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Abstract

It has been observed that most investigations on the oscillations of impulsive differential equations are one-directional.
No explanation has hitherto been contemplated for such restrictions. In this paper, we propose some sufficient conditions
for both-directional oscillation of a nonlinear delay impulsive differential equation with several retarded arguments. An
example of a one-dimensional delay impulsive equation is given to further demonstrate the efficiency of the approach.
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1. Introduction and Statement of the Problem

Most of the studies in the field of oscillation theory of impulsive differential equations with deviating argument discuss
the case where the deviating argument τ(t) tends to +∞ as t → ∞ (Ladde et al, 1987; Bainov and Simeonov, 1998; Isaac
and Lipcsey, 2007; 2009; 2010a; 2010b). However, oscillations in both directions also constitute an interesting study and
this is what we set to examine in this paper.

Usually, the solution y(t) for t ∈ J, t � S of the impulsive differential equation or its first derivative y′(t) is a piece-wise
continuous function with points of discontinuity tk, tk ∈ J ∩ S . Here, S := {tk}k∈E is a sequence whose elements are the
moments of impulse effect, E represents a subscript set which can be the set of natural numbers N or the set of integers Z,
and satisfy the following properties:

C1.1 If {tk}k∈E is defined with E := N, then 0 < t1 < t2 < · · · and

lim
k→+∞

tk = +∞

C1.2 If {tk}k∈E is defined with E := Z, then t0 ≤ 0 < t1, tk < tk+1 for all k ∈ Z, k � 0, and

lim
k→±∞

tk = ±∞.

and J ⊂ R is a given interval. Therefore, in order to simplify the statements of the assertions, we introduce the set of
functions PC and PCr which are defined as follows:

Let r ∈ N,D := [T,∞) ⊂ R and let S be fixed. We denote by PC(D,R) the set of all functions ϕ : D → R, which are
continuous for all t ∈ D, t � S . They are continuous from the left and have discontinuity of the first kind at the points for
which t ∈ S .

By PCr(D,R), we denote the set of functions ϕ : D → R having derivative
d jϕ

dt j
∈ PC(D,R), 0 ≤ j ≤ r (Bainov and

Simeonov, 1998; Lakshmikantham et al, 1989).
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To specify the points of discontinuity of functions belonging to PC or PCr, we shall sometimes use the symbols PC(D,R; S )
and PCr(D,R; S ), r ∈ N.

In the sequel, all functional inequalities that we write are assumed to hold finally, that is, for all sufficiently large t.

First, we consider a nonlinear impulsive differential equation with deviating argument of the form

⎧⎪⎪⎨⎪⎪⎩y′(t) = f (t, y(t), y(τ(t))), t ∈ R, t � S

Δy(tk) = gk(tk, y(tk), y(τ(tk))), ∀tk ∈ S ,
(1.1)

where f : R3 → R, τ : R → R,

τ(t) → −∞ as t → ∞ and τ(t) → +∞ as t → −∞. (1.2)

Definition 1.1

A function y(t) is said to be a solution of equation (1.1) if it is defined on R and such that the differential equation in (1.1)
is satisfied and its first derivative y′(t) is a piece-wise continuous function with points of discontinuity tk ∈ R, tk � t, 0 ≤
k ≤ ∞.

Definition 1.2

A solution of equation (1.1) is said to be oscillatory in both directions if there exist non-intersecting sequences {tn} and
{t∗n} in R such that tn → +∞, t∗n → −∞ as n → ∞, and y(tn) and y(t∗n) are neither finally positive nor finally negative for
n = 1, 2, · · · .
Throughout our discussion, we will restrict ourselves to those solutions y(t) of equation (1.1) which are not finally identi-
cally zero on the intervals [T,∞) and ( −∞,T ], T being any real number.

2. Main Results

Now we consider a more general nonlinear delay impulsive differential equation with several retarded arguments⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y′(t) =

m∑
i=1

pi(t) fi(y(τ1(t)), · · · , y(τn(t))), t � S

Δy(tk) =
m∑

i=1
pikgik(y(τ1(tk)), · · · , y(τn(tk))), ∀tk ∈ S .

(2.1)

We introduce the following conditions:

C2.1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
pi(t) ∈ PC1(R,R), τ j(t) ∈ C(R,R), f or |t| ≥ T ≥ 0, pik ∈ R, 0 ≤ k ≤ ∞,
i ∈ Im = {1, 2, · · · ,m}, j ∈ In = {1, 2, · · · , n} and τ j(t) satis f ies

condition (1.2). pi(t) are o f the same sign f or i ∈ Im, all being either

non − positive or non − negative.

C2.2 fi, gi ∈ C(R,R), i ∈ Im = {1, 2, · · · ,m}, and satisfy the relation

⎧⎪⎪⎨⎪⎪⎩y1 fi(yi, y2, · · · , yn) > 0,
y1gik(yi, y2, · · · , yn) > 0

if y1y j > 0, j ∈ In = {1, 2, · · · , n}, for every i ∈ Im and⎧⎪⎪⎨⎪⎪⎩| fi(y1, y2, · · · , yn)| ≤ | fi(y∗1, y∗2, · · · , y∗n)|,
|gik(y1, y2, · · · , yn)| ≤ |gik(y∗1, y

∗
2, · · · , y∗n)|

if |y j| ≤ |y∗j |, y jy
∗
j > 0, j ∈ Im, i ∈ In.

Theorem 2.1 Assume that conditions C2.1 C2.3 are fulfilled and let

n∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

T

p j(t)dt +
∑

T≤tk<∞
pik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = (∞) · sign pi(t), i ∈ Im (2.2)

and
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n∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−T∫

−∞
p j(t)dt +

∑
−∞<tk≤−T

pik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = (∞) · sign pi(t), i ∈ Im (2.3)

Then every solution of (2.1) defined from |t| ≥ T ≥ T oscillates.

Proof. Let us assume on the contrary that there exists a non-oscillatory solution y(t) (at least on one direction as t → ∞.)
This implies that there exists a T1 > 0 such that y(t) is either finally positive or finally negative for all t ≥ T1. Without loss
of generality, we assume that y(t) > 0 and that pi(t) ≥ 0, for t ≥ T1. Let

T
(i)
2 = max

t≥T1
τi(t), max

1≤ i≤m
T

(i)
2 = T2, min

t≤T1
τi(t) = T

(i)
2 and min

1≤ i≤n
T

(i)
3 = T3.

The relative position of T1 and T3 on the real line can be arbitrary. If T3 < T1 then assume that y(t) > 0 on T3 ≤ t < T1.
Otherwise, we choose T1 sufficiently large such that T3 is sufficiently large to guarantee that y(t) > 0 on T3 ≤ t < T1.

If t ≤ T2, then τi(t) ≥ T3 and hence y(τi(t)) > 0, ∀i ∈ Im. Therefore, ∀i ∈ Im, fi > 0, and y′(t) > 0 for t ≤ T2. Now we
discuss two possible cases:

either

(i) y(t) ≥ 0 for t ≤ T2,

or

(ii) There exists T ≤ T2 such that y(t) < 0 for t ≤ T .

In the first case, from the definition of T2 and T3, τi(t) ≤ T2 as t ≥ T3. Therefore, y′(t) ≥ 0 as t ≥ T3. Hence y(t) ≥ y(T3),
as t < T3.

On integration of equation (2.1) on (t,T2), t < T3, we have

y(T2) ≥ y(T2) − y(t)

=

m∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
T2∫

t

pi(s) fi(y(τ1(s)), · · · , y(τn(s)))ds+

+
∑

t≤tk<T2

pikgi(y(τ1(tk)), ·, y(τn(tk)))

⎞⎟⎟⎟⎟⎟⎟⎠
≥

m∑
i=1

fi(y(T3), · · · , y(T3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
T2∫

t

pi(s)ds +
∑

t≤tk<T2

pik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
When t → −∞, we obtain a contradiction to equation (2.2).

In the second case, there exists a T ≤ T2 such that y(t) < 0 as t ≤ T . We choose T 1 > T1 such that

max
t>T 1

τi(t) ≤ T , i ∈ Im.

Hence y′(t) < 0 as t ≥ T 1. On integration of equation (2.1) on (T 1, t), t ≥ T 1, we have

−y(T 1) ≤ y(t) − y(T 1)

=

m∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t∫

T1

pi(s) fi(y(τ1(s)), · · · , y(τn(s)))ds+

+
∑

T 1≤tk<t

pikgi(y(τ1(tk)), ·, y(τn(tk)))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥

m∑
i=1

fi(y(T ), · · · , y(T )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t∫

T 1

pi(s)ds +
∑

T 1≤tk<t

pik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Or

1 ≥ − 1

y(T 1)

m∑
i=1

fi(y(T ), · · · , y(T )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t∫

T 1

pi(s)ds +
∑

T 1≤tk<t

pik

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
When t → +∞, we arrive at a contradiction. This completes the proof. �

We conclude this section by noting that the above theorem is the impulsive analogue of Theorem 3.10.1 in the studies by
(Ladde et al, 1987).

Example 2.1

We consider the equation

⎧⎪⎪⎨⎪⎪⎩y′(t) + y
(
t − π2

)
= 0, t ∈ R, t � π2 k

y
(
π
2 k+

)
= − e−

π
2 y
(
π
2 k
)
, k ∈ Z

(2.4)

which satisfies all the conditions of Theorem 2.1. A straight forward verification shows that the function

y(t) = (−1)ket− π2 k, t ∈
(
π

2
k,
π

2
(k + 1)

]
is a solution of equation (2.4) which is positive in each interval of the form

(
πn, πn + π2

]
, n ∈ Z, and is negative in the

intervals
(
πm − π2 , πm

]
, m ∈ Z, that is, y(t) is a solution which changes its sign without vanishing anywhere. Therefore

all solutions of equation (2.4) are oscillatory in both directions.
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