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Abstract

We generalize the RKrvQz algorithm to solve nonstiff initial-value problems in ordinary differential equations. The

algorithm can now be applied to systems of nonstiff initial-value problems (IVPs) in ordinary differential equations, and

both relative error and absolute error can be controlled, locally and globally. We demonstrate the algorithm by solving the

simple harmonic oscillator for moderate and strict tolerances.
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1. Introduction

Recently, we described the RKrvQz algorithm (Prentice, 2011) for solving nonstiff initial-value problems (IVPs) in or-

dinary differential equations (ODEs). This algorithm uses three explicit Runge-Kutta (RK) methods, of orders r, v and

z, to control both local and global errors in a stepwise manner. In that paper, we considered control of absolute error

only, neglecting relative error control, and we considered the application of the algorithm to scalar problems, rather than

systems of ODEs. The motivation for developing RKrvQz is that, in local extrapolation, the RKv solution is not only used

to estimate the local error in the RKr solution, but the RKv solution is propagated in the RKr method. Any global error

in the RKv solution is thus also propagated in the resulting RKr solution. This global error can accumulate to the point

where the RKr solution is globally inaccurate (relative to some desired level of accuracy), even though its local error has

been controlled. RKrvQz represents an attempt to control the global error in the RKr solution in a stepwise manner, i.e.

as the RK iteration proceeds, rather than using an ‘after-the-fact’ reintegration procedure.

In the current paper, we consider RKrvQz applied to problems of the form

y′ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dy1

dx
dy2

dx
...

dyn
dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 (x, y1, y2, . . . , yn)

f2 (x, y1, y2, . . . , yn)
...

fn (x, y1, y2, . . . , yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≡ f (x, y)

x ∈
[
x0, x f

]
y (x0) = y0,

that is to say, systems of ODEs, and we discuss the inclusion of relative error control in the algorithm.

2. Relevant Concepts, Terminology and Notation

The current paper is based almost entirely on our previous work (Prentice, 2011), but for ease of reference we will

present here concepts, notation and terminology relevant to our discussion as it pertains to systems of ODEs. Also, we

will designate our previous paper as PR1, since we will refer to it several more times in the text. To a large extent, the

remainder of this section is excerpted from PR1, with appropriate modifications. Throughout the remainder of the paper,

quantities in normal font are scalars, and quantities in boldface font are n × 1 vectors, except α and Fr
y, which are n × n

matrices. Additionally, we refer the reader to Hairer et al (2000), Butcher (2003), Iserles (2009), Kincaid & Cheney

(2002), LeVeque (2007), and many references therein, for discussions of Runge-Kutta methods.

Published by Canadian Center of Science and Education 59



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 4; November 2011

2.1 Runge-Kutta methods

The most general definition of a Runge-Kutta (RK) method for systems is

kp = f
(
xi + cphi,wi + hi

m∑
q=1

apqkq

)
p = 1, 2, ...,m

wi+1 = wi + hi
m∑

p=1
bpkp ≡ wi + hiF (xi,wi) .

(1)

Such a method is said to have m stages (the kq), and each stage is an n×1 vector. If apq = 0 for all p � q, then the method

is said to be explicit; otherwise, it is known as an implicit RK method. As indicated earlier, we will focus our attention on

explicit methods. The number of stages is related to the order r of the method, and for explicit methods we always have

r � m. In the second line of (1), we have implicitly defined the function F (of course, F (xi,wi) is an n × 1 vector). The

symbol w is used here and throughout to indicate the approximate numerical solution, whereas the symbol y will be used

to denote the exact solution. As a refinement to our notation, we will denote a Runge-Kutta method of order r as RKr
and, for such a method, we write

wr
i+1 = wr

i + hiFr (xi,wr
i
)
. (2)

We may regard RKr as being defined by Fr, although it is understood that, for any r, there are, generally speaking,

numerous possible choices for Fr. We denote the jth component of Fr by Fr
j. The superscripts in (2) are labels, not

exponents. The stepsize hi is given by

hi ≡ xi+1 − xi

and carries the subscript because it may vary from step to step.

Note that

wr
i ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
wi,1

wi,2
...

wi,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
wherein the first index in the subscript indicates iteration number, and the second index indicates component.

2.2 Error propagation

We define the global error in a numerical solution generated by RKr at xi+1 by

Δr
i+1 ≡ wr

i+1 − yi+1, (3)

and the local error at xi+1 by

εr
i+1 ≡ [

yi + hiFr (xi, yi)
] − yi+1. (4)

Note the use of the exact value yi in the bracketed term in (4). Again, the superscripts are labels. The errors Δr
i+1 and εr

i+1

are n × 1 vectors.

We have previously shown (Prentice, 2009) that

Δr
i+1 = εr

i+1 + α
r
iΔ

r
i (5)

αr
i ≡ In + hiFr

y (xi, ξi) , (6)

where

Fr
y (xi, ξi) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂Fr

1

∂y1
· · · ∂Fr

1

∂yn
...
. . .

...
∂Fr

n
∂y1

· · · ∂Fr
n

∂yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(xi,ξi)

is the Jacobian of Fr (x, y) evaluated at (xi, ξi) , and ξi is a vector of constants arising in the residual term of a first-order

Taylor expansion of Fr
(
xi,wr

i

)
about the point (xi, yi) ; see (Prentice, 2009) for detail. Equation (5) provides a “master”

relationship between local and global errors in RKr. We will assume that Δ0 = 0 (i.e. the initial value is known exactly).

We see that the global error at any node xi+1 is the sum of a local error term and a term incorporating the global error at

the previous node. For RKr, it is known that

εr
i+1 ∝ hr+1

i

Δr
i+1 ∝ hr.
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On the RHS of these expressions, the superscripts are exponents, and h is a parameter representative of the stepsizes hi.

2.3 Local error control via local extrapolation

Consider two RK methods of order r and order v, i.e. RKr and RKv, with r < v. Let wr
i+1 denote the approximate solution

at xi+1 obtained with RKr, and similarly for wv
i+1
. Let the local error at xi+1 in the RKr method be given by the n×1 vector

εr
i+1 = β

r
i+1hr+1

i , and similarly for εv
i+1
= βv

i+1
hv+1

i (which defines the local error coefficients βr
i+1, β

v
i+1

). Now, if wr
i ,w

v
i = yi,

which means that Δr
i ,Δ

v
i = 0, we have

wr
i+1 − wv

i+1 = yi+1 + Δ
r
i+1 −

(
yi+1 + Δ

v
i+1

)
= εr

i+1 + α
r
iΔ

r
i −

(
εv

i+1 + α
v
iΔ

v
i

)
= εr

i+1 − εv
i+1

= βr
i+1hr+1

i − βv
i+1hv+1

i

≈ βr
i+1hr+1

i

if hi is sufficiently small (since r < v). This gives

βr
i+1 ≈ wr

i+1 − wv
i+1

hr+1
. (7)

Once we have estimated the local error, we can perform error control. Assume that we require that the local error at each

step must be less than a user-defined tolerance δ (we will say more about the nature of this tolerance later). Moreover,

assume that, using stepsize hi, we find for the jth component of εr
i+1,∣∣∣εr

i+1, j

∣∣∣ = ∣∣∣βr
i+1, jh

r+1
i

∣∣∣ > δ. (8)

In other words, the magnitude of the local error εr
i+1, j exceeds the desired tolerance. We remedy the situation by deter-

mining a new stepsize h∗
i, j from ∣∣∣∣βr

i+1, j

(
h∗

i, j

)r+1
∣∣∣∣ = δ⇒ h∗

i, j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ δ∣∣∣∣βr
i+1, j

∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
r+1

(9)

and we repeat the RK computation with this new stepsize.

We would carry out this process of determining a new stepsize for each component of εr
i+1 that exceeds δ in magnitude;

each such process would yield a stepsize h∗
i, j; we would then choose

h∗
i = min

{
h∗

i, j

}
.

Often, we introduce a so-called ‘safety factor’ σ, as in

h∗
i → σh∗

i ,

where σ < 1, so that the new stepsize is slightly smaller than that given by (9). This is an attempt to cater for the possibility

that βr
i+1 may have been underestimated, due to the assumptions made in deriving (7). The choice of the value of σ is

subjective, although a representative value is 0.8.

Hence, we have

xi+1 = xi + h∗
i

wr
i+1 = wr

i + h∗
i Fr (xi,wr

i
)
. (10)

On the other hand, if we find that the estimated error does not exceed the tolerance in any component, then no stepsize

adjustment is necessary, and we proceed directly to the next step, using the already existing value of the stepsize.

Furthermore, since the higher-order solution wv
i is available, we use wv

i (in place of wr
i in (10)) as input to generate both

wr
i+1 (using RKr), and wv

i+1
(using RKv). In other words, we are assuming that wv

i is accurate enough, relative to wr
i , to be

regarded as the exact value - an assumption entirely consistent with the assumption made in deriving (7). This means that

we determine the higher-order solution at each node, and this solution is used as input for both RK methods in computing

solutions at the next node. This form of local error control is known as local extrapolation, and we denote this algorithm

by RKrv.
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2.4 Absolute and relative error control

If the tolerance δ in (8) is a constant, then the form of error control is absolute, i.e. we are demanding that
∣∣∣∣εr

i+1, j

∣∣∣∣ must be

less than some absolute limit δ. Alternatively, we could demand∣∣∣∣εr
i+1, j

∣∣∣∣∣∣∣wi+1, j

∣∣∣ � δ⇒ ∣∣∣εr
i+1, j

∣∣∣ � δ ∣∣∣wi+1, j

∣∣∣ .
This means that we require

∣∣∣∣εr
i+1, j

∣∣∣∣ to be less than some limit, relative to the magnitude of wi+1, j ≈ yi+1, j. Of course, if∣∣∣wi+1, j

∣∣∣ is close to zero, then the corresponding stepsize h∗
i, j will be very small, and if

∣∣∣wi+1, j

∣∣∣ = 0, then h∗
i, j cannot be

computed at all. To counteract this possibility, we actually demand∣∣∣εr
i+1, j

∣∣∣ � max
{
δA, δR

∣∣∣wi+1, j

∣∣∣} ≡ δi+1, j (11)

where δA and δR are known as the absolute and relative tolerances, respectively, and δi+1 denotes a node-dependent
tolerance. We then have two cases:

δA < δR
∣∣∣wi+1, j

∣∣∣ ⇒ ∣∣∣εr
i+1, j

∣∣∣ � δR ∣∣∣wi+1, j

∣∣∣
δA > δR

∣∣∣wi+1, j

∣∣∣ ⇒ ∣∣∣εr
i+1, j

∣∣∣ � δA

Obviously, if δA = δR
∣∣∣wi+1, j

∣∣∣ , then the two cases are equivalent. Often, we use δA = δR.

There is a good practical reason for implementing relative error control. If
∣∣∣wi+1, j

∣∣∣ > 1, then (9) gives, with δA = δR,

h∗
i, j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝δR
∣∣∣wi+1, j

∣∣∣∣∣∣∣βr
i+1, j

∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
r+1

>

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ δR∣∣∣∣βr
i+1, j

∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
r+1

.

So h∗
i, j determined in the relative sense is larger than h∗

i, j determined in the absolute sense, particularly if
∣∣∣wi+1, j

∣∣∣ � 1. This

implies that fewer nodes xi would be required on
[
x0, x f

]
, resulting in a more efficient algorithm.

In (11), we have defined the node-dependent tolerance δi+1, j. The local error control algorithm described in section 2.3 is

easily adapted to cater for relative error control simply by replacing δwith δi+1, j. Since δi+1, j can differ for each component

of wi+1, we can write this tolerance as a vector

δi+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
max

{
δA, δR

∣∣∣wi+1,1

∣∣∣}
max

{
δA, δR

∣∣∣wi+1,2

∣∣∣}
...

max
{
δA, δR

∣∣∣wi+1,n

∣∣∣}
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Consequently, in the next section, when we write ∣∣∣εr
i+1

∣∣∣ <c δi+1, (12)

we mean that each component of
∣∣∣εr

i+1

∣∣∣ is less than the corresponding component of δi+1, and the notation∣∣∣εr
i+1

∣∣∣ >c δi+1 (13)

means that there is at least one component of
∣∣∣εr

i+1

∣∣∣ that is greater than its corresponding component of δi+1.

3. The RKrvQz Algorithm, with Absolute and Relative Error Control, for Systems of ODEs

We now describe the RKrvQz algorithm for systems, incorporating relative error control. This is a generalization of the

algorithm presented in PR1, and we will be economical in our discussion; the reader is referred to PR1 for detail.

We have three RK methods (RKr, RKv and RKz) at our disposal, with r < v � z. Let wv
i+1

denote the approximate

solution at xi+1 obtained with RKv, and similarly for wz
i+1
. Let wrv

i+1
denote the approximate solution at xi+1 obtained with

RKr, using wv
i as its input.
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We have, using (3) and (5),

wrv
i+1 = yi+1 + ε

r
i+1 + α

rv
i Δ

v
i

wv
i+1 = yi+1 + ε

v
i+1 + α

v
iΔ

v
i

wz
i+1

= yi+1 + ε
z
i+1
+ αz

iΔ
z
i

which gives

wrv
i+1 − wz

i+1
= εr

i+1 + α
rv
i Δ

v
i −

(
εz

i+1
+ αz

iΔ
z
i

)
≈ εr

i+1 + α
rv
i Δ

v
i (14)

since r � z. The notation αrv
i in the above simply indicates that wv

i has been used as input for RKr, and the form of αrv
i is

no different from αr
i in (6).

Local error control via local extrapolation, as described in sections 2.3 and 2.4, is carried out using wrv
i+1

and wv
i+1

(i.e.

with RKrv), yielding a stepsize h∗
i . Note that here h∗

i is determined with (9), so there is at least one component j such that∣∣∣βr
i+1, j

(
h∗

i
)r+1

∣∣∣ = δi+1, j.

If it so happens that a new stepsize is not necessary then, for the purposes of what follows, we set h∗
i = hi−1. Assuming

now that a safety factor σ has been used, so that the new stepsize is σh∗
i , we have the solutions

{
wrv

i+1
,wrz

i+1
,wv

i+1
,wz

i+1

}
at

xi+1 = xi + σh∗
i , and ∣∣∣εr

i+1

∣∣∣ = ∣∣∣βr
i+1

(
σh∗

i
)r+1

∣∣∣ <c δi+1. (15)

The LHS of (15) is the ‘new’ local error, arising from the use of σh∗
i as the stepsize. Now, if∣∣∣Δrv

i+1

∣∣∣ ≡ ∣∣∣εr
i+1 + α

rv
i Δ

v
i

∣∣∣ �c δi+1, (16)

where the LHS is known from (14), then global error control is not necessary, and we proceed with the next RK iteration.

However, if ∣∣∣Δrv
i+1

∣∣∣ >c δi+1, (17)

then it means that at least one component of Δv
i has become unacceptably large. We respond by setting

wv
i = wz

i

since

wz
i = yi + ε

z
i + α

z
i−1
Δz

i−1
≈ yi,

because RKz is of much higher order than RKv, and we recalculate wrv
i+1

and wv
i+1

using h∗
i . In other words, wv

i is replaced

with a much more accurate value. This will yield

wrv
i+1 = εr

i+1 + α
rz
i Δ

z
i ≈ εr

i+1

wv
i+1 = εv

i+1 + α
vz
i Δ

z
i ≈ εv

i+1,

so that wrv
i+1

and wv
i+1

will now have relatively small global error
(
∝ Δz

i

)
accumulated from previous iterations. We have

referred to this process as quenching in PR1.

Note that the safety factor σ ensures that
∣∣∣εr

i+1

∣∣∣ is strictly less than δi+1 in (15), so that the global error component αrv
i Δ

v
i

can be accommodated somewhat. The extent of this accommodation is determined by σr+1. Say σ = 0.8 and r = 3,

so that σr+1 = 0.41. Then, assuming that all components of βr
i+1

(
σh∗

i

)r+1
and αrv

i Δ
v
i have the same sign, αrv

i Δ
v
i can be

accommodated up to a magnitude of 0.59δi+1, before quenching is needed.

Finally, we emphasize that, at each node xi+1, it is wrv
i+1

that is presented as the solution to the IVP, since this is the

numerical solution for which both local and global error control has been implemented.

4. Comments

(1) In PR1 we also considered the computation of

wrz
i+1
= yi+1 + ε

r
i+1 + α

rz
i Δ

v
i ,

which enables

wrv
i+1 − wrz

i+1
= yi+1 + ε

r
i+1 + α

rv
i Δ

v
i −

(
yi+1 + ε

r
i+1 + α

rz
i Δ

v
i

)
≈ αrv

i Δ
v
i
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to be estimated. This is merely a refinement, and is not necessary for the implementation of RKrvQz; furthermore,

it does require additional computational effort. However, such an estimate of αrv
i Δ

v
i is likely to be very good, since

v � z, and together with (14), will provide a very good estimate of εr
i+1, which may be more reliable than the

estimate of εr
i+1 obtained from wrv

i+1
− wv

i+1
(the estimate of εr

i+1 is, of course, required for local error control via

RKrv).

(2) We have used the same tolerance δi+1 for both local and global error control. It is not necessary to do so although,

since global error is, roughly speaking, an accumulation of local error, it is probably wise to ensure that the global

tolerance is not smaller than the local tolerance.

(3) The algorithm presented in PR1 is obtained from the current algorithm when δR = 0 and n = 1.

5. Numerical Example

A particularly suitable example is the simple harmonic oscillator

y′1 = y2

y′2 = −y1

y (0) =

[
0

1000

] (18)

which has solution

y1 (x) = 1000 sin x

y2 (x) = 1000 cos x.

Since the solution is oscillatory, there will be occasions when the solution is close to zero, which requires absolute error

control, as per (14). Also, since the maximum magnitude of the solution is 1000, there will be occasions when relative

error control is required.

We use the explicit methods RK3, RK4 and RK8, as referenced in PR1. We solve (18) on x ∈ [0, 20] with RK34

(local extrapolation only), and RK34Q8 (local extrapolation with global quenching), for the cases δA = δR = 10−5 and

δA = δR = 10−10. We refer to these cases as Case I and Case II, respectively. For both cases we use δ = 0.8. We show

some performance parameters in Table 1. In this table we show the maximum global error in each component of (18) and

the number of quenches required in each case. Note that here the magnitude of the global error |Δi| is calculated as

|Δi| =
⎧⎪⎪⎨⎪⎪⎩

∣∣∣∣ yi−wi
yi

∣∣∣∣ if |yi| > 1

|yi − wi| if |yi| � 1
.

It is clear that RK34, despite the implementation of local extrapolation, does not satisfy the imposed tolerances, and in

one instance has a maximum error almost 700 times larger than the desired tolerance. On the other hand, RK34Q8 always

achieves the desired level of accuracy. Error curves are shown in Figures 1 and 2, wherein the effects of the quenching

procedure are clear. In each figure, there are two plots; it is understood that these plots share a common legend and a

common x-axis. In the RK34Q8 plots, the quenches occur at those values of x where the error exhibits a sharp decrease.

We have estimated the absolute local error ε8
i+1

of the RK8 solution using Richardson extrapolation (see PR1 for details),

even though this requires extra computational effort. We then estimate the global error in the RK8 solution using

Δ8
i+1 = ε

8
i+1 + α

8
i Δ

8
i (19)

with Δ8
0
= 0 and

α8
i = I2 + hiF8

y (xi, ξi)

≈ I2 + hiF8
y (xi, yi)

≈ I2 + hif8
y (xi, yi)

=

[
1 hi

−hi 1

]
.

For Case I, we estimate that the maximum magnitude of either component in Δ8 is 13×10−12; the actual value is 9×10−12.
For Case I, we estimate the maximum magnitude of either component in Δ8 to be 5 × 10−12, while the actual value is
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3 × 10−12. In both cases, our estimate is good and slightly larger than the actual value. Of course, using (19), these

estimates can be computed in situ, i.e. as the iteration proceeds. This global error is measure of the quality of the solution

w8 which is used for the quenching process. If one or more of the components of the estimated value of Δ8 is considered

to be too large relative to δA and/or δR, we propose that δA and/or δR be increased relative to the estimated value of Δ8.
This amounts to reducing the level of accuracy imposed on the problem, but would still yield reliable, albeit less accurate,

results. If one or more of the components of Δ8 become comparable to δA and/or δR, then the entire quenching process

will be compromised, because then w8 is no more accurate than w3,which defeats the purpose of quenching. This strategy

can be summarized as

max
j=1,2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣Δ8

∣∣∣
j

δA
,

∣∣∣Δ8
∣∣∣
j

δR

⎫⎪⎪⎪⎬⎪⎪⎪⎭ > γ ⇒
{
δA → ηAδA

δR → ηRδR

where γ < 1, ηA > 1 and ηR > 1 are user-defined, and the index j indicates component. For example, in Case II

(δA = δR = 10−10), if we had set γ = 0.03, we would have estimated
∣∣∣Δ8

∣∣∣
1
> 0.03δA at x ∼ 10.4.We could then have made

the adjustments δA → 2δA, δR → 2δR, say. On the remainder of the interval,
∣∣∣Δ8

∣∣∣
j ≯ γδA = 6 × 10−12, and so no further

adjustments to the tolerances would have been needed. It is reasonable to believe that a tolerance of δA = δR = 2 × 10−10

would have been considered acceptable, in these circumstances.

6. Conclusion

We have extended the functionality of the RKrvQz algorithm, which now can be applied to IVPs in the form of systems of

ODEs, and for which relative and/or absolute tolerances on local and global error can be imposed. The simple harmonic

oscillator has served as a useful example for demonstrating this updated version of RKrvQz.
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Table 1. Performance parameters for RK34 and RK34Q8 applied to the oscillator problem

Case I Case II

RK34 RK34Q8 RK34 RK34Q8

y1 : max |Δi| 104 × 10−5 0.95 × 10−5 692 × 10−10 0.98 × 10−10

y2 : max |Δi| 32 × 10−5 0.97 × 10−5 641 × 10−10 0.98 × 10−10

# of quenches 0 7 0 13
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Figure 1. Global error curves for both components of the oscillator problem, using RK34 and RK34Q8, for Case I

Figure 2. Global error curves for both components of the oscillator problem, using RK34 and RK34Q8, for Case II.
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