Bounds on Normal Approximation on a Half Plane in Multidimension

D. Thongtha
Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
E-mail: dthongtha@gmail.com
K. Neammanee (Corresponding author)
Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
E-mail: kritsana.n@chula.ac.th

Received: October 8, 2011 Accepted: October 21, 2011 Published: February 1, 2012
doi:10.5539/jmr.v4n1p9 URL: http://dx.doi.org/10.5539/jmr.v4n1p9
The research is financed by the Office of the Higher Education Commission, Thailand.

Abstract

We give bounds on multidimensional Berry-Esseen theorem on a set $A_{k}(x)=\left\{\left(w_{1}, w_{2}, \ldots, w_{k}\right) \in \mathbb{R}^{k} \mid \sum_{i=1}^{k} w_{i} \leq x\right\}$ for $x \in \mathbb{R}$ by using the Berry-Esseen theorem in \mathbb{R}. The rates of convergence are $O\left(n^{-\frac{1}{2}}\right)$. In addition, we give known constants in the bounds of the approximation.

Keywords: Berry-Esseen inequality, Central limit theorem, Uniform and non-uniform bounds

1. Introduction

For $n \in \mathbb{N}$, let $X_{i}, 1 \leq i \leq n$ be independent and identically distributed random variables with zero means and $\sum_{i=1}^{n} E X_{i}^{2}=1$. Define

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

and Φ_{1} the standard normal distribution in \mathbb{R}. Suppose that $E\left|X_{i}\right|^{3}<\infty$ for $1 \leq i \leq n$. The uniform and non-uniform versions of the Berry-Esseen inequality are

$$
\sup _{x \in \mathbb{R}}\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq C_{0} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}
$$

and

$$
\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq \frac{C_{1}}{1+|x|^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}
$$

respectively, where C_{0} and C_{1} are positive constants. The uniform version was independently discovered by (Berry, 1941, p. 122-136) and (Esseen, 1945, p. 1-125) and the non-uniform version was discovered by (Nagaev, 1965, p. 214-235). Without assuming the identically of X_{i}, the best constant C_{0} and C_{1} were given by (Shevtsova, 2010, p. 862-864) and (Paditz, 1989, p. 453-464), respectively. The results are as follows:
Theorem 1.1 (Shevtsova, 2010, p. 862-864) Let $X_{i}, 1 \leq i \leq n$, be independent random variables such that $E X_{i}=0$ and $E\left|X_{i}\right|^{3}<\infty$. Assume that $\sum_{i=1}^{n} E X_{i}^{2}=1$. Then

$$
\sup _{x \in \mathbb{R}}\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq 0.5600 \sum_{i=1}^{n} E\left|X_{i}\right|^{3} .
$$

Theorem 1.2 (Paditz, 1989, p. 453-464) Under the assumptions of theorem 1.1, we have

$$
\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq \frac{31.935}{1+|x|^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}
$$

for all real numbers x.
(Chen, 2001, p. 236-254) relaxed the condition to the finiteness of the second moments and gave uniform and non-uniform versions of the inequality. The constant of the non-uniform version was given by (Neammanee, 2007, p. 1-10). Here are the results.
Theorem 1.3 (Chen, 2001, p. 236-254) Let $X_{i}, 1 \leq i \leq n$, be independent random variables such that $E X_{i}=0$ and $\sum_{i=1}^{n} E X_{i}^{2}=1$. Then

$$
\sup _{x \in \mathbb{R}}\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq 4.1 \sum_{i=1}^{n}\left\{E\left|X_{i}\right|^{2} I\left(\left|X_{i}\right|>1\right)+E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right| \leq 1\right)\right\}
$$

and for all real numbers x,

$$
\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq C \sum_{i=1}^{n}\left\{\frac{E\left|X_{i}\right|^{2} I\left(\left|X_{i}\right|>1+|x|\right)}{1+|x|^{2}}+\frac{E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right| \leq 1+|x|\right)}{1+|x|^{3}}\right\}
$$

Theorem 1.4 (Neammanee, 2007, p. 1-10) Under the assumptions of theorem 1.3, we have

$$
\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq C \sum_{i=1}^{n}\left\{\frac{E\left|X_{i}\right|^{2} I\left(\left|X_{i}\right|>1+|x|\right)}{1+|x|^{2}}+\frac{E\left|X_{i}\right|^{3} I\left(\left|X_{i}\right| \leq 1+|x|\right)}{1+|x|^{3}}\right\}
$$

where

$$
C= \begin{cases}13.11 & \text { if } 0 \leq|x|<1.3 \\ 28.54 & \text { if } 1.3 \leq|x|<2 \\ 46.32 & \text { if } 2 \leq|x|<3 \\ 61.40 & \text { if } 3 \leq|x|<7.98 \\ 40.12 & \text { if } 7.98 \leq|x|<14 \\ 39.39 & \text { if }|x| \geq 14\end{cases}
$$

The reduction they make is truncation. This method make the random variables become bounded random varibles. In the case that each X_{i} is bounded, the uniform and non-uniform versions were given in (Chen, 2005, p. 1-59) and (Chaidee, 2005), respectively.

Theorem 1.5 (Chen, 2005, p. 1-59) Let $X_{i}, 1 \leq i \leq n$, be independent random variables such that $E X_{i}=0, \sum_{i=1}^{n} E X_{i}^{2}=1$ and $\left|X_{i}\right| \leq \delta_{0}$, then

$$
\sup _{x \in \mathbb{R}}\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq 3.3 \delta_{0}
$$

Theorem 1.6 (Chaidee, 2005) Under the assumptions of theorem 1.5, there exists a constant C which does not depend on δ_{0} such that for every real numbers x,

$$
\left|P\left(S_{n} \leq x\right)-\Phi_{1}(x)\right| \leq \frac{C \delta_{0}}{1+|x|^{3}}
$$

For multidimensional case, let $k \in \mathbb{N}$ and $Y_{i}=\left(Y_{i 1}, Y_{i 2}, \ldots, Y_{i k}\right)$ be independent and identically distributed random vectors in \mathbb{R}^{k} with zero means and covariance identity matrices I_{k}. Define

$$
W_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}
$$

Let F_{n} be the distribution function of W_{n} and Φ_{k} the standard Gaussian distribution in \mathbb{R}^{k}. (Bergström, 1945, p. 106-127) guaranteed that F_{n} converges weakly to Φ_{k} for large n. The uniform and non-uniform bounds of this convergence have been repeatedly refined over subsequent decades by many researchers such as (Esseen, 1945, p. 1-125), (Rao, 1961, p. 359-361), (Bahr, 1967, p. 61-69), (Bahr, 1967, p. 71-88) and (Bhattacharya, 1970, p. 68-86), etc. For the assumption that

$$
\sum_{j=1}^{k} E\left|Y_{1 j}\right|^{4}<\infty
$$

(Esseen, 1945, p. 1-125) gave a uniform bound on this convergence which is of the form

$$
\left|F_{n}\left(B_{r}\right)-\Phi_{k}\left(B_{r}\right)\right| \leq \frac{C}{n^{\frac{k}{k+1}}}
$$

where $B_{r}=\left\{\left(w_{1}, w_{2}, \ldots, w_{k}\right) \in \mathbb{R}^{k} \mid w_{1}^{2}+w_{2}^{2}+\cdots+w_{k}^{2} \leq r^{2}\right\}$ for $r>0$ and C is an absolute constant depending only on the moment. (Rao, 1961, p. 359-361) generalized Esseen's result to any measurable convex subset A of \mathbb{R}^{k}. His result is

$$
\begin{equation*}
\left|F_{n}(A)-\Phi_{k}(A)\right| \leq \frac{C}{\sqrt{n}}(\log n)^{\frac{k-1}{2(k+1)}} \tag{1}
\end{equation*}
$$

(Bahr, 1967, p. 71-88) assumed

$$
E\left(\sum_{j=1}^{k} Y_{1 j}^{2}\right)^{\frac{s}{2}}<\infty
$$

for an integer $s>k>1$ and improved the rate of convergence in (1) by the inequality

$$
\begin{equation*}
\left|F_{n}(B)-\Phi_{k}(B)\right| \leq \frac{C}{\sqrt{n}} \tag{2}
\end{equation*}
$$

In the case that each Y_{i} may not be identically distributed random vectors, (Bhattacharya, 1970, p. 68-86) assumed

$$
\sum_{j=1}^{k} E\left|Y_{i j}\right|^{3+\delta}<\infty \quad \text { for } \quad 1 \leq i \leq n \quad \text { where } \quad \delta>0
$$

and gave a bound of the approximation as in (2) on any Borel subset of \mathbb{R}^{k}.
For a non-uniform version, (Bahr, 1967, p. 61-69) is the first one who investigated this version. He assumed the identically assumption on each Y_{i} and gave the rate of convergence on $B_{k}(r)$. Under the finiteness assumption of the $s^{\text {th }}$ moments,

$$
E\left(\sum_{j=1}^{k} Y_{1 j}^{2}\right)^{\frac{s}{2}}<\infty
$$

for integer $s \geq 3$, the result is

$$
\left|F_{n}\left(B_{k}(r)\right)-\Phi_{k}\left(B_{k}(r)\right)\right| \leq \frac{C \cdot d(n)}{r^{s} n^{\frac{s-2}{2}}} \quad \text { for } \quad r \geq\left(\frac{5}{4} m(s-2) \log n\right)^{\frac{1}{2}}
$$

where m is the largest eigenvalue of the covariance matrix of $Y_{i}, d(n)$ is bounded by one and $\lim _{n \rightarrow \infty} d(n)=0$.
The aim of this paper is to find bounds on normal approximation to the distribution of W_{n} over the set

$$
A_{k}(x)=\left\{\left(w_{1}, w_{2}, \ldots, w_{k}\right) \in \mathbb{R}^{k} \mid \sum_{i=1}^{k} w_{i} \leq x\right\}
$$

In this work, assume only that $\frac{1}{n k} \operatorname{Var}\left(\sum_{i=1}^{n} \sum_{j=1}^{k} Y_{i j}\right)=1$ and give our results on various assumptions, the random variables $Y_{i j}$ are bounded, $E\left|Y_{i j}\right|^{3}<\infty$ and $E\left|Y_{i j}\right|^{p}<\infty$ for some $2<p<3$. Our results are as follows:

Theorem 1.7 If $\left|Y_{i j}\right| \leq \delta_{0}$ for $1 \leq i \leq n$ and $1 \leq j \leq k$, then

$$
\sup _{x \in \mathbb{R}}\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| \leq \frac{3.3 \sqrt{k} \delta_{0}}{\sqrt{n}}
$$

and there exists a constant C which does not depend on δ_{0} such that for every real numbers x,

$$
\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| \leq \frac{C k^{2} \delta_{0}}{\sqrt{n}\left[(\sqrt{k})^{3}+|x|^{3}\right]}
$$

Theorem 1.8 If $E\left|Y_{i j}\right|^{p}<\infty$ for $2<p<3,1 \leq i \leq n$ and $1 \leq j \leq k$, then

$$
\sup _{x \in \mathbb{R}}\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| \leq \frac{75(4)^{p-1} k^{p}}{(n k)^{\frac{p}{2}}} \sum_{i=1}^{n} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{p}
$$

and there exists an absulute constant C such that for $x \in \mathbb{R}$,

$$
\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| \leq \frac{5^{p} C k^{p}}{n^{\frac{p}{2}}(\sqrt{k}+|x|)^{p}} \sum_{i=1}^{n} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{p}
$$

Theorem 1.9 If $E\left|Y_{i j}\right|^{3}<\infty$ for $1 \leq i \leq n$ and $1 \leq j \leq k$, then

$$
\sup _{x \in \mathbb{R}}\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| \leq \frac{0.5600 \sqrt{k}}{n^{\frac{3}{2}}} \sum_{i=1}^{n} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{3}
$$

and for all real numbers x

$$
\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| \leq \frac{31.935 k^{2}}{n^{\frac{3}{2}}\left[(\sqrt{k})^{3}+|x|^{3}\right]} \sum_{i=1}^{n} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{3} .
$$

The proofs of our main theorems are given in the next section.

2. Proof of Main Theorems

In the proofs of main theorems, we use the Berry-Esseen theorems in \mathbb{R} in which the limit distribution is Φ_{1}. However, the limit distribution in our theorems is the standard Gaussian distribution Φ_{k} in \mathbb{R}^{k}. In the following proposition, we give a relation between Φ_{1} and Φ_{k}.
Proposition 2.1 For $k \in \mathbb{N}$ and $x \in \mathbb{R}$, we have

$$
\Phi_{k}\left(A_{k}(x)\right)=\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)
$$

Proof: To prove the proposition, we let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ be an orthonorrmal basis for \mathbb{R}^{k} with $b_{1}=\frac{1}{\sqrt{k}}(1,1, \ldots, 1)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{k}\right) \in A_{k}(x)$. Set

$$
t_{1}=\left\langle b_{1}, w\right\rangle \text { and } t_{i}=\left\langle b_{i}, w\right\rangle \text { for } t=2,3, \ldots, k
$$

Then

$$
\begin{gathered}
t_{1}=\frac{1}{\sqrt{k}} \sum_{i=1}^{k} w_{i} \leq \frac{x}{\sqrt{k}},-\infty<t_{i}<\infty, \text { for } t=2,3, \ldots, k, \text { and } \\
\sum_{i=1}^{k}\left\langle b_{i}, w\right\rangle b_{i}=w=\sum_{i=1}^{k}\left\langle e_{i}, w\right\rangle e_{i}
\end{gathered}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ is a usual orthonormal basis for \mathbb{R}^{k}. Thus, we have

$$
\begin{align*}
\sum_{i=1}^{k} w_{i}^{2} & =\left\|\sum_{i=1}^{k} w_{i} e_{i}\right\|^{2}=\left\|\sum_{i=1}^{k}\left\langle e_{i}, w\right\rangle e_{i}\right\|^{2}=\left\|\sum_{i=1}^{k}\left\langle b_{i}, w\right\rangle b_{i}\right\|^{2}=\left\|\sum_{i=1}^{k} t_{i} b_{i}\right\|^{2} \\
& =\sum_{i=1}^{k} t_{i}^{2} \tag{3}
\end{align*}
$$

Let J be the Jacobian matrix,

$$
J=\left[\begin{array}{cccc}
\frac{\partial w_{1}}{\partial t_{1}} & \frac{\partial w_{2}}{\partial t_{1}} & \ldots & \frac{\partial w_{k}}{\partial t_{1}} \\
\frac{\partial w_{1}}{\partial t_{2}} & \frac{\partial w_{2}}{\partial t_{2}} & \cdots & \frac{\partial w_{k}}{\partial t_{2}} \\
\vdots & \vdots & \ldots & \vdots \\
\frac{\partial w_{1}}{\partial t_{k}} & \frac{\partial w_{2}}{\partial t_{k}} & \cdots & \frac{\partial w_{k}}{\partial t_{k}}
\end{array}\right] .
$$

Thun $|\operatorname{det}(J)|=1$. Then by (3), we have

$$
\begin{aligned}
& \Phi_{k}\left(A_{k}(x)\right)=\frac{1}{(2 \pi)^{\frac{k}{2}}} \iint \cdots \int_{A_{k}(x)} e^{-\frac{1}{2}} \sum_{i=1}^{k} w_{i}^{2} \\
& \\
&=\frac{1}{(2 \pi)^{\frac{k}{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\frac{x}{\sqrt{k}}} e^{-\frac{1}{2}} \sum_{i=1}^{k} t_{i}^{2} \\
&|\operatorname{det} J| d t_{1} d t_{2} \cdots d t_{k} \\
&=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\frac{x}{\sqrt{k}}} e^{-t^{2}} d t \\
&=\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)
\end{aligned}
$$

Hence, the proposition is proved.
The proof of theorem 1.7 is completed by applying theorem 1.5-1.6. The proof of theorem 1.8 , we use the propostion 2.1 and theorems in (Chen, 2004, p. 1985-2028). Theorem 1.9 is proved by applying theorem 1.1-1.2, respectively.

Proof of theorem 1.7

Proof: For each $1 \leq i \leq n$ and , $1 \leq j \leq k$, we define

$$
W_{j n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i j} \quad \text { and } \quad T_{i n}=\frac{1}{\sqrt{n}} \sum_{j=1}^{k} Y_{i j}
$$

Thus $T_{1 n}, T_{2 n}, \ldots, T_{n n}$ are independent,

$$
\begin{gather*}
E\left(T_{i n}\right)=0, \quad\left|T_{i n}\right| \leq \frac{k \delta_{0}}{\sqrt{n}} \tag{4}\\
W_{n}=\left(W_{1 n}, W_{2 n}, \ldots, W_{k n}\right) \quad \text { and } \quad \sum_{j=1}^{k} W_{j n}=\sum_{i=1}^{n} T_{i n} . \tag{5}
\end{gather*}
$$

Since Y_{i} has zero mean and covariance matrix I_{k},

$$
\operatorname{Var}\left(Y_{i j}\right)=1 \quad \text { and } \quad \operatorname{Cov}\left(Y_{i j}, Y_{i k}\right)=0 \quad \text { for } \quad j \neq k
$$

Therefore

$$
\begin{equation*}
\operatorname{Var}\left(\frac{1}{\sqrt{k}} \sum_{i=1}^{n} T_{i n}\right)=\frac{1}{k} \operatorname{Var} \sum_{i=1}^{n} T_{i n}=\frac{1}{n k} \operatorname{Var} \sum_{i=1}^{n} \sum_{j=1}^{k} Y_{i j}=1 . \tag{6}
\end{equation*}
$$

By applying theorem 1.5, proposition 2.1 and (4)-(6), we have

$$
\begin{align*}
\sup _{x \in \mathbb{R}}\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| & =\sup _{x \in \mathbb{R}}\left|P\left(\sum_{j=1}^{k} W_{j n} \leq x\right)-\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)\right| \\
& =\sup _{x \in \mathbb{R}}\left|P\left(\sum_{i=1}^{n} T_{i n} \leq x\right)-\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)\right| \\
& =\sup _{x \in \mathbb{R}}\left|P\left(\frac{1}{\sqrt{k}} \sum_{i=1}^{n} T_{i n} \leq \frac{x}{\sqrt{k}}\right)-\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)\right| \tag{7}\\
& \leq \frac{3.3 \sqrt{k} \delta_{0}}{\sqrt{n}} .
\end{align*}
$$

For the second part, we apply theorem 1.6. The result is

$$
\begin{aligned}
\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| & =\left|P\left(\frac{1}{\sqrt{k}} \sum_{i=1}^{n} T_{i n} \leq \frac{x}{\sqrt{k}}\right)-\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)\right| \\
& \leq \frac{C \sqrt{k} \delta_{0}}{\sqrt{n}\left(1+\left|\frac{x}{\sqrt{k}}\right|^{3}\right)} \\
& =\frac{C k^{2} \delta_{0}}{\sqrt{n}\left[(\sqrt{k})^{3}+|x|^{3}\right]} .
\end{aligned}
$$

for all real numbers x.
In theorem 1.8, we give the bounds by applying theorem 2.4 and theorem 2.5 in (Chen, 2004, p. 1985-2028). To prove this, we need the proposition 2.2. This proposition gives us that the random field $\left\{Y_{i, j} \mid i=1,2, \ldots, n, j=1,2, \ldots, k\right\}$ satisfied (LD4*) in (Chen, 2004, p. 1985-2028). This condition is proposed as follows:
Let \mathcal{J} be a finite index set of cardianality n, and let $\left\{X_{i}, i \in \mathcal{J}\right\}$ be a random field with zero means and finite variances. For $A \subset \mathcal{J}$, let X_{A} denote $\left\{X_{i}, i \in A\right\}, A^{c}=\{j \in \mathcal{J}: j \notin A\}$ and $|A|$ the cardinality of A. The random field $\left\{X_{i}, i \in \mathcal{J}\right\}$ satisfied $\left(L D 4^{*}\right)$ if for each $i \in \mathcal{J}$ there exists $A_{i} \subset B_{i} \subset B_{i}^{*} \subset C_{i}^{*} \subset D_{i}^{*} \subset \mathcal{J}$ such that X_{i} is independent of $X_{A_{i}^{c}}, X_{A_{i}}$ is independent of $X_{B_{i}^{c}}$ and then $X_{A_{i}}$ is independent of $\left\{X_{A_{j}}, j \in B_{i}^{* c}\right\},\left\{X_{A_{l}}, l \in B_{i}^{*}\right\}$ is independent of $\left\{X_{A_{j}}, j \in C_{i}^{* c}\right\}$ and $\left\{X_{A_{l}}, l \in C_{i}^{*}\right\}$ is independent of $\left\{X_{A_{j}}, j \in D_{i}^{* c}\right\}$.
Proposition 2.2 For $k, n \in \mathbb{N}$, let $Y_{i}=\left(Y_{i 1}, Y_{i 2}, \ldots, Y_{i k}\right), i=1,2, \ldots, n$ be independent random vectors in \mathbb{R}^{k} with zero means. Then $\left\{Y_{i j} \mid i=1,2, \ldots, n, j=1,2, \ldots, k\right\}$ satisfies ($L D 4^{*}$).

Proof: This proposition is completed by setting $A_{i j} \subset B_{i j} \subset B_{i j}^{*} \subset C_{i j}^{*} \subset D_{i j}^{*}$ for $i=1,2, \ldots, n$ and $j=1,2, \ldots, k$ as follows:

$$
\begin{gathered}
A_{i j}=\{i l \mid l=1,2, \ldots, k\} \text { for } i=1,2, \ldots, n, \\
B_{i j}=\{i l,(i+1) l \mid l=1,2, \ldots, k\} \text { for } i=1,2, \ldots, n-1 \text { and } B_{n j}=B_{(n-1) j}, \\
B_{i j}^{*}=C_{i j}=\{i l,,(i+1) l,(i+2) l \mid l=1,2, \ldots, k\} \text { for } i=1,2, \ldots, n-2 \text { and } \\
B_{(n-m) j}^{*}=C_{(n-m) j}=B_{(n-2) j} \text { for } m=1,2, \\
C_{i j}^{*}=\{i l,(i+1) l, \ldots,(i+3) l \mid l=1,2, \ldots, k\} \text { for } i=1,2, \ldots, n-3 \text { and } \\
C_{(n-m) j}^{*}=C_{(n-3) j}^{*} m=1,2,3, \\
D_{i j}^{*}=\{i l,(i+1) l, \ldots,(i+4) l \mid l=1,2, \ldots, k\} \text { for } i=1,2, \ldots, n-4 \text { and } D_{(n-m) j}^{*}=D_{(n-4) j}^{*} m=1,2,3,4 .
\end{gathered}
$$

So, we have the proposition.
From the sets defined in the above proposition, we can compute directly that for each $i=1,2, \ldots, n$,

$$
\begin{equation*}
\max \left(\left|N\left(C_{i}\right)\right|,\left|\left\{j: i \in C_{j}\right\}\right| \leq 4\right. \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{1 \leq i \leq n} \max \left(\left|D_{i}^{*}\right|,\left|\left\{j: i \in D_{j}^{*}\right\}\right|\right) \leq 5 \tag{9}
\end{equation*}
$$

where $N\left(C_{i}\right)$ is defined in theorem 2.3 in (Chen, 2004, p. 1985-2028).
The condition (LD4*) implies the condition (LD3) in (Chen, 2004, p. 1985-2028). Thus $\left\{Y_{i j} \mid i=1,2, \ldots, n, j=\right.$ $1,2, \ldots, k\}$ satisfies ($L D 3$).

Proof of theorem 1.8

Proof: For each $1 \leq i \leq n$, define $T_{i n}$ as in the proof of theorem 1.7. By the inequality

$$
\begin{equation*}
\left|\sum_{j=1}^{k} Y_{i j}\right|^{p} \leq k^{p} \sum_{j=1}^{k}\left|Y_{i j}\right|^{p} \tag{10}
\end{equation*}
$$

we have

$$
E\left|T_{i n}\right|^{p}=\frac{1}{n^{\frac{p}{2}}} E\left|\sum_{j=1}^{k} Y_{i j}\right|^{p} \leq \frac{k^{p}}{n^{\frac{p}{2}}} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{p}<\infty .
$$

So, by (4), (6), (8), (10), proposition 2.2 and theorem 2.4 in (Chen, 2004, p. 1985-2028), we have

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| & =\sup _{x \in \mathbb{R}}\left|P\left(\frac{1}{\sqrt{k}} \sum_{i=1}^{n} T_{i n} \leq \frac{x}{\sqrt{k}}\right)-\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)\right| \\
& \leq 75(4)^{p-1} \sum_{i=1}^{n} E\left|\frac{T_{i}}{\sqrt{k}}\right|^{p} \\
& =\frac{75(4)^{p-1}}{(n k)^{\frac{p}{2}}} \sum_{i=1}^{n} E\left|\sum_{j=1}^{k} Y_{i j}\right|^{p} \\
& \leq \frac{75(4)^{p-1} k^{p}}{(n k)^{\frac{p}{2}}} \sum_{i=1}^{n} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{p} .
\end{aligned}
$$

Applying theorem 2.5 in (Chen, 2004, p. 1985-2028) and (9) to non-uniform case, we have for $x \in \mathbb{R}$,

$$
\begin{aligned}
\left|P\left(W_{n} \in A_{k}(x)\right)-\Phi_{k}\left(A_{k}(x)\right)\right| & =\left|P\left(\sum_{i=1}^{n} T_{i n} \leq x\right)-\Phi_{1}\left(\frac{x}{\sqrt{k}}\right)\right| \\
& \leq \frac{5^{p} C}{\left(1+\left|\frac{x}{\sqrt{k}}\right|\right)^{p}} \sum_{i=1}^{n} E\left|\frac{T_{i}}{\sqrt{k}}\right|^{p} \\
& \leq \frac{(5 k)^{p} C}{n^{\frac{p}{2}}(\sqrt{k}+|x|)^{p}} \sum_{i=1}^{n} \sum_{j=1}^{k} E\left|Y_{i j}\right|^{p} .
\end{aligned}
$$

Proof of theorem 1.9

Proof: By theorem 1.1, 1.2 and the same argument as in theorem 1.7, we have the theorem.
Remark The above theorems include the case that each Y_{i} has an indicator covariance matrix I_{k}.

Acknowledgment

The authors would like to thank the reviewers for their valuable comments and suggestions.

References

Bahr, B. V. (1967). Multi-dimentional integral limit theorems. Ark Mat., 7, 71-88. http://dx.doi.org/10.1007/BF02591678
Bahr, B. V. (1967). On the central limit theorem in R_{k}. Ark Mat., 7, 61-69. http://dx.doi.org/10.1007/BF02591677
Bergström, H. (1945). On the central limit theorem in $\mathbb{R}^{k}, k>1$. Skand. Akt., 28, 106-127.
Berry, A. C. (1941). The accuracy of the Gaussian approximation to the sum of independent variables. Trans. Amer. Math. Soc., 49, 122-136. http://dx.doi.org/10.1090/S0002-9947-1941-0003498-3
Bhattacharya, R. N. (1970). Rates of weak convergence for the multidimensional central limit theorem. Theory Probab. Appl., 15, 68-86. http://dx.doi.org/10.1137/1115005
Chaidee, N. (2004). Non-uniform Bounds in Normal Approximation for Matrix Correlation Statistics and Independent Bounded Random Variables, Ph. D. thesis, Chulalongkorn University
Chen, L. H. Y., \& Shao, Q. M. (2001). A non-uniform Berry-Esseen bound via Stein's method. Probab. Theory Relat. Field, 120, 236-254. http://dx.doi.org/10.1007/PL00008782

Chen, L. H. Y., \& Shao, Q. M. (2004). Normal approximation under local dependence. Ann. Probab., 32, 1985-2028. http://dx.doi.org/10.1214/009117904000000450
Chen, L. H. Y., \& Shao, Q. M. (2005). Stein's method for normal approximation. An Introduction to Stein's Method, 4, 1-59, Singapore University Press, Singapore.
Esseen, C. G. (1945). Fourier analysis of distribution functions. A Mathematical Study of the Laplace Gaussian Law, Acta Math., 77, 1-125. http://dx.doi.org/10.1007/BF02392223
Nagaev, S. V. (1965). Some limit theorems for large deviations. Theory Probab. Appl., 10, 214-235. http://dx.doi.org/10.1137/1110027

Neammanee K., \& Thongtha, P. (2007). Improvement of the non-uniform version of Berry-Esseen inequality via PaditzSiganov theorems. JIPAM, 8(4), 1-10.
Paditz, L. (1989). On the analytical structure of the constant in the nonuniform version of the Esseen inequality. Statistics, 20, 453-464. http://dx.doi.org/10.1080/02331888908802196
Rao, R. R. (1961). On the central limit theorem in R_{k}. Bull. Amer. Math. Soc., 67, 359-361. http://dx.doi.org/10.1090/S0002-9904-1961-10615-0
Shevtsova, I. G. (2010). An Improvement of convergence rate estimates in the Lyapunov Theorem. Dokl. Math., 82(3), 862-864. http://dx.doi.org/10.1134/S1064562410060062

