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Abstract

In this paper the formulae for the number of smallest parts of partitions of n ∈ N and relations between the ith smallest

parts and the ith greatest parts are obtained.
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1. Introduction

We adopt the common notation on partitions as used in (Andrews, G.E., 1976) and (Andrews, G. E., to appear). A

partition of a positive integer n is a finite non-increasing sequence of positive integers λ1, λ2, ...λr such that
r∑

i = 1
λi = n and

it is denoted by n = (λ1, λ2, ...λr) . The λi are called the parts of the partition. The number of parts of λ is called the length

of λ, and is denoted by l (λ) . λ1 − I (λ) is called the rank of the partition. Throughout this paper, λ stands for a partition of

n, λ = (λ1, λ2, ...λr) , λ1 ≥ λ2 ≥ ... ≥ λr.

Ferrer (Andrews, G.E., 1976) introduced a representation of a partition by a diagram made of dots ” · ” or squares ”�” as

follows. Each λi is represented as a row of λ1 dots (or squares) and these are arranged in parallel rows in the decreasing

order of λ′s. For example, the diagrammatic representation for 11 = (5, 3, 2, 1) is given by Figures 1 and 2. These

diagrams help us in formulating the definition of the conjugate λ∗ of a partition λ = (λ1, λ2, λ3, ...λr) . The conjugate

λ∗ =
(
λ∗1, λ

∗
2, λ

∗
3, ...λ

∗
s

)
is a s-partition of n. Where λ∗i is the number of dots (squares) in the ith column in the Ferrer

diagram for λ. This if λ = (5, 3, 2, 1), then λ∗ = (4, 3, 2, 1, 1) .

Let spt (n) denote the number of smallest parts including repetitions in all partitions of n. For i ≥ 1 let us adopt the
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following notation ns (λ) = number of smallest parts of λ.

spt (n) =
∑
λ ∈ ξ(n)

ns (λ)

If 〈μ1, μ2, ..., μk〉 are the distinct parts in λ where μ1 > μ2 > ... > μk, then μi = gi = ith greatest part of λ, μk−i+1 = ith
smallest parts of λ, and nsi (λ) is the number of ith smallest parts in λ, that is, the number of μk−i+1’s in λ. We write

si (λ) = μk−i+1 where ti = si − si−1 if si and si−1 both exist, ti = si if si exists but si−1 does not exist, and ti = 0 if si does

not exist but si−1 exists. Let spti (n) denote the number of ith smallest parts in all partitions of n and

sum (si) =
∑
λ ∈ ξ(n)

μk−i+1

Dually, we define the ith greatest part of λ, gpt (λ) , ng (λ) , ith greatest part gi (λ) of λ and sum (gi) .

In Table 1, we provide a list of the partitions of 6 with their corresponding s1 (λ) , s2 (λ) , ns1
(λ) , ns2

(λ) , g1 (λ) , g2 (λ) ,
ng1

(λ) , ng2
(λ) .We see that spt (n) = 26, spt2 (n) = 8, gpt (n) = 20, gpt2 (n) = 14, sum (s2 − s1) = 14 and sum (g1 − g2) =

26.

Let ξ (n) denote the set of all partitions of n and p (n) be the cardinality of ξ (n) for n ∈ N and p (0) = 1. If 1 ≤ r ≤ n
we write pr (n) for the number of partitions of n each consisting of exactly r parts, that is, r-partitions of n. If r ≤ 0 or

r ≥ n, we write pr (n) = 0 and ξ∗ (n) denotes the set of all conjugate partitions of n. Also let p (k, n) represent the number

of partitions of n using natural numbers at least as large as k only, and let G (s, n) denote the number of partitions of n
having greatest part n , as in (Atkin, A.O.L et al, 2003) and (Bringmann, K. et al,to appear). For m ∈ z, N (m; n) = number

of λ ∈ ξ (n) such that r (λ) = m. For k ∈ N,

Nk (n) =

+∞∑
m = −∞

mkN (m; n) .

Andrews (Andrews, G. E., to appear) proved analytically that

spt (n) = np (n) − 1

2
N2 (n)

In this paper, we give a proof of the theorem for the relation between the ith smallest parts and ith greatest parts of the

partitions of the positive integer n. In particular, we show that

spt (n) =
∑
λ ∈ ξ(n)

g1 (λ) −
∑
λ ∈ ξ(n)

g2 (λ)

Theorem 4. ξ (n) = ξ∗ (n).

Proof. The Ferrer diagram for λ consists of r rows of dots, with the ith row having λi dots. Thus clearly, the columns

also have dots in decreasing numbers. Hence the rows in λ∗ have dots in decreasing numbers. Since λ, λ∗ have the same

number of dots, it follows that λ∗ =
(
λ∗1, λ

∗
2, ..., λ

∗
s

)
is a partition of n. Furthermore, λ∗∗ = λ. Hence ξ (n) = ξ∗ (n) . �

Theorem 5. For 1 ≤ i ≤ n, let gi be the ith greatest part of λ. Then
∑

λ ∈ ξ(n)
gi =

∑
λ ∈ ξ(n)

g∗
i .

Proof. From theorem 1, we have that ξ (n) = ξ∗ (n) ⇒ ∑
λ ∈ ξ(n)

gi =
∑

λ ∈ ξ(n)
g∗

i . �

Theorem 6. For each i, if

(i) g∗
i is the greatest part of λ∗, then nsi (λ) = g∗

i − g∗
i+1.

(ii) the (i + 1) th greatest part does not exist, then nsi (λ) = g∗
i .

(iii) the ith greatest part does not exist, then nsi (λ) = 0.
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Proof. Let λ = (λ1, λ2, ..., λr) ∈ ξ (n) and λ∗ =
(
λ∗1, λ

∗
2, ..., λ

∗
r

)
∈ ξ∗ (n) . The Ferrer diagram of λ and λ∗ can be partitioned

into rows having equal numbers of dots which can expressed in matrix form as shown in Figure 3. We observe that the

number of rows in the ith matrix from bottom to top of the diagram for λ is equal to the number for the ith smallest parts

of λ. Also, the number of columns in the ith matrix from top to bottom of the diagram for λ∗ is equal to the ith greatest

part of λ∗.We also observe that

(i) If both the ith and the (i + 1) th greatest parts of λ∗ exist, then the difference between the ith and the (i + 1) th
greatest parts of λ∗ is equal to the number of the ith smallest parts of λ.

(ii) If the ith greatest part of λ∗ exists and the (i + 1) th greatest parts of λ∗ do not exist, then the value of the ith greatest

part of λ∗ is equal to the number of the ith smallest part of λ.

(iii) If the ith greatest part of λ∗ does not exist and the (i + 1) th greatest part of λ∗ exists, then the difference between

the ith and the (i + 1) th greatest parts of λ∗ is equal to zero.

Hence nsi (λ) = g∗
i − g∗

i+1 if both g∗
i and g∗

i+1 exist, nsi (λ) = g∗
i if g∗

i+1 does not exist, and nsi (λ) = 0 if g∗
i does not exist. �

Theorem 7. spti (n) =
∑

λ ∈ ξ(n)
gi (λ) − ∑

λ ∈ ξ(n)
gi+1 (λ) .

Proof. Since spti (n) =
∑

λ ∈ ξ(n)
nsi (λ) from theorem 3, it follows that

nsi (λ) = g∗
i (λ) − g∗

i+1 (λ) or nsi (λ) = g∗
i (λ) .

⇒
∑
λ ∈ ξ(n)

nsi (λ) =
∑
λ ∈ ξ(n)

[
g∗

i (λ) − g∗
i+1 (λ)

]
and from theorem 2, we have that

⇒
∑
λ ∈ ξ(n)

nsi (λ) =
∑
λ ∈ ξ(n)

[
gi (λ) − gi+1 (λ)

]
spti (n) =

∑
λ ∈ ξ(n)

gi (λ) −
∑
λ ∈ ξ(n)

gi+1 (λ)

�

As a consequence of theorem 4, we have the following corollary:

Corollary 1. Let g1, g2 be the first and second greatest parts of λ respectively. Then

spt (n) =
∑
λ ∈ ξ(n)

g1 (λ) −
∑
λ ∈ ξ(n)

g2 (λ)

Theorem 8. If the partition λ ∈ ξ (n) has k distinct parts, then gi = sk−i+1 for 1 ≤ i ≤ k.

Proof. From theorem 3, the ith matrix from top to bottom in the Ferrer diagram is the same as the (k − i + 1) th matrix

from bottom to top. Hence gi = sk−i+1 for 1 ≤ i ≤ k. �

Theorem 9. gpti (n) =
∑

λ ∈ ξ(n)
ti (λ) .

Proof. From theorem 4, we have that

spti (n) =
∑
λ ∈ ξ(n)

[
gi (λ) − gi+1 (λ)

]
also from theorem 5,

gptk−i+1 (n) =
∑
λ ∈ ξ(n)

[sk−i+1 (λ) − sk−i−1+1 (λ)]

⇒ gpti (n) =
∑
λ ∈ ξ(n)

[st (λ) − st−1 (λ)] , where t = k − i + 1

Hence

gpti (n) =
∑
λ ∈ ξ(n)

ti (λ) .

�
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As a consequence of theorem 6, we have the following corollary:

Corollary 2. Let s1 be the smallest parts of λ. Then

gpt (n) =
∑
λ ∈ ξ(n)

s1 (λ) .

Remark 2.
∑

λ ∈ ξ(n)
[st (λ) − st−1 (λ)] �

∑
λ ∈ ξ(n)

st (λ)− ∑
λ ∈ ξ(n)

st−1 (λ) , since when si (λ) does not exist, then st (λ)−st−1 (λ) = 0.

Theorem 10.
∑

λ ∈ ξ(n)
g1 (λ) =

∞∑
k1 = 1

∞∑
k2 = 1
...

∞∑
ki−1

∞∑
g1 = 1

g1−1∑
g2 = 1
...

gi−1−1∑
gi = 1

gi · pgi (n − k1g1 − k2g2... − ki−1gi−1) .

Proof. From (Reddy, K. H., 2010), for every g, we have

G (g, n) = pg (n)

Hence ∑
λ ∈ ξ(n)

g1 (λ) =

n∑
gi = 1

g1 · pg1
(n) .

If the greatest parts g1 appear k1 times followed by its successor g2, then

G (g2, n − k1g1) = pg2
(n − k1g1)

The sum of these second greatest parts taken over all partitions is
∑

λ ∈ ξ(n)
g2 pg2

(n − k1g1), hence

∑
λ ∈ ξ(n)

g2 (λ) =

∞∑
k1 = 1

∞∑
g1 = 1

g1−1∑
g2 = 1

g2 · pg2
(n − k1g1)

The theorem follows by repeating this process

∑
λ ∈ ξ(n)

gi (λ) =

∞∑
k1 = 1

∞∑
k2 = 1

...

∞∑
ki−1

∞∑
g1 = 1

g1−1∑
g2 = 1

...

gi−1−1∑
gi = 1

gi · pgi (n − k1g1 − k2g2... − ki−1gi−1)

�

In general we have from theorem 4 the following:

Theorem 11.

spti (n) =

∞∑
k1 = 1

∞∑
k2 = 1

...

∞∑
ki−1

∞∑
g1 = 1

g1−1∑
g2 = 1

...

gi−1−1∑
gi = 1

gi · pgi (n − k1g1 − k2g2... − ki−1gi−1)

−
∞∑

k1 = 1

∞∑
k2 = 1

...

∞∑
ki

∞∑
g1 = 1

g1−1∑
g2 = 1

...

gi−1∑
gi+1 = 1

gi+1 · pgi+1
(n − k1g1 − k2g2... − kigi)

Proof. From theorem 4, we have

spti (n) =
∑
λ ∈ ξ(n)

gi (λ) −
∑
λ ∈ ξ(n)

gi+1 (λ)

hence

spti (n) =

∞∑
k1 = 1

∞∑
k2 = 1

...

∞∑
ki−1

∞∑
g1 = 1

g1−1∑
g2 = 1

...

gi−1−1∑
gi = 1

gi · pgi (n − k1g1 − k2g2... − ki−1gi−1)

−
∞∑

k1 = 1

∞∑
k2 = 1

...

∞∑
ki

∞∑
g1 = 1

g1−1∑
g2 = 1

...

gi−1∑
gi+1 = 1

gi+1 · pgi+1
(n − k1g1 − k2g2... − kigi)

�
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Corollary 3. spt (n) =
∞∑

g1 = 1
g1 · pg1

(n) − ∞∑
k1 = 1

∞∑
g1 = 1

g1−1∑
g2 = 1

g2 · pg2
(n − k1g1).

Proof. Put i = 1 into theorem 8. �

Theorem 12. p1 (n) + p2 (n − k) + p3 (n − 2k) + ... = p (k + 1, n + k).

Proof. By induction. �

Theorem 13. The number of r-partitions of n having k as a smallest part is

j +
∞∑

i = 0

pr−1−i [n − (k − 1) r − 1 − i]

where j = 1 if r divides n, otherwise j = 0.

Proof. From (Reddy, K.H., 2010), the number of r-partitions of n with smallest part k is

pr−1 [n − (k − 1) r − 1] .

We fix k ∈ {1, 2, ..., n} . For 1 ≤ i ≤ r, the number of r-partitions of n with (r − i) smallest parts each being k is the number

of i-partitions of n − (r − i) k. Summing over i = 1 to r, we get the total number of r-partitions of n with smallest parts k.
This number is

j +
∞∑

i = 0

pr−1−i [n − (k − 1) r − 1 − i]

where j = 1 if r divides n, otherwise j = 0. �

As k varies from 1 to n, we have the following corollaries:

Corollary 4. The total number of r-partitions is

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i [n − (k − 1) r − 1 − i]

⎤⎥⎥⎥⎥⎥⎦
where j = 1 if r divides n, otherwise j = 0.

Corollary 5. By taking the sum as r varies, we get

spt (n) =

∞∑
r = 1

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i [n − (k − 1) r − 1 − i]

⎤⎥⎥⎥⎥⎥⎦
where j = 1 if r divides n, otherwise j = 0.

We now independently derive another formula for spt (n) .

Theorem 14. spt (n) =
∞∑

t1 = 1

∞∑
si1 = 1

p
(
si1 , n − t1si1

)
+ d (n) where d (n) is the number of positive divisors of n.

Proof. Any partition in ξ (n) has a smallest part which possibly repeats.

(i) If the smallest part d is a divisor of n, then the number of partitions with d as a smallest part is

1 +

[ n
d ]−1∑

t = 1

p (d, n − td)

where 1 corresponds to the partition
(
d, d, ... up to n

d times
)
.
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(ii) If d is not a divisor of n there is no partition with equal parts. In this case the total partitions with d as smallest part

is
[ n

d ]−1∑
t = 1

p (d, n − td)

which gives

spt (n) =

[ n
d ]−1∑

t = 1

p (d, n − td) +
∑

d
n

1

=

[ n
d ]−1∑

t = 1

p (d, n − td) + d (n)

�

As a consequence of theorem 11, we have d1 (n − ts) = number of divisors of n − ts that are greater than s

spt2 (n) =

∞∑
s1 = 1

∞∑
t1 = 1

⎡⎢⎢⎢⎢⎢⎢⎣ ∞∑
s2=s1+1

∞∑
t2 = 1

p (s1, n − t1s1 − t2s2) + d (n − t1s1)

⎤⎥⎥⎥⎥⎥⎥⎦
More generally, if d1 (n − t1s1 − t2s2 − ... − ti−1si−1) is the number of divisors of n1 − t1s1 − t2s2 − ... − ti−1si−1 that are

greater than si−1, then

spti (n) =

∞∑
s1 = 1

∞∑
s2=s1+1

...

∞∑
si=si−1+1

∞∑
t1 = 1

∞∑
t2 = 1

...

∞∑
ti−1 = 1

∞∑
ti = 1

p (s1, n − t1s1 − t2s2 − ... − ti si)

+

∞∑
s1 = 1

∞∑
s2=s1+1

...

∞∑
si−1=si−2+1

∞∑
t1 = 1

∞∑
t2 = 1

...

∞∑
ti−2 = 1

∞∑
ti−1 = 1

d′ (n − t1s1 − t2s2 − ... − ti−1si−1)

Theorem 15. If {a,m, n, r, S } ⊂ N, b ∈ Z, r|
(

n − br
a

)
and S = {am + b|m = 1, 2, ..., n} , then

spt (S ; n) =

∞∑
r = 1

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i

[(
n − br

a

)
− (k − 1) r − 1 − i

]⎤⎥⎥⎥⎥⎥⎦
Proof. From (Reddy, K. H., 2010), if a|n − br and n − br > 0, then pr (”S ”, n) = pr

(
n − br

a

)
, otherwise

pr (”S ”, n) = 0 (1)

From theorem 10,

spt (n) =

∞∑
r = 1

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i [n − (k − 1) r − 1 − i]

⎤⎥⎥⎥⎥⎥⎦ (2)

where j = 1 if r divides n, otherwise j = 0. From equations (1) and (2) we have

spt (S ; n) =

∞∑
r = 1

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i

[(
n − br

a

)
− (k − 1) r − 1 − i

]⎤⎥⎥⎥⎥⎥⎦
�

As a consequence of theorem 12, we have the following

spt (e; n) =

∞∑
r = 1

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i

[(n
2

)
− (k − 1) r − 1 − i

]⎤⎥⎥⎥⎥⎥⎦
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spt (o; n) =

∞∑
r = 1

∞∑
k = 1

⎡⎢⎢⎢⎢⎢⎣ j +
∞∑

i = 0

pr−1−i

[(n + r
2

)
− (k − 1) r − 1 − i

]⎤⎥⎥⎥⎥⎥⎦
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Table 1. The partitions of 6

λ ∈ ξ (6) s1 (λ) s2 (λ) s2 − s1 ns1
(λ) ns2

(λ) g1 (λ) g2 (λ) g1 − g2 ng1
(λ) ng2

(λ)

(6) 6 −− 0 1 0 6 −− 6 1 0

(5, 1) 1 5 4 1 1 5 1 4 1 1

(4, 2) 2 4 2 1 1 4 2 2 1 1

(3, 3) 3 −− 0 2 0 3 −− 3 2 0

(4, 1, 1) 1 4 3 2 1 4 1 3 1 2

(3, 2, 1) 1 2 1 1 1 3 2 1 1 1

(2, 2, 2) 2 −− 0 3 0 2 −− 2 3 0

(3, 1, 1, 1) 1 3 2 3 1 3 1 2 1 3

(2, 2, 1, 1, 1) 1 2 1 2 2 2 1 1 2 2

(2, 1, 1, 1, 1) 1 2 1 4 1 2 1 1 1 4

(1, 1, 1, 1, 1, 1) 1 −− 0 6 0 1 −− 1 6 0

Figure 1. Diagrammatic representation for 11 = (5, 3, 2, 1)
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Figure 2. Diagrammatic representation for 11 = (4, 3, 2, 1, 1)

Figure 3. Ferrer diagram for lambda and λ∗
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