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Abstract

We give bounds on multidimensional Berry-Esseen theorem on a set Ak(x) = {(w1,w2, . . . ,wk) ∈ Rk |
k∑

i=1

wi ≤ x} for

x ∈ R by using the Berry-Esseen theorem in R. The rates of convergence are O(n−
1
2 ). In addition, we give known

constants in the bounds of the approximation.
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1. Introduction

For n ∈ N, let Xi, 1 ≤ i ≤ n be independent and identically distributed random variables with zero means and
n∑

i=1

EX2
i = 1.

Define

S n =

n∑
i=1

Xi

and Φ1 the standard normal distribution in R. Suppose that E|Xi|3 < ∞ for 1 ≤ i ≤ n. The uniform and non-uniform
versions of the Berry-Esseen inequality are

sup
x∈R
|P(S n ≤ x) − Φ1(x)| ≤ C0

n∑
i=1

E|Xi|3

and

|P(S n ≤ x) − Φ1(x)| ≤ C1

1 + |x|3
n∑

i=1

E|Xi|3

respectively, where C0 and C1 are positive constants. The uniform version was independently discovered by (Berry, 1941,
p. 122-136) and (Esseen, 1945, p. 1-125) and the non-uniform version was discovered by (Nagaev, 1965, p. 214-235).
Without assuming the identically of Xi, the best constant C0 and C1 were given by (Shevtsova, 2010, p. 862-864) and
(Paditz, 1989, p. 453-464), respectively. The results are as follows:

Theorem 1.1 (Shevtsova, 2010, p. 862-864) Let Xi, 1 ≤ i ≤ n, be independent random variables such that EXi = 0 and

E|Xi|3 < ∞. Assume that
n∑

i=1

EX2
i = 1. Then

sup
x∈R
|P(S n ≤ x) − Φ1(x)| ≤ 0.5600

n∑
i=1

E|Xi|3.

Published by Canadian Center of Science and Education 9



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 1; February 2012

Theorem 1.2 (Paditz, 1989, p. 453-464) Under the assumptions of theorem 1.1, we have

|P(S n ≤ x) − Φ1(x)| ≤ 31.935
1 + |x|3

n∑
i=1

E|Xi|3

for all real numbers x.

(Chen, 2001, p. 236-254) relaxed the condition to the finiteness of the second moments and gave uniform and non-uniform
versions of the inequality. The constant of the non-uniform version was given by (Neammanee, 2007, p. 1-10). Here are
the results.

Theorem 1.3 (Chen, 2001, p. 236-254) Let Xi, 1 ≤ i ≤ n, be independent random variables such that EXi = 0 and
n∑

i=1

EX2
i = 1. Then

sup
x∈R
|P(S n ≤ x) − Φ1(x)| ≤ 4.1

n∑
i=1

{E|Xi|2I(|Xi| > 1) + E|Xi|3I(|Xi| ≤ 1)}

and for all real numbers x,

|P(S n ≤ x) − Φ1(x)| ≤ C
n∑

i=1

{
E|Xi|2I(|Xi| > 1 + |x|)

1 + |x|2 +
E|Xi|3I(|Xi| ≤ 1 + |x|)

1 + |x|3

}
.

Theorem 1.4 (Neammanee, 2007, p. 1-10) Under the assumptions of theorem 1.3, we have

|P(S n ≤ x) − Φ1(x)| ≤ C
n∑

i=1

{
E|Xi|2I(|Xi| > 1 + |x|)

1 + |x|2 +
E|Xi|3I(|Xi| ≤ 1 + |x|)

1 + |x|3

}
where

C =



13.11 if 0 ≤ |x| < 1.3,
28.54 if 1.3 ≤ |x| < 2,
46.32 if 2 ≤ |x| < 3,
61.40 if 3 ≤ |x| < 7.98,
40.12 if 7.98 ≤ |x| < 14,
39.39 if |x| ≥ 14.

The reduction they make is truncation. This method make the random variables become bounded random varibles. In the
case that each Xi is bounded, the uniform and non-uniform versions were given in (Chen, 2005, p. 1-59) and (Chaidee,
2005), respectively.

Theorem 1.5 (Chen, 2005, p. 1-59) Let Xi, 1 ≤ i ≤ n, be independent random variables such that EXi = 0,
n∑

i=1

EX2
i = 1

and |Xi| ≤ δ0, then

sup
x∈R
|P(S n ≤ x) − Φ1(x)| ≤ 3.3δ0.

Theorem 1.6 (Chaidee, 2005) Under the assumptions of theorem 1.5, there exists a constant C which does not depend on
δ0 such that for every real numbers x,

|P(S n ≤ x) − Φ1(x)| ≤ Cδ0

1 + |x|3 .

For multidimensional case, let k ∈ N and Yi = (Yi1,Yi2, . . . ,Yik) be independent and identically distributed random vectors
in Rk with zero means and covariance identity matrices Ik. Define

Wn =
1
√

n

n∑
i=1

Yi.
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Let Fn be the distribution function of Wn and Φk the standard Gaussian distribution in Rk. (Bergström, 1945, p. 106-127)
guaranteed that Fn converges weakly to Φk for large n. The uniform and non-uniform bounds of this convergence have
been repeatedly refined over subsequent decades by many researchers such as (Esseen, 1945, p. 1-125), (Rao, 1961, p.
359-361) , (Bahr, 1967, p. 61-69), (Bahr, 1967, p. 71-88) and (Bhattacharya, 1970, p. 68-86), etc. For the assumption
that

k∑
j=1

E|Y1 j|4 < ∞,

(Esseen, 1945, p. 1-125) gave a uniform bound on this convergence which is of the form

|Fn(Br) − Φk(Br)| ≤
C

n
k

k+1

where Br = {(w1,w2, . . . ,wk) ∈ Rk | w2
1 + w2

2 + · · · + w2
k ≤ r2} for r > 0 and C is an absolute constant depending only on

the moment. (Rao, 1961, p. 359-361) generalized Esseen’s result to any measurable convex subset A of Rk. His result is

|Fn(A) − Φk(A)| ≤ C
√

n
(log n)

k−1
2(k+1) . (1)

(Bahr, 1967, p. 71-88) assumed

E(
k∑

j=1

Y2
1 j)

s
2 < ∞,

for an integer s > k > 1 and improved the rate of convergence in (1) by the inequality

|Fn(B) − Φk(B)| ≤ C
√

n
. (2)

In the case that each Yi may not be identically distributed random vectors, (Bhattacharya, 1970, p. 68-86) assumed

k∑
j=1

E|Yi j|3+δ < ∞ for 1 ≤ i ≤ n where δ > 0,

and gave a bound of the approximation as in (2) on any Borel subset of Rk.
For a non-uniform version, (Bahr, 1967, p. 61-69) is the first one who investigated this version. He assumed the identically
assumption on each Yi and gave the rate of convergence on Bk(r). Under the finiteness assumption of the sth moments,

E(
k∑

j=1

Y2
1 j)

s
2 < ∞,

for integer s ≥ 3, the result is

|Fn(Bk(r)) − Φk(Bk(r))| ≤ C · d(n)

rsn
s−2
2

for r ≥ (
5
4

m(s − 2) log n)
1
2

where m is the largest eigenvalue of the covariance matrix of Yi, d(n) is bounded by one and lim
n→∞

d(n) = 0.
The aim of this paper is to find bounds on normal approximation to the distribution of Wn over the set

Ak(x) = {(w1,w2, . . . ,wk) ∈ Rk |
k∑

i=1

wi ≤ x}.

In this work, assume only that
1
nk

Var(
n∑

i=1

k∑
j=1

Yi j) = 1 and give our results on various assumptions, the random variables

Yi j are bounded, E|Yi j|3 < ∞ and E|Yi j|p < ∞ for some 2 < p < 3. Our results are as follows:
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Theorem 1.7 If |Yi j| ≤ δ0 for 1 ≤ i ≤ n and 1 ≤ j ≤ k, then

sup
x∈R
|P(Wn ∈ Ak(x)) − Φk(Ak(x))| ≤ 3.3

√
kδ0√
n

and there exists a constant C which does not depend on δ0 such that for every real numbers x,

|P(Wn ∈ Ak(x)) − Φk(Ak(x))| ≤ Ck2δ0√
n[(
√

k)3 + |x|3]
.

Theorem 1.8 If E|Yi j|p < ∞ for 2 < p < 3, 1 ≤ i ≤ n and 1 ≤ j ≤ k, then

sup
x∈R
|P(Wn ∈ Ak(x)) − Φk(Ak(x))| ≤ 75(4)p−1kp

(nk)
p
2

n∑
i=1

k∑
j=1

E|Yi j|p

and there exists an absulute constant C such that for x ∈ R,

|P(Wn ∈ Ak(x)) − Φk(Ak(x))| ≤ 5pCkp

n
p
2 (
√

k + |x|)p

n∑
i=1

k∑
j=1

E|Yi j|p.

Theorem 1.9 If E|Yi j|3 < ∞ for 1 ≤ i ≤ n and 1 ≤ j ≤ k, then

sup
x∈R
|P(Wn ∈ Ak(x)) − Φk(Ak(x))| ≤ 0.5600

√
k

n
3
2

n∑
i=1

k∑
j=1

E|Yi j|3

and for all real numbers x

|P(Wn ∈ Ak(x)) − Φk(Ak(x))| ≤ 31.935k2

n
3
2 [(
√

k)3 + |x|3]

n∑
i=1

k∑
j=1

E|Yi j|3.

The proofs of our main theorems are given in the next section.

2. Proof of Main Theorems

In the proofs of main theorems, we use the Berry-Esseen theorems in R in which the limit distribution is Φ1. However,
the limit distribution in our theorems is the standard Gaussian distribution Φk in Rk. In the following proposition, we give
a relation between Φ1 and Φk.

Proposition 2.1 For k ∈ N and x ∈ R, we have

Φk(Ak(x)) = Φ1(
x
√

k
).

Proof: To prove the proposition, we let B = {b1, b2, . . . , bk} be an orthonorrmal basis for Rk with b1 =
1√
k
(1, 1, . . . , 1) and

w = (w1,w2, . . . ,wk) ∈ Ak(x). Set

t1 = ⟨b1,w⟩ and ti = ⟨bi,w⟩ for t = 2, 3, . . . , k.

Then

t1 =
1
√

k

k∑
i=1

wi ≤
x
√

k
,−∞ < ti < ∞, for t = 2, 3, . . . , k, and

k∑
i=1

⟨bi,w⟩ bi =w =
k∑

i=1

⟨ei,w⟩ ei

where {e1, e2, . . . , ek} is a usual orthonormal basis for Rk. Thus, we have

k∑
i=1

w2
i = ||

k∑
i=1

wiei||2 = ||
k∑

i=1

⟨ei,w⟩ ei||2 = ||
k∑

i=1

⟨bi,w⟩ bi||2 = ||
k∑

i=1

tibi||2

=

k∑
i=1

t2
i . (3)
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Let J be the Jacobian matrix,

J =


∂w1
∂t1

∂w2
∂t1

· · · ∂wk
∂t1

∂w1
∂t2

∂w2
∂t2

· · · ∂wk
∂t2

...
... · · ·

...
∂w1
∂tk

∂w2
∂tk

· · · ∂wk
∂tk

 .
Thun | det(J)| = 1. Then by (3), we have

Φk(Ak(x)) =
1

(2π)
k
2

∫ ∫
· · ·

∫
Ak(x)

e
− 1

2

k∑
i=1

w2
i

dw1dw2 · · · dwk

=
1

(2π)
k
2

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ x√
k

−∞
e
− 1

2

k∑
i=1

t2
i

| det J|dt1dt2 · · · dtk

=
1
√

2π

∫ x√
k

−∞
e−t2

dt

= Φ1(
x
√

k
).

Hence, the proposition is proved.

The proof of theorem 1.7 is completed by applying theorem 1.5-1.6. The proof of theorem 1.8, we use the propostion 2.1
and theorems in (Chen, 2004, p. 1985-2028). Theorem 1.9 is proved by applying theorem 1.1-1.2, respectively.

Proof of theorem 1.7

Proof: For each 1 ≤ i ≤ n and , 1 ≤ j ≤ k, we define

W jn =
1
√

n

n∑
i=1

Yi j and Tin =
1
√

n

k∑
j=1

Yi j.

Thus T1n,T2n, . . . , Tnn are independent,

E(Tin) = 0, |Tin| ≤
kδ0√

n
, (4)

Wn = (W1n,W2n, . . . ,Wkn) and
k∑

j=1

W jn =

n∑
i=1

Tin. (5)

Since Yi has zero mean and covariance matrix Ik,

Var(Yi j) = 1 and Cov(Yi j,Yik) = 0 for j , k.

Therefore

Var(
1
√

k

n∑
i=1

Tin) =
1
k

Var
n∑

i=1

Tin =
1
nk

Var
n∑

i=1

k∑
j=1

Yi j = 1. (6)

By applying theorem 1.5, proposition 2.1 and (4)-(6), we have

sup
x∈R
|P(Wn ∈ Ak(x)) − Φk(Ak(x))| = sup

x∈R
|P(

k∑
j=1

W jn ≤ x) − Φ1(
x
√

k
)|

= sup
x∈R
|P(

n∑
i=1

Tin ≤ x) − Φ1(
x
√

k
)|

= sup
x∈R
|P(

1
√

k

n∑
i=1

Tin ≤
x
√

k
) − Φ1(

x
√

k
)| (7)

≤ 3.3
√

kδ0√
n

.
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For the second part, we apply theorem 1.6. The result is

|P(Wn ∈ Ak(x)) − Φk(Ak(x))| = |P(
1
√

k

n∑
i=1

Tin ≤
x
√

k
) − Φ1(

x
√

k
)|

≤ C
√

kδ0√
n(1 + | x√

k
|3)

=
Ck2δ0√

n[(
√

k)3 + |x|3]
.

for all real numbers x.

In theorem 1.8, we give the bounds by applying theorem 2.4 and theorem 2.5 in (Chen, 2004, p. 1985-2028). To prove
this, we need the proposition 2.2. This proposition gives us that the random field {Yi, j | i = 1, 2, . . . , n, j = 1, 2, . . . , k}
satisfied (LD4∗) in (Chen, 2004, p. 1985-2028). This condition is proposed as follows:

LetJ be a finite index set of cardianality n, and let {Xi, i ∈ J} be a random field with zero means and finite variances. For
A ⊂ J , let XA denote {Xi, i ∈ A},Ac = { j ∈ J : j < A} and |A| the cardinality of A. The random field {Xi, i ∈ J} satisfied
(LD4∗) if for each i ∈ J there exists Ai ⊂ Bi ⊂ B∗i ⊂ C∗i ⊂ D∗i ⊂ J such that Xi is independent of XAc

i
, XAi is independent

of XBc
i

and then XAi is independent of {XA j , j ∈ B∗ci }, {XAl , l ∈ B∗i } is independent of {XA j , j ∈ C∗ci } and {XAl , l ∈ C∗i } is
independent of {XA j , j ∈ D∗ci }.
Proposition 2.2 For k, n ∈ N, let Yi = (Yi1,Yi2, ..., Yik), i = 1, 2, ..., n be independent random vectors in Rk with zero means.
Then {Yi j | i = 1, 2, . . . , n, j = 1, 2, . . . , k} satisfies (LD4∗).

Proof: This proposition is completed by setting Ai j ⊂ Bi j ⊂ B∗i j ⊂ C∗i j ⊂ D∗i j for i = 1, 2, . . . , n and j = 1, 2, . . . , k as
follows:

Ai j = {il | l = 1, 2, . . . , k} for i = 1, 2, . . . , n,
Bi j = {il, (i + 1)l | l = 1, 2, . . . , k} for i = 1, 2, . . . , n − 1 and Bn j = B(n−1) j,
B∗i j = Ci j = {il, , (i + 1)l, (i + 2)l | l = 1, 2, . . . , k} for i = 1, 2, . . . , n − 2 and

B∗(n−m) j = C(n−m) j = B(n−2) j for m = 1, 2,
C∗i j = {il, (i + 1)l, . . . , (i + 3)l | l = 1, 2, . . . , k} for i = 1, 2, . . . , n − 3 and

C∗(n−m) j = C∗(n−3) j m = 1, 2, 3,
D∗i j = {il, (i + 1)l, . . . , (i + 4)l | l = 1, 2, . . . , k} for i = 1, 2, . . . , n − 4 and D∗(n−m) j = D∗(n−4) j m = 1, 2, 3, 4.

So, we have the proposition.

From the sets defined in the above proposition, we can compute directly that for each i = 1, 2, . . . , n,

max(|N(Ci)|, |{ j : i ∈ C j}| ≤ 4 (8)

and

max
1≤i≤n

max(|D∗i |, |{ j : i ∈ D∗j}|) ≤ 5 (9)

where N(Ci) is defined in theorem 2.3 in (Chen, 2004, p. 1985-2028).
The condition (LD4∗) implies the condition (LD3) in (Chen, 2004, p. 1985-2028). Thus {Yi j | i = 1, 2, . . . , n, j =
1, 2, . . . , k} satisfies (LD3).

Proof of theorem 1.8

Proof: For each 1 ≤ i ≤ n, define Tin as in the proof of theorem 1.7. By the inequality

|
k∑

j=1

Yi j|p ≤ kp
k∑

j=1

|Yi j|p, (10)

we have

E|Tin|p =
1

n
p
2

E|
k∑

j=1

Yi j|p ≤
kp

n
p
2

k∑
j=1

E|Yi j|p < ∞.
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So, by (4), (6), (8), (10), proposition 2.2 and theorem 2.4 in (Chen, 2004, p. 1985-2028), we have

sup
x∈R
|P(Wn ∈ Ak(x)) − Φk(Ak(x))| = sup

x∈R
|P(

1
√

k

n∑
i=1

Tin ≤
x
√

k
) − Φ1(

x
√

k
)|

≤ 75(4)p−1
n∑

i=1

E| Ti√
k
|p

=
75(4)p−1

(nk)
p
2

n∑
i=1

E|
k∑

j=1

Yi j|p

≤ 75(4)p−1kp

(nk)
p
2

n∑
i=1

k∑
j=1

E|Yi j|p.

Applying theorem 2.5 in (Chen, 2004, p. 1985-2028) and (9) to non-uniform case, we have for x ∈ R,

|P(Wn ∈ Ak(x)) − Φk(Ak(x))| = |P(
n∑

i=1

Tin ≤ x) − Φ1(
x
√

k
)|

≤ 5pC
(1 + | x√

k
|)p

n∑
i=1

E| Ti√
k
|p

≤ (5k)pC

n
p
2 (
√

k + |x|)p

n∑
i=1

k∑
j=1

E|Yi j|p.

Proof of theorem 1.9

Proof: By theorem 1.1, 1.2 and the same argument as in theorem 1.7, we have the theorem.

Remark The above theorems include the case that each Yi has an indicator covariance matrix Ik.
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