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Sufficient Conditions for Evasion in a Linear Differential Game

Nodir Umrzakov

Institute of Mathematics and IT

Durman yuli, 29, 100125, Tashkent, Uzbekistan

Tel: 998-74-970-7150 E-mail: umrzaqov2010@mail.ru

Gafurjan Ibragimov (Corresponding author)

Department of Mathematics, Faculty of Science, Universiti Putra Malaysia

43400, Serdang, Selangor, Malaysia

Tel: 60-3-8946-6818 E-mail: gafur@science.upm.edu.my

Received: August 17, 2011 Accepted: September 22, 2011 Published: November 1, 2011

doi:10.5539/jmr.v3n4p168 URL: http://dx.doi.org/10.5539/jmr.v3n4p168

Abstract

We study a linear evasion differential game in R2. Control sets of players, the pursuer and the evader, are compact subsets

of R2. The terminal set of the game is the origin. The game is considered to be completed if the state of the system, z(t),
reaches the origin. If z(t) never reaches the origin, then we say that evasion is possible in the game. We obtained weaker

conditions for evasion than conditions obtained by other researches. We give some illustrative examples which show the

advantage of our conditions.
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1. Statement of the problem

Dynamics of the state vector z(t) is described in R2 by the following system of equations

ż = Cz − u + v + a, z(0) = z0 � 0, (1)

where

C =
[

c11 c12

c21 c22

]
, u =

[
u1

u2

]
, v =

[
v1

v2

]
, a =

[
a1

a2

]
,

u is control parameter of the pursuer, v is that of the evader, C is a constant matrix, a is a constant vector. The control

parameters u and v are chosen from the control sets U and V , respectively, which are compact subsets of R2.

Definition 1. A measurable function u(t), u : [0, ∞) → U, is called a control of the pursuer.

Definition 2. A measurable function v(t), v : [0, ∞) → V , is called a control of the evader.

Definition 3. A function V0 = V0(z, u), V0 : R2 × U → V, such that for any control of the pursuer u(·) the system

ż = Cz − u + V0(z, u) + a, z(0) = z0, (2)

has a unique solution z(t), t ≥ 0, and V0(z(t), u(t)), t ≥ 0, is measurable, is called a strategy of the evader.

Definition 4. If there exists a strategy of the evader V0 such that for any control of the pursuer u(t), t ≥ 0, the solution of

the initial value problem (2), z(t), t ≥ 0, with z(0) = z0 � 0, will not pass through the origin, then we say that evasion is

possible in the game (1).

Problem. Find conditions on the matrix C, the control sets U and V , and the vector a for which evasion is possible in the

game (1).

2. Related works

Evasion is an important branch of the Differential Game Theory. Many researches are devoted to evasion problems (see,

for example, [1-8]). The evasion problem first formulated by (Pontryagin, 1969), (Pontryagin, 1971) and he solved it
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under ”rotatability” and ”advantage” conditions. (Pontryagin, 1971) formulated the following problem called μ-problem:

is it possible to prove an evasion theorem in case of μ = 1, where μ represents advantage of the evader. However, a

positive solution of the problem has still not been obtained. It should be noted that in some particular cases the problem

was solved by (Kramarovskii, 1995), (Kuchkarov, 2002), (Satimov, 2000).

(Satimov, 2000) and (Kuchkarov, 2002) proved that evasion is possible in the game (1) if the following two conditions

hold:

1. there doesn’t exist a straight line L passing through the origin, which satisfies the inclusion etCV ⊂ L for all

sufficiently small positive t (the rotatability condition),

2. the inclusion U ⊂ V holds (the advantage condition).

(Kramarovskii, 1995), and (Satimov, 2000) showed that if the advantage condition and the inequality

min
u∈U

max
v∈V

|(u1 − v1)a2 − (u2 − v2)a1| > 0 (3)

hold, then evasion is possible in the game (1).

In this paper we’ll give some conditions weaker than that in the above for which the evasion is possible. Also we’ll give

some examples for which game is described by a system of the form (1), and both the rotatability and the advantage

conditions are not satisfied, but our conditions are satisfied.

3. Main Result

Since a parallel translation of any of the sets U and V in the space R2 can be compensated by a change in the vector a, we

can assume that the set V contains the origin.

Theorem. Let the advantage condition and the following conditions hold:
C1. The system (1) cannot be reduced to the form{

ż1 = c̄11z1

ż2 = c̄21z1 + c̄22z2 − ū + v̄ + ā

by rotating the coordinate system, where c̄11, c̄21, c̄22, ā are some constants, and ū ∈ Ū ⊂ R1, v̄ ∈ V̄ ⊂ R1.

C2. The set V contains at least two points.
Then evasion is possible in the game (1).

Proof. We analyze the following cases:

Case 1. There is a straight line L which passes through the origin and contains the set V .

Case 2. There is no straight line containing the set V and passing through the origin.

Study the case 1. We rotate the coordinate system so that z2-axis coincides with the straight line L. We denote new

coordinate axes again by z1, z2. Clearly, in this coordinate system, equation (1) takes the form

{
ż1 = c11z1 + c12z2 + a1,
ż2 = c21z1 + c22z2 − ū + v̄ + a2,

(4)

where ū ∈ Ū ⊂ R1, v̄ ∈ V̄ ⊂ R1. Letting v̄ = ū in (4) we obtain

{
ż1 = c11z1 + c12z2 + a1,
ż2 = c21z1 + c22z2 + a2.

(5)

There is only one trajectory, denoted z1 = φ1(t), z2 = φ2(t), passing through the origin. This trajectory is defined for all

t ∈ (−∞, +∞). We assume that φ1(0) = φ2(0) = 0.

Let Π = {(φ1(t), φ2(t)) : t ≤ 0}. It is clear that if z0 � Π, then letting v̄ = ū and using the fact that trajectories of (5) do not

intersect we get z(t) � 0, t ≥ 0, meaning that evasion is possible in the game (4).

Note that if a1 = a2 = 0, then φ1(t) ≡ 0, φ2(t) ≡ 0, and Π consists of the only point (0, 0), therefore, from the point z0 � 0

evasion is possible in the game (4) and hence in the game (1) too.
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In the sequel, we assume that a � 0 and z0 ∈ Π\{0}. Then either a1 � 0 or a1 = 0, a2 � 0. Let a1 � 0. For definiteness we

assume that a1 > 0. The case a1 < 0 can be examined in a similar way. As φ̇1(0) = a1 > 0, then by the Implicit Function

Theorem the equation z1 = φ1(t) can be solved for t at some neighborhood of the point 0, i.e., t = f (z1), |z1| ≤ δ, δ > 0.
Then we obtain continuously differentiable function

z2 = φ2(t) = φ2( f (z1)) = h(z1), |z1| ≤ δ.

Clearly, the equation

z2 = h(z1), −δ ≤ z1 ≤ 0 (6)

expresses a part of the line Π, denoted l, which connects Π with the origin.

1◦. We show that if z0 ∈ Π\l, then evasion is possible in the game (4). The strategy of the evader consists of three parts.

The first part comprises the formula

v̄(t) = ū(t) i f z1(t) � −δ
2
,

where z1(t) is the first coordinate of the solution z(t) = (z1(t), z2(t)) of (4) with the initial condition z(0) = z0. Here z(t)
moves along Π towards 0. Hence z1(t0) = − δ

2
at some time t0 > 0. Without loss of generality we now consider the point(

− δ
2
, h

(
− δ

2

))
as the initial position of z(t) at t0 = 0 and we set z0 =

(
− δ

2
, h

(
− δ

2

))
.

Since the solution of the system (4) is continuous, therefore there exists a number ε > 0 such that for any admissible

controls of players ū(t) and v̄(t) the solution of the system (4), z̄(t) = (z̄1(t), z̄2(t)), 0 ≤ t ≤ ε, at ū = ū(t), v̄ = v̄(t) with the

initial position z0 at t0 = 0 cannot reach neither the point 0 nor the point (−δ, h(−δ)) on [0, ε].

We now turn to the construction of the second part of the evader’s strategy. We let

v̄(t) � ū(t), v(t) ∈ V, t ∈ [0, ε].

According to the condition C2 of the theorem such admissible control v̄(t) exists. We show that z̄(t) � Π at some

t = t1 ∈ (0, ε]. Assume the contrary. Let z̄(t) ∈ Π for all t ∈ [0, ε]. Then by construction of the line l we have

z̄(t) ∈ l for all t ∈ [0, ε]. Therefore by (6) we obtain

z̄2(t) = h(z̄1(t)), ˙̄z2(t) = h′(z̄1(t)) · ˙̄z1(t).

Then by (4) we have

c21z̄1 + c22z̄2 − ū(t) + v̄(t) + a2 = h′(z̄1(t))[c11z̄1 + c12z̄2 + a1]. (7)

Since

z̄(t) ∈ l = {(φ1(s), φ2(s))| s ∈ [−δ, 0]} ,
z̄(t) = (φ1(s), φ2(s)) for some s ∈ [−δ, 0]. Substitute it into (7) to obtain

c21φ1(s) + c22φ2(s) − ū(t) + v̄(t) + a2 = h′(φ1(s))[c11φ1(s) + c12φ2(s) + a1]. (8)

By (5)

φ̇1(s) = c11φ1(s) + c12φ2(s) + a1, φ̇2(s) = c21φ1(s) + c22φ2(s) + a2.

Therefore by (8)

φ̇2(s) − ū(t) + v̄(t) = h′(φ1(s))φ̇1(s). (9)

On the other hand, we have the identity φ2(t) = h(φ1(t)), t ∈ [−δ, 0], consequently, φ̇2(t) = h′(φ1(t))φ̇1(t). If here we let

t = s, then from (9) we obtain −ū(t) + v̄(t) = 0. However, by construction v̄(t) � ū(t), 0 ≤ t ≤ ε. Contradiction.

Thus, if a1 > 0 and z0 ∈ Π\l, then we obtain z̄(t1) � Π at some t1 ∈ (0, ε]. Then, clearly, letting

v̄(t) = ū(t), t ≥ t1,

which is the third part of the evader’s strategy, we get z̄(t) � 0, t ≥ t1, that is, evasion is possible from the initial position

z0 in the game (4).

2◦. We show that evasion is possible in the case z0 ∈ l\{0}. Indeed, by continuity of the trajectory of the system (4) there

exists ε > 0 such that for any admissible controls ū(t) and v̄(t) the trajectory z(t)of the system (4) at ū = ū(t), v̄ = v̄(t) with
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z(0) = z0 ∈ l\{0} can reach neither the point (−δ, h(−δ)) nor the point 0. From here arguments are similar to those in the

case z0 ∈ Π\l.

We now study the case where a1 = 0, a2 � 0. From (5) we obtain that φ̇1(0) = 0, φ̈1(0) = c12a2. Here c12 � 0, otherwise

the system (4) takes the form contradicting to the condition C1. Hence, c12a2 � 0. For definiteness we assume that

c12a2 < 0 (the case c12a2 > 0 is considered in a similar way). Then relations φ̇1(0) = 0, φ̈1(0) < 0 imply that the function

z1 = φ1(t) attains its local minimum at t = 0 and increases monotonously on some interval [−τ, 0], τ > 0. Therefore the

equation z1 = φ1(t) can be solved for t: t = f (z1), z1 ∈ [−ε, 0]. Substituting this into the equation z1 = φ2(t) we get the

function z2 = φ2( f (z1)) = h(z1) which represents a part of Π, which connects Π with the origin. Further arguments are

similar to those in the case a1 � 0.

Thus, we can conclude that if the set V is contained in a straight line L passing through the origin then evasion is possible.

We analyze now the case 2: there is no straight line, which passes through the origin and contains the set V . Then V
contains two linearly independent vectors

v′ = (v′1, v
′
2), v′′ = (v′′1 , v

′′
2 ). (10)

If a = 0 then we set v(t) = u(t). Then the system (1) reduces to ż = Cz, z(0) = z0 � 0, and, clearly, z(t) � 0, t ≥ 0. This

means the evasion is possible in the game (1).

From now on we assume that a = (a1, a2) � 0. Let

N(u, v) =

∣∣∣∣∣∣ v1 − u1 a1

v2 − u2 a2

∣∣∣∣∣∣ .
We show that

N = min
u∈U

max
v∈V

|N(u, v)| > 0. (11)

Assume the contrary. Let N = 0. Then ∣∣∣∣∣∣ v1 − u10 a1

v2 − u20 a2

∣∣∣∣∣∣ = 0

for all v = (v1, v2) ∈ V and some u0 = (u10, u20) ∈ U. This equality shows that vectors v − u0 and a � 0 are parallel for

all v ∈ V . In particular, the vectors v′ − u0 and v′′ − u0 are parallel to a. This contradicts to the condition that vectors (10)

are linearly independent. Therefore (11) holds.

Let v0(u) is the least lexicographic solution of the equation

|N(u, v)| = max
v∈V

|N(u, v)|. (12)

If u(t), 0 ≤ t ≤ 1 is a measurable function then so is v0(u(t)), 0 ≤ t ≤ 1 (Mishchenko, 1973). By (11)

|N(u(t), v0(t))| ≥ N. (13)

As a � 0, then either a1 � 0 or a1 = 0, a2 � 0. In the former case, a part of Π connecting it with 0 can be represented in

the form (6). We show that z(t) � Π at some t1 ∈ [0, ε]. If we assume the contrary, then analysis similar to that in the case

1 with a1 � 0 shows that

v20(u(t)) − u2(t) = h′(z1(t))[v10(u(t)) − u1(t)], (14)

where (u1(t), u2(t)) = u(t), 0 ≤ t ≤ ε, is an admissible control chosen by the pursuer, (v10(u(t)), v20(u(t))) = v0(u(t)),
0 ≤ t ≤ ε, is the function defined by (12), (z1(t), z2(t)) = z(t), 0 ≤ t ≤ ε, is the trajectory of the system (1) at u = u(t),
v = v0(t), with either z(0) = z0 ∈ Π\l or z0 ∈ l\{0}.
By the definition of h(z1) we obtain that h′(φ1(t)) = φ̇2(t)

φ̇1(t) and hence h′(0) = a2

a1
. From this and continuity of h′(z1) there

exists δ0 > 0 such that for all z1, −δ0 ≤ z1 ≤ 0, ∣∣∣∣∣h′(z1) − a2

a1

∣∣∣∣∣ < N
2|a1|M , (15)
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where M = max
u∈U,v∈V

|v1 − u1|. Based on (13), (14) and (15) we estimate |N(u(t), v0(t))|:

N ≤ |N(u(t), v0(t))| = |a2 (v10(t) − u1(t)) − a1 (v20(t) − u2(t))|
= |a1| ·

∣∣∣∣∣a2

a1

(v10(t) − u1(t)) − (v20(t) − u2(t))
∣∣∣∣∣

= |a1| ·
∣∣∣∣∣a2

a1

(v10(t) − u1(t)) − h′(z1(t)) (v10(t) − u1(t))
∣∣∣∣∣

= |a1| ·
∣∣∣∣∣a2

a1

− h′(z1(t))
∣∣∣∣∣ · |v10(t) − u1(t)| ≤ |a1| · N

2|a1|M · M =
N
2
,

which is impossible. Therefore z(t1) � Π at some t1 ∈ [0, ε]. We can now proceed by letting

v(t) = u(t), t ≥ t1.

Then clearly, z(t) � 0, t ≥ 0.

Similar arguments apply to the case a1 = 0, a2 � 0. The equation of the line l now has the form

z1 = g(z2), −δ ≤ z2 ≤ 0, δ > 0.

We can now proceed analogously to the case a1 � 0. We obtain the equation

v10(t) − u1(t) = h′(z2(t))[v20(t) − u2(t)],

where (u1(t), u2(t)) = u(t), 0 ≤ t ≤ ε, is an admissible control chosen by the pursuer, (v10(t), v20(t)) = v0(t), 0 ≤ t ≤ ε, is

the function obtained from (12), (z1(t), z2(t)) = z(t), 0 ≤ t ≤ ε, is the trajectory of the system (1) at u = u(t), v = v0(t),
with either z(0) = z0 ∈ Π\l or z0 ∈ l\{0}. The rest of the proof runs as before. The proof of the theorem is complete.

4. Comparison of the Conditions

In this section, we show that the conditions C1 and C2 of the theorem are weaker than that in section 2.

1. Let the rotatablility and advantage conditions (Kuchkarov, 2002), (Satimov, 2000) hold. We show that the conditions

of the theorem are satisfied. Indeed, from the condition 0 ∈ V we obtain that the set V contains at least two different

points, since otherwise etCV = (0, 0), which contradicts the rotatability condition. We now turn to the condition

C1 of the theorem. The system (1) cannot be reduced to the form given in the condition C1, for otherwise the

fundamental matrix of (1) has the form

etC =

(
e11(t) 0

e21(t) e22(t)

)
and hence etCV̄ = (0, e11(t)v̄). This means z2-axis contains the set etCV̄ , which contradicts the rotatability condition.

2. We next show that conditions of works (Kramarovskii, 1995) and (Satimov, 1984), i.e., the inequality (3) and the

advantage condition, imply the conditions C1 and C2 of the theorem. It follows from the condition 0 ∈ V that V
contains at least two different points, since otherwise U = V = {(0, 0)} and hence the inequality (3) is not satisfied.

If we now assume that the system (1) can be reduced to the form given in the condition C1 by rotating the coordinate

system then we obtain that u1 − v1 = 0, a1 = 0. Hence the inequality (3) is not satisfied. Contradiction.

We now give examples that show the advantage of our conditions.

Example 1. Let a differential game is described by the system of equations{
ż1 = 1

ż2 = z1 − u + v,

where u, v ∈ {0, 3} showing that Uand V are not convex. We see at once that the conditions of our theorem are satisfied,

but those of the works [2-7] are not satisfied.

Example 2. We now consider a differential game described by the system{
ż1 = z2

ż2 = −u + v + 1,
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where u, v ∈ {0, 3}. A trivial verification shows that the conditions C1 and C2 of the theorem are satisfied, but those of

the papers (Kramarovskii, 1995) and (Satimov, 1984) are not satisfied.
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