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Abstract

We study one property of Bregman projection onto closed convex sets in Banach spaces. As an application, we use

this property to simplify a class of hybrid algorithms for finding fixed points of nonlinear mappings and solving convex

feasibility, variational inequality and equilibrium problems. This will reduce the computational complexity.
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1. Introduction

In this paper, we assume that E is a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E. We denote by J the

normalized duality mapping from E to 2E∗
defined by

J(x) = { f ∈ E∗ : 〈x, f 〉 = ‖ f ‖2 = ‖x‖2},
where 〈·, ·〉 denotes the generalized duality pairing.

Let f : E → (−∞,+∞] be a proper convex function with its domain dom f . For any x ∈ dom f and z ∈ E we denote by

f ′+(x, z) the right-hand side derivative of f at x in the direction z, that is

f ′+(x, z) := lim
t→0+

f (x + tz) − f (x)

t
.

The Bregman distance with respect to f is defined by the function Df : dom f × dom f → [0,+∞]

Df (y, x) := f (y) − f (x) − f ′+(x, y − x).

The function Df is not a distance in the usual sense: it is not always symmetric and may not satisfy the triangular

inequality. For the more details and other related results, the readers are referred to (L.M. Bregman, 1967, p200-217), (D.

Butnariu, E. Resmerita, 2006, p1-39), (C. Li, W. Song, J.C. Yao, 2010, p1128–1149).

Denote P be the metric projection. As we know, if C is a nonempty closed convex subset of a real Hilbert space then the

metric projection PC : H → C is nonexpansive. It is not available in more general Banach spaces. In this connection,

Alber (Ya.I. Alber, 1996, p15-50) introduced generalized projection, denoted by Π, which is analogous to the metric

projection P in a Hilbert space.
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Similarly, by using the Bregman distance, Lve Bregman (L.M. Bregman, 1967, p200-217) introduced Bregman projection

with respect to f , denoted byΠ f , which is natural generalization of the generalized projectionΠ. This presented an elegant

and effective technique in designing and analyzing iterative algorithms for solving feasibility and optimization problems,

variational inequalities, equilibrium problems and finding fixed points of nonlinear mappings.

In this paper, we firstly show a fact that if C is a nonempty closed convex subset and x0 is not in the interior of C, then

the Bregman projection from x0 on C must be a subset of the boundary of C. As an application, we use this property to

simplify a class of hybrid algorithms which were studied in (S. Reich, S. Sabach, 2010, p122-135). This will reduce the

computational complexity. The simpler form algorithms also have the convergence theorems.

2. Preliminaries

Let C ⊂ dom f be a nonempty subset. For any x0 ∈ dom f , the Bregman projection on C with respect to f is defined as the

set of solutions of the optimization problem miny∈C Df (y, x0), that is,

Π
f
C(x0) := arg min

y∈C
Df (y, x0).

It is well known that if E is smooth, then the normalized duality mapping J is single valued. In this case, we consider the

Liapunov functional φ : E × E → [0,+∞] defined by

φ(y, x) = ‖y‖2 − 2〈J(x), y〉 + ‖x‖2 ∀x, y ∈ E.

Let K be a nonempty subset of E. The generalized projection operator ΠK : E → K is a map that assigns to an arbitrary

point x0 in E the minimal points set of the functional φ(x, y), that is

ΠK(x0) = {z ∈ K : φ(z, x0) = min
y∈K
φ(y, x0)}.

The function f is called Gâteaux differentiable at x if limt→0( f (x + tz) − f (x))/t exists for any z. In this case f ′+(x, z)

coincides with ∇ f (x), the value of the gradient ∇ f of f at x. Thus, Df (y, x) = f (y) − f (x) − 〈∇ f (x), y − x〉. The function

f is said to be Fréchet differentiable at x if this limit is attained uniformly in y with ‖y‖ = 1.

It is observed that in a smooth Banach space if f (x) = ‖x‖2 then the functional Df (y, x) coincides with φ(y, x) and

Π
f
C = ΠC . While if E is a real Hilbert space and f (x) = ‖x‖2 then Π

f
C = ΠC = PC . In particular, if x0 ∈ C then

Π
f
C(x0) = x0, ΠC(x0) = x0 and PC(x0) = x0.

Recall that a subset of a topological space is closed if and only if it contains its boundary. A subset of a topological space

has empty boundary if and only if it is both open and closed. Let U be a nonempty closed subset of a topological space,

we use intU to denote the interior of U and b(U) to denote the boundary of U.

3. Main results

Theorem 3.1 Let f be a proper convex function and C ⊂ dom f be a nonempty closed convex subset with nonempty
boundary. For any fixed x0 ∈ dom f and x0 � intC, if the minimum value of Df (y, x) exists on C, then it must be attained
on b(C), i.e., Π f

C(x0) ⊂ b(C).

Proof. If intC = ∅, then it is easy. Since C is a nonempty closed convex subset, it implies that C = b(C). It is obvious that

Π
f
C(x0) ⊂ C = b(C).

Now, we assume that intC � ∅. Suppose on the contrary that Df (y, x) can not obtain its minimum value on b(C). Hence,

there exists a point z ∈ intC such that

Df (z, x0) ≤ Df (y, x0) ∀y ∈ b(C).

Because x0 � intC and C is a nonempty closed convex subset, there exists a point y0 = (1 − t)x0 + tz, t ∈ [0, 1), such that

y0 ∈ b(C). Since f is convex, the function Df (·, x) is also convex. Thus, for any t ∈ [0, 1), we have

0 ≤ Df (z, x0) ≤ Df (y0, x0) ≤ (1 − t)Df (x0, x0) + tD f (z, x0) = tD f (z, x0).

This is a contradiction. Therefore Π
f
C(x0) ⊂ b(C). The proof is complete. �

If we take f (x) = ‖x‖2 then Π
f
C = ΠC . So, we can obtain the following result form Theorem 3.1.

Corollary 3.1 Let C be a nonempty closed convex subset of smooth Banach space E and with nonempty boundary. For
any fixed x0 ∈ E and x0 � intC, if the minimum value of φ(y, x) exists on C, then it must be attained on b(C), i.e.,
ΠC(x0) ⊂ b(C).
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4. Applications

By using the Bregman projection Π f , Reich and Sabach (S. Reich, S. Sabach, 2010, p122-135) studied two hybrid al-

gorithms for finding common fixed points of finitely many Bregman strongly nonexpansive operators. They established

strong convergence theorems and then applied them to the solution of convex feasibility, variational inequality and equi-

librium problems. In this section, we use Theorem 3.1 to simplify those algorithms which were studied in (S. Reich, S.

Sabach, 2010, p122-135) in order to reduce the computational complexity.

It does not matter to our result if those algorithms have computational errors or not. For the sake of simplicity, we remove

the computational errors. Without loss of generality, we quote the following algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi
n = Ti(xn), x0 ∈ E, Ci

0
= E, i = 1, 2, · · · ,N,

Ci
n+1
= {z ∈ Ci

n : Df (z, yi
n) ≤ Df (z, xn)},

Cn+1 :=
⋂N

i=1 Ci
n+1
,

xn+1 = Π
f
Cn+1

(x0) n ∈ N,

(1)

where E is a reflexive Banach space, Ti are Bregman strongly nonexpansive operators and f : E → R is a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on a bounded subset of E.

Our idea is to replace the Ci
n+1

in (4.1) with a new closed convex sets which is smaller than Ci
n+1

but have the same bound-

ary whit Ci
n+1

. So the iteration processes will be simpler than the primary one in calculating Cn+1, Ci
n+2

and projection

points.

We simplify (1) as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi
n = Ti(xn), x0 ∈ E, Ci

0
= E, i = 1, 2, · · · ,N,

Ĉi
n+1
= {z ∈ Ci

n : Df (z, yi
n) = Df (z, xn)},

Ĉn+1 :=
⋂N

i=1 Ĉi
n+1
,

xn+1 = Π
f
Ĉn+1

(x0) n ∈ N.

(2)

Proposition 4.1 The schemes (1) and (2) must generate the same sequence {xn} hence they have the same convergence
theorem.

Proof. As in the proof of (S. Reich, S. Sabach, 2010, p122-135), under the assumptions of f , they ensured the Bregman

Projection onto closed convex sets have a unique element and also claimed that Ci
n+1

are closed and convex. Next, we

prove that Ĉi
n+1

are also closed and convex sets and b(Cn+1) = b(Ĉn+1).

As a matter of fact, the defined inequality of Ci
n+1

in (1) is equivalent to the inequality

〈∇ f (xn) − ∇ f (yi
n), z〉 ≤ f (yi

n) − f (xn) + 〈∇ f (xn), xn〉 − 〈∇ f (yi
n), yi

n〉.

This inequality is affine in z. Similarly, the defined inequality of Ĉi
n+1

in (2) is equivalent to the inequality

〈∇ f (xn) − ∇ f (yi
n), z〉 = f (yi

n) − f (xn) + 〈∇ f (xn), xn〉 − 〈∇ f (yi
n), yi

n〉.

Since Ci
n+1

are closed and convex, it follows that Ĉi
n+1

also are closed and convex, and b(Ci
n+1

) = b(Ĉi
n+1

). Hence,

b(Cn+1) = b(Ĉn+1).

Note that, after finite iterations, we must have x0 � intCn+1. If not, then {xn} ≡ {x0}. Only when x0 ∈ ⋂N
i=1 F(Ti), will this

situation happen.

Since x0 � intCn+1, it follows from b(Cn+1) = b(Ĉn+1) and Theorem 3.1 that xn+1 = Π
f
Cn+1

(x0) = Π
f
Ĉn+1

(x0) ∈ b(Cn+1). The

proof is complete. �
Remark 4.1 In general, in order to show Ci

n+1
are closed, only f need to have some conditions to ensure the continuity

of the right-hand side derivative of f . For example (S. Reich, S. Sabach, 2010, p122-135), if f is uniformly Fréchet

differentiable and bounded on a bounded subset S of E, then ∇ f is uniformly continuous on S from the strong topology

of E to the strong topology of E∗. But if we want to establish convergence theorem, more assumptions may be needed.

Remark 4.2 Similarly to the Bregman projection in Banach spaces, metric projections and generalized projections also

have this property. We can simplify many types of hybrid algorithms such as CQ method (K. Nakajo, W. Takahashi, 2003,
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p372-379), monotone hybrid algorithm (Y.F. Su, D.X. Wang, M.J. Shang, 2008, p1-8) and shrinking projection method

(W. Takahashi, Y. Takeuchi, R. Kubota, 2008, p276-286) by using this idea to reduce the computational complexity.
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