{i}=g_{i}=$ ith greatest part of $\lambda, \mu_{k-i+1}=i t h$ smallest parts of λ, and $n_{s_{i}}(\lambda)$ is the number of i th smallest parts in λ, that is, the number of μ_{k-i+1} 's in λ. We write $s_{i}(\lambda)=\mu_{k-i+1}$ where $t_{i}=s_{i}-s_{i-1}$ if s_{i} and s_{i-1} both exist, $t_{i}=s_{i}$ if s_{i} exists but s_{i-1} does not exist, and $t_{i}=0$ if s_{i} does not exist but s_{i-1} exists. Let $s p t_{i}(n)$ denote the number of $i t h$ smallest parts in all partitions of n and

$$
\operatorname{sum}\left(s_{i}\right)=\sum_{\lambda \in \xi(n)} \mu_{k-i+1}
$$

Dually, we define the $i^{\text {th }}$ greatest part of $\lambda, \operatorname{gpt}(\lambda), n_{g}(\lambda)$, ith greatest part $g_{i}(\lambda)$ of λ and $\operatorname{sum}\left(g_{i}\right)$.
In Table 1, we provide a list of the partitions of 6 with their corresponding $s_{1}(\lambda), s_{2}(\lambda), n_{s_{1}}(\lambda), n_{s_{2}}(\lambda), g_{1}(\lambda), g_{2}(\lambda)$, $n_{g_{1}}(\lambda), n_{g_{2}}(\lambda)$. We see that $\operatorname{spt}(n)=26, \operatorname{spt} t_{2}(n)=8, \operatorname{gpt}(n)=20, g p t_{2}(n)=14, \operatorname{sum}\left(s_{2}-s_{1}\right)=14$ and $\operatorname{sum}\left(g_{1}-g_{2}\right)=$ 26.

Let $\xi(n)$ denote the set of all partitions of n and $p(n)$ be the cardinality of $\xi(n)$ for $n \in N$ and $p(0)=1$. If $1 \leq r \leq n$ we write $p_{r}(n)$ for the number of partitions of n each consisting of exactly r parts, that is, r-partitions of n. If $r \leq 0$ or $r \geq n$, we write $p_{r}(n)=0$ and $\xi^{*}(n)$ denotes the set of all conjugate partitions of n. Also let $p(k, n)$ represent the number of partitions of n using natural numbers at least as large as k only, and let $G(s, n)$ denote the number of partitions of n having greatest part n, as in (Atkin, A.O.L et al, 2003) and (Bringmann, K. et al,to appear). For $m \in z, N(m ; n)=$ number of $\lambda \in \xi(n)$ such that $r(\lambda)=m$. For $k \in N$,

$$
N_{k}(n)=\sum_{m=-\infty}^{+\infty} m^{k} N(m ; n)
$$

Andrews (Andrews, G. E., to appear) proved analytically that

$$
s p t(n)=n p(n)-\frac{1}{2} N_{2}(n)
$$

In this paper, we give a proof of the theorem for the relation between the $i t h$ smallest parts and $i t h$ greatest parts of the partitions of the positive integer n. In particular, we show that

$$
\operatorname{spt}(n)=\sum_{\lambda \in \xi(n)} g_{1}(\lambda)-\sum_{\lambda \in \xi(n)} g_{2}(\lambda)
$$

Theorem 4. $\xi(n)=\xi^{*}(n)$.

Proof. The Ferrer diagram for λ consists of r rows of dots, with the i th row having λ_{i} dots. Thus clearly, the columns also have dots in decreasing numbers. Hence the rows in λ^{*} have dots in decreasing numbers. Since λ, λ^{*} have the same number of dots, it follows that $\lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{s}^{*}\right)$ is a partition of n. Furthermore, $\lambda^{* *}=\lambda$. Hence $\xi(n)=\xi^{*}(n)$.

Theorem 5. For $1 \leq i \leq n$, let g_{i} be the ith greatest part of λ. Then $\sum_{\lambda \in \xi(n)} g_{i}=\sum_{\lambda \in \xi(n)} g_{i}^{*}$.

Proof. From theorem 1, we have that $\xi(n)=\xi^{*}(n) \Rightarrow \sum_{\lambda \in \xi(n)} g_{i}=\sum_{\lambda \in \xi(n)} g_{i}^{*}$.
Theorem 6. For each i, if
(i) g_{i}^{*} is the greatest part of λ^{*}, then $n_{s_{i}}(\lambda)=g_{i}^{*}-g_{i+1}^{*}$.
(ii) the $(i+1)$ th greatest part does not exist, then $n_{s_{i}}(\lambda)=g_{i}^{*}$.
(iii) the ith greatest part does not exist, then $n_{s_{i}}(\lambda)=0$.

Proof. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \in \xi(n)$ and $\lambda^{*}=\left(\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{r}^{*}\right) \in \xi^{*}(n)$. The Ferrer diagram of λ and λ^{*} can be partitioned into rows having equal numbers of dots which can expressed in matrix form as shown in Figure 3. We observe that the number of rows in the i th matrix from bottom to top of diagram for λ is equal to the number for the $i t h$ smallest parts of λ. Also, the number of columns in the i th matrix from top to bottom of the diagram for λ^{*} is equal to the i th greatest part of λ^{*}. We also observe that
(i) If both the i th and the $(i+1)$ th greatest parts of λ^{*} exist, then the difference between the $i t h$ and the $(i+1)$ th greatest parts of λ^{*} is equal to the number of the i th smallest parts of λ.
(ii) If the i th greatest part of λ^{*} exists and the $(i+1)$ th greatest parts of λ^{*} do not exist, then the value of the $i t h$ greatest part of λ^{*} is equal to the number of the i th smallest part of λ.
(iii) If the i th greatest part of λ^{*} does not exist and the $(i+1)$ th greatest part of λ^{*} exists, then the difference between the i th and the $(i+1)$ th greatest parts of λ^{*} is equal to zero.

Hence $n_{s_{i}}(\lambda)=g_{i}^{*}-g_{i+1}^{*}$ if both g_{i}^{*} and g_{i+1}^{*} exist, $n_{s_{i}}(\lambda)=g_{i}^{*}$ if g_{i+1}^{*} does not exist, and $n_{s_{i}}(\lambda)=0$ if g_{i}^{*} does not exist.
Theorem 7. $\operatorname{spt}_{i}(n)=\sum_{\lambda \in \xi(n)} g_{i}(\lambda)-\sum_{\lambda \in \xi(n)} g_{i+1}(\lambda)$.
Proof. Since $\operatorname{spt}_{i}(n)=\sum_{\lambda \in \xi(n)} n_{s_{i}}(\lambda)$ from theorem 3, it follows that

$$
\begin{aligned}
& n_{s_{i}}(\lambda)=g_{i}^{*}(\lambda)-g_{i+1}^{*}(\lambda) \text { or } n_{s_{i}}(\lambda)=g_{i}^{*}(\lambda) . \\
& \quad \Rightarrow \sum_{\lambda \in \xi(n)} n_{s_{i}}(\lambda)=\sum_{\lambda \in \xi(n)}\left[g_{i}^{*}(\lambda)-g_{i+1}^{*}(\lambda)\right]
\end{aligned}
$$

and from theorem 2, we have that

$$
\begin{array}{r}
\Rightarrow \sum_{\lambda \in \xi(n)} n_{s_{i}}(\lambda)=\sum_{\lambda \in \xi(n)}\left[g_{i}(\lambda)-g_{i+1}(\lambda)\right] \\
\operatorname{spt}_{i}(n)=\sum_{\lambda \in \xi(n)} g_{i}(\lambda)-\sum_{\lambda \in \xi(n)} g_{i+1}(\lambda)
\end{array}
$$

As a consequence of theorem 4 , we have the following corollary:
Corollary 1. Let g_{1}, g_{2} be the first and second greatest parts of λ respectively. Then

$$
\operatorname{spt}(n)=\sum_{\lambda \in \xi(n)} g_{1}(\lambda)-\sum_{\lambda \in \xi(n)} g_{2}(\lambda)
$$

Theorem 8. If the partition $\lambda \in \xi(n)$ has k distinct parts, then $g_{i}=s_{k-i+1}$ for $1 \leq i \leq k$.
Proof. From theorem 3, the i th matrix from top to bottom in the Ferrer diagram is the same as the $(k-i+1)$ th matrix from bottom to top. Hence $g_{i}=s_{k-i+1}$ for $1 \leq i \leq k$.

Theorem 9. $g p t_{i}(n)=\sum_{\lambda \in \xi(n)} t_{i}(\lambda)$.
Proof. From theorem 4, we have that

$$
\operatorname{spt}_{i}(n)=\sum_{\lambda \in \xi(n)}\left[g_{i}(\lambda)-g_{i+1}(\lambda)\right]
$$

also from theorem 5,

$$
\begin{gathered}
g p t_{k-i+1}(n)=\sum_{\lambda \in \xi(n)}\left[s_{k-i+1}(\lambda)-s_{k-i-1+1}(\lambda)\right] \\
\Rightarrow g p t_{i}(n)=\sum_{\lambda \in \xi(n)}\left[s_{t}(\lambda)-s_{t-1}(\lambda)\right], \text { where } t=k-i+1
\end{gathered}
$$

Hence

$$
g p t_{i}(n)=\sum_{\lambda \in \xi(n)} t_{i}(\lambda)
$$

As a consequence of theorem 6, we have the following corollary:
Corollary 2. Let s_{1} be the smallest parts of λ. Then

$$
\operatorname{gpt}(n)=\sum_{\lambda \in \xi(n)} s_{1}(\lambda)
$$

Remark 2. $\sum_{\lambda \in \xi(n)}\left[s_{t}(\lambda)-s_{t-1}(\lambda)\right] \neq \sum_{\lambda \in \xi(n)} s_{t}(\lambda)-\sum_{\lambda \in \xi(n)} s_{t-1}(\lambda)$, since when $s_{i}(\lambda)$ does not exist, then $s_{t}(\lambda)-s_{t-1}(\lambda)=0$.
Theorem 10. $\sum_{\lambda \in \xi(n)} g_{1}(\lambda)=\sum_{k_{1}}^{\infty} \sum_{1 k_{2}=1}^{\infty} \ldots \sum_{k_{i-1}}^{\infty} \sum_{g_{1}=1}^{\infty} \sum_{g_{2}=1}^{g_{1}-1} \ldots \sum_{g_{i}=1}^{g_{i-1}-1} g_{i} \cdot p_{g_{i}}\left(n-k_{1} g_{1}-k_{2} g_{2} \ldots-k_{i-1} g_{i-1}\right)$.
Proof. From (Reddy, K. H., 2010), for every g, we have

$$
G(g, n)=p_{g}(n)
$$

Hence

$$
\sum_{\lambda \in \xi(n)} g_{1}(\lambda)=\sum_{g_{i}=1}^{n} g_{1} \cdot p_{g_{1}}(n)
$$

If the greatest parts g_{1} appear k_{1} times followed by its successor g_{2}, then

$$
G\left(g_{2}, n-k_{1} g_{1}\right)=p_{g_{2}}\left(n-k_{1} g_{1}\right)
$$

The sum of these second greatest parts taken over all partitions is $\sum_{\lambda \in \xi(n)} g_{2} p_{g_{2}}\left(n-k_{1} g_{1}\right)$, hence

$$
\sum_{\lambda \in \xi(n)} g_{2}(\lambda)=\sum_{k_{1}=1}^{\infty} \sum_{g_{1}=1}^{\infty} \sum_{g_{2}=1}^{g_{1}-1} g_{2} \cdot p_{g_{2}}\left(n-k_{1} g_{1}\right)
$$

The theorem follows by repeating this process

$$
\sum_{\lambda \in \xi(n)} g_{i}(\lambda)=\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \ldots \sum_{k_{i-1}}^{\infty} \sum_{g_{1}=1}^{\infty} \sum_{g_{2}=1}^{g_{1}-1} \ldots \sum_{g_{i}=1}^{g_{i-1}-1} g_{i} \cdot p_{g_{i}}\left(n-k_{1} g_{1}-k_{2} g_{2} \ldots-k_{i-1} g_{i-1}\right)
$$

In general we have from theorem 4 the following:

Theorem 11.

$$
\begin{aligned}
& \operatorname{spt}_{i}(n)=\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \ldots \sum_{k_{i-1}}^{\infty} \sum_{g_{1}}^{\infty} \sum_{g_{2}=1}^{g_{1}-1} \ldots \sum_{g_{i}=1}^{g_{i-1}-1} g_{i} \cdot p_{g_{i}}\left(n-k_{1} g_{1}-k_{2} g_{2} \ldots-k_{i-1} g_{i-1}\right) \\
& -\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \ldots \sum_{k_{i}}^{\infty} \sum_{g_{1}}^{\infty} \sum_{1}^{g_{1}-1} \ldots \sum_{g_{2}} \ldots \sum_{g_{i+1}=1}^{g_{i}-1} g_{i+1} \cdot p_{g_{i+1}}\left(n-k_{1} g_{1}-k_{2} g_{2} \ldots-k_{i} g_{i}\right)
\end{aligned}
$$

Proof. From theorem 4, we have

$$
s p t_{i}(n)=\sum_{\lambda \in \xi(n)} g_{i}(\lambda)-\sum_{\lambda \in \xi(n)} g_{i+1}(\lambda)
$$

hence

$$
\begin{aligned}
& \operatorname{spt}_{i}(n)=\sum_{k_{1}}^{\infty} \sum_{1}^{\infty} \ldots \sum_{k_{2}}^{\infty} \sum_{k_{i-1}}^{\infty} \sum_{g_{1}}^{g_{1}-1} \ldots \sum_{g_{2}=1}^{g_{i-1}-1} g_{i} \cdot p_{g_{i}}\left(n-k_{1} g_{1}-k_{2} g_{2} \ldots-k_{i-1} g_{i-1}\right) \\
& -\sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \ldots \sum_{k_{i}}^{\infty} \sum_{g_{1}=1}^{\infty} \sum_{g_{2}=1}^{g_{1}-1} \ldots \sum_{g_{i+1}=1}^{g_{i}-1} g_{i+1} \cdot p_{g_{i+1}}\left(n-k_{1} g_{1}-k_{2} g_{2} \ldots-k_{i} g_{i}\right)
\end{aligned}
$$

Corollary 3. $\operatorname{spt}(n)=\sum_{g_{1}=1}^{\infty} g_{1} \cdot p_{g_{1}}(n)-\sum_{k_{1}=1}^{\infty} \sum_{1}^{\infty} \sum_{1 g_{2}=1}^{g_{1}-1} g_{2} \cdot p_{g_{2}}\left(n-k_{1} g_{1}\right)$.

Proof. Put $i=1$ into theorem 8.
Theorem 12. $p_{1}(n)+p_{2}(n-k)+p_{3}(n-2 k)+\ldots=p(k+1, n+k)$.

Proof. By induction.
Theorem 13. The number of r-partitions of n having k as a smallest part is

$$
j+\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]
$$

where $j=1$ if r divides n, otherwise $j=0$.
Proof. From (Reddy, K.H., 2010), the number of r-partitions of n with smallest part k is

$$
p_{r-1}[n-(k-1) r-1] .
$$

We fix $k \in\{1,2, \ldots, n\}$. For $1 \leq i \leq r$, the number of r-partitions of n with $(r-i)$ smallest parts each being k is the number of i-partitions of $n-(r-i) k$. Summing over $i=1$ to r, we get the total number of r-partitions of n with smallest parts k. This number is

$$
j+\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]
$$

where $j=1$ if r divides n, otherwise $j=0$.
As k varies from 1 to n, we have the following corollaries:
Corollary 4. The total number of r-partitions is

$$
\sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]\right]
$$

where $j=1$ if r divides n, otherwise $j=0$.
Corollary 5. By taking the sum as r varies, we get

$$
\operatorname{spt}(n)=\sum_{r=1}^{\infty} \sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]\right]
$$

where $j=1$ if r divides n, otherwise $j=0$.
We now independently derive another formula for $\operatorname{spt}(n)$.
Theorem 14. $\operatorname{spt}(n)=\sum_{t_{1}=1}^{\infty} \sum_{s_{1}}^{\infty} p\left(s_{i_{1}}, n-t_{1} s_{i_{1}}\right)+d(n)$ where $d(n)$ is the number of positive divisors of n.
Proof. Any partition in $\xi(n)$ has a smallest part which possibly repeats.
(i) If the smallest part d is a divisor of n, then the number of partitions with d as a smallest part is

$$
1+\sum_{t=1}^{\left[\frac{n}{d}\right]-1} p(d, n-t d)
$$

where 1 corresponds to the partition $\left(d, d, \ldots\right.$ up to $\frac{n}{d}$ times $)$.
(ii) If d is not a divisor of n there is no partition with equal parts. In this case the total partitions with d as smallest part is

$$
\sum_{t=1}^{\left[\frac{n}{d}\right]-1} p(d, n-t d)
$$

which gives

$$
\begin{aligned}
\operatorname{spt}(n) & =\sum_{t=1}^{\left[\frac{n}{d}\right]-1} p(d, n-t d)+\sum_{\frac{d}{n}} 1 \\
& =\sum_{t=1}^{\left[\frac{n}{d}\right]-1} p(d, n-t d)+d(n)
\end{aligned}
$$

As a consequence of theorem 11 , we have $d^{1}(n-t s)=$ number of divisors of $n-t s$ that are greater than s

$$
\operatorname{spt}_{2}(n)=\sum_{s_{1}=1}^{\infty} \sum_{t_{1}=1}^{\infty}\left[\sum_{s_{2}=s_{1}+1}^{\infty} \sum_{t_{2}=1}^{\infty} p\left(s_{1}, n-t_{1} s_{1}-t_{2} s_{2}\right)+d\left(n-t_{1} s_{1}\right)\right]
$$

More generally, if $d^{1}\left(n-t_{1} s_{1}-t_{2} s_{2}-\ldots-t_{i-1} s_{i-1}\right)$ is the number of divisors of $n^{1}-t_{1} s_{1}-t_{2} s_{2}-\ldots-t_{i-1} s_{i-1}$ that are greater than s_{i-1}, then

$$
\begin{aligned}
& \operatorname{spt}_{i}(n)=\sum_{s_{1}=1}^{\infty} \sum_{1 s_{2}=s_{1}+1}^{\infty} \ldots \sum_{s_{i}=s_{i-1}+1}^{\infty} \sum_{t_{1}=1}^{\infty} \sum_{1 t_{2}=1}^{\infty} \ldots \sum_{t_{i-1}=1}^{\infty} \sum_{t_{i}=1}^{\infty} p\left(s_{1}, n-t_{1} s_{1}-t_{2} s_{2}-\ldots-t_{i} s_{i}\right) \\
& +\sum_{s_{1}=1}^{\infty} \sum_{s_{2}=s_{1}+1}^{\infty} \ldots \sum_{s_{i-1}=s_{i-2}+1 t_{1}}^{\infty} \sum_{1}^{\infty} \sum_{t_{2}=1}^{\infty} \ldots \sum_{t_{i-2}=1}^{\infty} \sum_{t_{i-1}=1}^{\infty} d^{\prime}\left(n-t_{1} s_{1}-t_{2} s_{2}-\ldots-t_{i-1} s_{i-1}\right)
\end{aligned}
$$

Theorem 15. If $\{a, m, n, r, S\} \subset N, b \in Z, r \left\lvert\,\left(\frac{n-b r}{a}\right)\right.$ and $S=\{a m+b \mid m=1,2, \ldots, n\}$, then

$$
\operatorname{spt}(S ; n)=\sum_{r=1}^{\infty} \sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}\left[\left(\frac{n-b r}{a}\right)-(k-1) r-1-i\right]\right]
$$

Proof. From (Reddy, K. H., 2010), if $a \mid n-b r$ and $n-b r>0$, then $p_{r}(" S ", n)=p_{r}\left(\frac{n-b r}{a}\right)$, otherwise

$$
\begin{equation*}
p_{r}(" S ", n)=0 \tag{1}
\end{equation*}
$$

From theorem 10,

$$
\begin{equation*}
\operatorname{spt}(n)=\sum_{r=1}^{\infty} \sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]\right] \tag{2}
\end{equation*}
$$

where $j=1$ if r divides n, otherwise $j=0$. From equations (1) and (2) we have

$$
\operatorname{spt}(S ; n)=\sum_{r=1}^{\infty} \sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}\left[\left(\frac{n-b r}{a}\right)-(k-1) r-1-i\right]\right]
$$

As a consequence of theorem 12, we have the following

$$
\operatorname{spt}(e ; n)=\sum_{r=1}^{\infty} \sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}\left[\left(\frac{n}{2}\right)-(k-1) r-1-i\right]\right]
$$

$$
\operatorname{spt}(o ; n)=\sum_{r=1}^{\infty} \sum_{k=1}^{\infty}\left[j+\sum_{i=0}^{\infty} p_{r-1-i}\left[\left(\frac{n+r}{2}\right)-(k-1) r-1-i\right]\right]
$$

References

Andrews, G. E. (1976). The theory of partitions. Encyclopedia of Mathematics and its Applications, Vol. 2, AddisonWesley Publishing Co., Reading, Mass.-London-Amsterdam.

Andrews, G. E. (to appear). The number of smallest parts in the partitions of n. J. Reine Angew. Math.
Atkin, A. O. L. \& Garvan, F. G. (2003). Relations between the ranks and cranks of partitions. Ramanujan J., 7, 343-366.
Hanuma Reddy, K. (2007). Note on convex polygons. Proceedings of the 10th Joint Conference of Information Sciences, 1691-1697.

Hanuma Reddy, K. (2010). A note on r-partitions of n in which the least part is k. International Journal of Computational Mathematical Ideas, 2 (1), 6-12.
Hanuma Reddy, K. (2010). A note on partitions. International Journal of Mathematical Sciences, 9 (3-4), 379-389.
Ramanujan, S. (1988). The lost notebook and other unpublished papers. Springer-Verlag, Berlin.

Table 1. The partitions of 6

$\lambda \in \xi(6)$	$s_{1}(\lambda)$	$s_{2}(\lambda)$	$s_{2}-s_{1}$	$n_{s_{1}}(\lambda)$	$n_{s_{2}}(\lambda)$	$g_{1}(\lambda)$	$g_{2}(\lambda)$	$g_{1}-g_{2}$	$n_{g_{1}}(\lambda)$	$n_{g_{2}}(\lambda)$
(6)	6	-	0	1	0	6	--	6	1	0
$(5,1)$	1	5	4	1	1	5	1	4	1	1
$(4,2)$	2	4	2	1	1	4	2	2	1	1
$(3,3)$	3	--	0	2	0	3	--	3	2	0
$(4,1,1)$	1	4	3	2	1	4	1	3	1	2
$(3,2,1)$	1	2	1	1	1	3	2	1	1	1
$(2,2,2)$	2	--	0	3	0	2	--	2	3	0
$(3,1,1,1)$	1	3	2	3	1	3	1	2	1	3
$(2,2,1,1,1)$	1	2	1	2	2	2	1	1	2	2
$(2,1,1,1,1)$	1	2	1	4	1	2	1	1	1	4
$(1,1,1,1,1,1)$	1	--	0	6	0	1	--	1	6	0

Figure 1. Diagrammatic representation for $11=(5,3,2,1)$

Fig 1

Fig 2

Figure 2. Diagrammatic representation for $11=(4,3,2,1,1)$

Figure 3. Ferrer diagram for lambda and λ^{*}

