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Abstract

A Cellular Neural Network (CNN) model of two strain (antiretroviral sensitive and resistant) Human Immunodeficiency
Virus (HIV) is established, and then analyzed and simulated based on the local activity of CNN with five local state
variables and one port. Numerical simulations exhibit that this CNN model may explain some complex phenomena
during antiretroviral therapy which make it possible to judge the curative effect of long-time antiretroviral therapy and
social influence. All these imply that the local activity of CNN provides a practical tool for the study of the complex
dynamics of some coupled nonlinear systems, especially life systems.
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1. Introduction

Coupled nonlinear dynamical systems have been widely studied in recent years. However the dynamical properties–the
determination, prediction, and control of these systems are difficult to deal with. Nature abounds with complex patterns
and structures emerging from homogeneous media, the local activity is the origin of these complexity (Chua, 1997; Chua
2005). The Cellular Neural Network (CNN), firstly introduced by Chua (Chua, 1988), has been widely studied for image
processing, robotic, biological versions, higher brain functions and so on (Chua, 1988). It can model and study many
coupled nonlinear systems (Chua, 1999). The local activity of CNN proposed by Chua (Chua, 1997) asserts that a wide
spectrum of complex behaviors may exist if the cell parameters of the corresponding CNN are chosen in or nearby the
edge of chaos (Chua, 1999; Chua, 2005). This theory has been successfully applied to the research on many complex
systems with physical, biological, and chemical backgrounds.

Life systems consist of locally coupled homogeneous media. Virtually, dynamics of life systems are suitable to be de-
scribed via locally connected CNNs. It may be expected that CNN will become a promising candidate for modeling
life phenomena. This theory has been successfully applied to life systems, such as the biochemical model (Min, 2000),
coupled excitable cell model (Min, 2002), tumor growth and immune model (Min, 2003), HBV infection model (Min,
2006), T cells (Ji, 2008), and so on.

HIV, the Human Immunodeficiency Virus, is the etiological agent of Acquired Immune Deficiency Syndrome (AIDS).
Deaths due to AIDS are more than two million people per year recently, making it one of the destructive epidemics
in history and the leading cause of death in the world (WHO, 2009). A number of theoretical studies have focused
on the mathematical modeling of HIV/AIDS (Mukandavire, 2006; Martcheva, 2007; Bhunu, 2009). But these models
were analyzed simply because of the complexity usually. In (Bhunu, 2009), a two strain (antiretroviral sensitive and
resistant) HIV/AIDS model with treatment which allows AIDS patients with sensitive HIV-strain to undergo amelioration
is presented as a system of nonlinear differential equations with five variables.

In this paper, the model in (Bhunu, 2009) is mapped into a CNN form and the equilibrium points are calculated and
analyzed based on the local activity of CNN with five local state variables and one port (Dong, 2009). The bifurcation
of this CNN has been calculated and analyzed. Numerical simulations show that this CNN model may explain some
complex phenomena during HIV/AIDS treatments. The quantitative understanding of HIV/AIDS dynamics will make it
possible to judge the curative effect of long-time antiretroviral therapy and social influence.

2. Analysis and Simulations Reaction-Diffusion CNN of HIV/AIDS Model

2.1 The HIV/AIDS Model and its CNN model

In (Bhunu, 2009), a two strain (antiretroviral sensitive and resistant) HIV/AIDS model with treatment which allows AIDS
patients with sensitive HIV-strain to undergo amelioration is presented as a system of non-linear differential equations,
which classifies people into five classes: susceptible (S ), antiretroviral sensitive HIV infected (I1), AIDS individuals
with antiretroviral sensitive HIV (A1), antiretroviral resistant HIV infected (I2) and AIDS individuals with antiretroviral
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resistant HIV (A2). The formulation of HIV/AIDS model is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt
= a − ( b1(I1+nA1)+b2(I2+nA2)

S+I1+A1+I2+A2
+ u
)
S

dI1
dt
=

b1(I1+nA1)S
S+I1+A1+I2+A2

− (q1 + u)I1 + yeA1
dA1
dt
= q1I1 − (u + d1 + e)A1

dI2
dt
=

b2(I2+nA2)S
S+I1+A1+I2+A2

− (q2 + u)I2
dA2
dt
= q2I2 − (u + d2)A2 + (1 − y)eA1

(1)

where, individuals are reproduced into the susceptible class at constant rate a, and u is a natural death rate in each human
subgroup. The antiretroviral sensitive HIV infected becomes AIDS individuals with antiretroviral sensitive HIV (I1 → A1)
at rate q1. Individuals in A1 have an additional AIDS-induced death rate d1, and are given antiretroviral therapy at rate
e. A proportion y of individuals in A1 given antiretroviral therapy respond well and move into I1, and the complimentary
proportion 1 − y develops resistance and enters A2. The antiretroviral resistant HIV infected becomes AIDS individuals
with antiretroviral resistant HIV (I2 → A2) at rate q2. Individuals in A2 have an additional AIDS-induced death rate d2.
The force of infection yi is given as

yi =
bi(Ii + nAi)S

S + I1 + A1 + I2 + A2
, i = 1, 2

b1, b2 is the product of the effective contact rate and the transmission probability of antiretroviral sensitive and resistant
HIV infection per contact, respectively. n > 1 is the modification parameter which models the fact that individuals in the
AIDS stage are more infectious than the corresponding HIV infected not yet in the AIDS stage.

The HIV/AIDS CNN model has the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS i j

dt
= a − ( b1(I1i j+nA1i j)+b2(I2i j+nA2i j)

S i j+I1i j+A1i j+I2i j+A2i j
+ u
)
S i j + D1∇2S i j

dI1i j

dt
=

b1(I1i j+nA1i j)S i j

S i j+I1i j+A1i j+I2i j+A2i j
− (q1 + u)I1i j + yeA1i j

dA1i j

dt
= q1I1i j − (u + d1 + e)A1i j

dI2i j

dt
=

b2(I2i j+nA2i j)S i j

S i j+I1i j+A1i j+I2i j+A2i j
− (q2 + u)I2i j

dA2i j

dt
= q2I2i j − (u + d2)A2i j + (1 − y)eA1i j

(2)

where

'2S i j = S i+1 j + S i−1 j + S i j+1 + S i j−1 − 4S i j.

2.2 Analysis of Equilibrium Points

Let Eq.(2) be zero (where D1 = 0) and solve it, we can get the three equilibrium points:

Q1 =

(
a

u
, 0, 0, 0, 0

)
,

Q2 =

(
a(d2 + q2 + u)

A
, 0, 0,

aB

(q2 + u)A
,

aq2B

(d2 + u)(q2 + u)A

)
,

Q3 =

(
QS

Q
,

QI1

Q
,

QA1

Q
,

QI2

Q
,

QA2

Q

)
.
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where

A = b2(d2 + u + q2n) − d2q2.

B = b2(d2 + u + q2n) − (d2 + u)(q2 + u).
X = (d1 + e + u)(q1 + u) − eq1y.

Y = b1(d1 + e + u + q1n) − X.

Z = (b1 − b2)u3 + ((b1 − b2)(d1 + +d2 + e) + n(b1q1 − b2q2) + b1q2 − b2q1)u2 + ((d1 + d2 + e)(b1q2 − b2q1)
+(b1 − b2)(d1d2 + d2e + q1q2n) + b2e(q1y − q2n) + n(b1d2q1 − b2d1q2))u + q1q2n(b1d2 − b2d1)
+d2(d1 − e)(b1q2 − b2q1) + b2q1(d2ey + eq2ny − eq2)y.

QI1 = a(d1 + e + u)YZ/X.

QA1 = aq1YZ/X.

QI2 = aq1b2en(1 − y)Y.
QA2 = aeq1(1 − y)((d1 + e + u)(b1u + b1q2 − b2u − b2q1) + q1(b2ey + b1nu + b1nq2))Y/X.

QS =
(q2 + u)(QI1 + QI2 + QA1 + QA2 )

(b2 − q2 − u)QI2 + b2nQA2

.

Q = (b2
1 − b1b2)u4 + ((b1 − b2)(b1(2d1 + d2 + 2e + q1n) − d1q1) + b1(b1(q1n + q2) − b2(q1 + q2n)))u3

+(eq1(b1b2(1 − n) + b1d2 − b2d2)y + b2
1(q2

1n2 + d2
1 + e2 + 2(d2 + q2 + nq1)(d1 + e) + 2q1n(d2 + q2)

−2d1e) + q1(b2 − b1)(e(d1 + d2) − d1q2) + d1q1q2(b2d1n − b1d1) − b1b2(e2 + q1q2n2 − 2d1e + q1n(d1

+q2) − 2(d1 + e)(q2n + d2q1) − d2q1(1 + n)) + d2
1(b − 2d1e) + d2

1(b2q1 − b1b2 − b1q1))u2 + ((b1b2eq1(1
−n)(e + q1n) + d2eq1(b1 − b2)(d1 + e) + b2eq1(d1 + d2)(b1 − q1) + b1eq1(d2q2 + d1q1n − b2d1n))y
+b2

1((d2 + q2)((d1 + nq1)2 + e(e + 2d1 + 2q1n)) + d2
1(b2(q1 − b1)(d2 + q1 + q2n) + b1q1(d2 + q2))

−b1b2q1q2n2(d1 + e + q1) + e2(b1b2n(q1 − q2) − b1b2(q1 + d2) + d2q1(b2 − b1)) + q2
1(b2(d1d2 − d1e

+d2e − b1n(d2 − d1 + e − en)) − b1d1n(d2 + q2) + n(b2d − 1q1 − b1d2e))) + b1eq2(b1 + d2)(b2 + q2)
−b1(q1 + e)(d2 + nq2) + 2b1d − 2eq1(b2 − b1) − q1q2d1e(d1 + d2) + b1b2d1q1n(e − d2) − b1b2enq1(d2

+q1))u − b1d2
1d2q1q2 + (d2eq1(d1 + e)(b1b2 + b1q2 − 2b2q1) + q2

1en(b1d2q1 − b2d1q2 + b1d2q2))y + q1(d1

+e)(b1d2n(2b1q2 − d1q1 − eq1) + b2d1q1(q2n + d2)) − b1d2q1(b2 + q2)(2d1e + d2
1 + e2) + q2

1e2b2d2(1 + y2)
+q2

1n2b1q2(b1d2 − b2d1) + b2
1d2eq2(2d1 + e) + b2d1eq1(d2q1 − b1q2n).

The equilibrium Q1,Q2,Q3 stand for the disease-free equilibrium, retroviral resistant HIV strain only equilibrium and both
HIV strain coexist equilibrium, respectively. But we cannot find the antiretroviral sensitive HIV strain only equilibrium
in chapter 3.2.1 in (Bhunu, 2009).

Obviously, the numbers of the equilibrium points could be greater than zero, then, we can get:

A > 0 ⇒ b2(d2 + q2n + u)
d2q2

> 1

B > 0 ⇒ R2 =
b2(d2 + q2n + u)
(d2 + u)(q2 + u)

> 1 (3)

Y > 0 ⇒ R1 =
b1(d1 + qn + e + u)

(d1 + e + u)(q+u) − eq1y
> 1 (4)

where R1,R2 are equivalent to “ R1,R2 ” in chapter 3.2.1 in (Bhunu, 2009)(See Page 366).

Consequently, the Jacobian matrix at the equilibrium points Qi, i = 1, 2, 3 is

J(Qi) = [J1, J2, J3, J4, J5],
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where

J1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(I1+nA1)+b2(I2+nA2)
−(S+I1+A1+I2+A2) +

(b1(I1+nA1)+b2(I2+nA2))S
(S+I1+A1+I2+A2)2 − u

b1(I1+nA1)
S+I1+A1+I2+A2

− b1(I1+nA1)S
(S+I1+A1+I2+A2)2

0
b2(I2+nA2)

S+I1+A1+I2+A2
− b2(I2+nA2)S

(S+I1+A1+I2+A2)2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

J2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1S
S+I1+A1+I2+A2

+
(b1(I1+nA1)+b2(I2+nA2))S

(S+I1+A1+I2+A2)2

b1S
S+I1+A1+I2+A2

− b1(I1+nA1)S
(S+I1+A1+I2+A2)2 − q1 − u

q1
−b2(I2+nA2)S

S+I1+A1+I2+A2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

J3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1nS
S+I1+A1+I2+A2

+
(b1(I1+nA1)+b2(I2+nA2))S

(S+I1+A1+I2+A2)2

b1nS
S+I1+A1+I2+A2

− b1(I1+nA1)S
(S+I1+A1+I2+A2)2 + ye

−d1 − e − u
−b2(I2+nA2)S

S+I1+A1+I2+A2

(1 − y)e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

J4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b2S
S+I1+A1+I2+A2

+
(b1(I1+nA1)+b2(I2+nA2))S

(S+I1+A1+I2+A2)2

−b1(I1+nA1)S
S+I1+A1+I2+A2

0
b2S

S+I1+A1+I2+A2
− b2(I2+nA2)S

(S+I1+A1+I2+A2)2 − q2 − u

q2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

J5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b2nS
S+I1+A1+I2+A2

+
(b1(I1+nA1)+b2(I2+nA2))S

(S+I1+A1+I2+A2)2

−b1(I1+nA1)S
S+I1+A1+I2+A2

0
b2nS

S+I1+A1+I2+A2
− b2(I2+nA2)S

(S+I1+A1+I2+A2)2

−d2 − u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.3 The Bifurcation Diagram of Equilibrium Points

Take parameters from Table 1 and let b1, b2 ∈ (0, 1) are variables, we can calculate the bifurcation of the CNN model
Eq.(2) at the equilibrium points Q1,Q2 and Q3 based on the local activity of CNN with five local state variables and one
port (Dong, 2009), see Fig.2.

In Fig.2, the domains are coded as follows: edge of chaos (locally active and stable) domain (shown red), locally active
and unstable domain (shown green) and locally passive domain (shown blue).

2.4 Simulations and Analysis

Take parameters from Table 1 and let b1, b2 be different numbers, we model the dynamic trajectories of Eq.(2) using
MATLAB, see Table 2.

From EQ.(3) and Eq.(4) and take parameters list in Table 1, we can get

R1 > 1 ⇒ b1 > 0.0941 (5)
R2 > 1 ⇒ b2 > 0.0969 (6)

From Fig.2, Table 2, and Eq.(3)-Eq.(6), we can conclude:

1. When b1, b2 are both less than 0.0941, b1, b2 is located in the red domain of Fig.2(a)(the Edge of Chaos domain),
max{R1,R2} < 1, Eq.(2) converges to the equilibrium point Q1 (disease-free) neglecting initial values which implies
that there is no any HIV infected and AIDS individuals.

2. When b1 or b2 is greater than 0.969, Eq.(2) converges to the equilibrium point Q2 or Q3, which implies that there
are HIV infected and AIDS individuals.

(a) when b1 > 0.0969 and b2 is more less than b1, b1, b2 are located in the blue domain of Fig.2(c) (the locally
passive domain), Eq.(2) converges to the equilibrium point Q3 (both HIV strain coexist equilibrium) and
I2 < A2 neglecting initial values which implies that antiretroviral sensitive and resistant HIV infected and
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AIDS individual coexist and the number of antiretroviral resistant AIDS individual is larger than the number
of HIV infected. This suggests that the treatment intends to help the community by lengthening the lives
of AIDS patients and reducing HIV/AIDS mortality and hence reducing the number of orphans in affected
communities.

(b) when b1 > 0.0969, and b2 < b1 but near b1, b1, b2 are located in the red domain of Fig.2(c) (the Edge of Chaos
domain), Eq.(2) converges to the equilibrium point Q3 and I2 > A2 neglecting initial values which implies that
antiretroviral sensitive and resistant HIV infected and AIDS individual coexist and the number of antiretroviral
resistant AIDS individual is less than the number of HIV infected. This suggests that the treatment intends
to prolong the incubation period only, but does not reduce infectiousness and take more HIV infections, thus
may not benefit the community.

(c) When b1 > 0.0969 and b2 ≥ b1, b1, b2 are located in the red or blue but near red domain of Fig.2(b), Eq.(2)
converges to the equilibrium point Q2 (retroviral resistant HIV strain only equilibrium) and I2 > A2 neglecting
initial values which implies that there are no antiretroviral sensitive HIV infected and AIDS individual, but
antiretroviral resistant HIV infected and AIDS individual still exist. This suggests that the treatment is very
effective to antiretroviral sensitive HIV infected and AIDS individual, but the antiretroviral sensitive HIV
infected and AIDS individual are more difficult to be treated, which may not benefit the community.

In the following discussions, we select some parameters list in Table 2, the simulation results are shown in Fig.3 and
Fig.4. Fig.3 model the convergence to equilibrium point Q1, and Fig.4 model the situation when b1 = 0.6 and b2 varies
from 0.011 to 0.095.

3. Conclusion and Future Works

A CNN model of two strain (antiretroviral sensitive and resistant) HIV is established, and then analyzed and simulated
based on the local activity of CNN with five local state variables and one port (Dong, 2009). Numerical simulations
exhibit that this CNN model may explain some complex phenomena during antiretroviral therapy which make it possible
to judge the curative effect of long-time antiretroviral therapy and social influence.

Practically, the dynamic behaviors of HIV/AIDS infection and therapy are very complex and puzzling. Then, more and
accurate experimental data are needed for modeling the dynamics of HIV/AIDS. Further research for HIV/AIDS dynamics
is promising. More complex the model is, more approximate to the reality, but more difficult to be analyzed. The local
activity of CNN provides a possible method for some of them.

All these imply that the local activity of CNN provides a practical tool for the study of the complex dynamics of some
coupled nonlinear systems. Especially, it may be expected that CNN will become a promising candidate for modeling life
phenomena.
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Table l. Model parameters and their interpretations

Parameter Symbol Value(/year)

Recruitment rate a 0.029
Product of effectively rate and probability b1, b2 0.011-0.95

Modification parameter n 1.02
Natural mortality rate u 0.02

Natural rate of progression of HIV q1, q2 0.1
Proportion of effectively treated y 0.2
Treatment rate for AIDS cases e 0.33

AIDS related death rate d1, d2 0.333-0.4
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Table 2. Cell parameters and corresponding dynamic properties of the CNN of HIV/AIDS model

No. b1 b2 Domain in Fig.1 Equilibrium point Relation of I2andA2 R1 R2

1 0.011 0.011 red in Fig.2(a) Q1 I2 = A2 0.1140 0.1169
2 0.011 0.05 red in Fig.2(a) Q1 I2 = A2 0.1140 0.5315
3 0.011 0.094 red in Fig.2(a) Q1 I2 = A2 0.1140 0.9993
4 0.05 0.011 red in Fig.2(a) Q1 I2 = A2 0.5181 0.1169
5 0.05 0.05 red in Fig.2(a) Q1 I2 = A2 0.5181 0.5315
6 0.05 0.094 red in Fig.2(a) Q1 I2 = A2 0.5181 0.9993
7 0.094 0.011 red in Fig.2(a) Q1 I2 = A2 0.9740 0.1169
8 0.094 0.05 red in Fig.2(a) Q1 I2 = A2 0.9740 0.5315
9 0.094 0.094 red in Fig.2(a) Q1 I2 = A2 0.9740 0.9993

10 0.011 0.097 red in Fig.2(b) Q2 I2 > A2 0.1140 1.0312
11 0.097 0.097 red in Fig.2(b) Q2 I2 > A2 1.0051 1.0312
12 0.097 0.011 blue in Fig.2(c) Q3 I2 < A2 1.0051 0.1169
13 0.2 0.011 blue in Fig.2(c) Q3 I2 < A2 0.2072 0.1169
14 0.2 0.08 blue in Fig.2(c) Q3 I2 < A2 0.2072 0.8505
15 0.2 0.094 blue in Fig.2(c) Q3 I2 < A2 0.2072 0.9993
16 0.2 0.095 red in Fig.2(c) Q3 I2 > A2 0.2072 1.0099
17 0.2 0.19 red in Fig.2(c) Q3 I2 > A2 0.2072 2.0198
18 0.2 0.2 red in Fig.2(b) Q2 I2 > A2 0.2072 2.1261
19 0.2 0.5 blue in Fig.2(b) Q2 I2 > A2 0.2072 5.3153
20 0.2 0.95 blue in Fig.2(b) Q2 I2 > A2 0.2072 10.099
21 0.6 0.011 blue in Fig.2(c) Q3 I2 < A2 6.2171 0.1169
22 0.6 0.36 blue in Fig.2(c) Q3 I2 < A2 6.2171 3.8270
23 0.6 0.4 red in Fig.2(c) Q3 I2 > A2 6.2171 4.2523
24 0.6 0.56 red in Fig.2(c) Q3 I2 > A2 6.2171 5.9532
25 0.6 0.6 blue in Fig.2(b) Q2 I2 > A2 6.2171 6.3784
26 0.6 0.95 blue in Fig.2(b) Q2 I2 > A2 6.2171 10.099
27 0.9 0.011 blue in Fig.2(c) Q3 I2 < A2 9.3256 0.1169
28 0.9 0.56 blue in Fig.2(c) Q3 I2 < A2 9.3256 5.9532
29 0.9 0.58 blue in Fig.2(c) Q3 I2 > A2 9.3256 6.1658
30 0.9 0.87 blue in Fig.2(c) Q3 I2 > A2 9.3256 9.2486
31 0.9 0.9 red in Fig.2(b) Q2 I2 > A2 9.3256 9.5676
32 0.9 0.95 red in Fig.2(b) Q2 I2 > A2 9.3256 10.099

Figure 1. Structure of the HIV/AIDS model
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Figure 2. Bifurcation diagrams of Eq.(3), when b1, b2 ∈ (0, 1), at the equilibrium point: (a) Q1,(b)Q1,(c) Q1
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Figure 3. The trajectories of Eq.(2) converging to Q1

Figure 4. The trajectories of Eq.(2) when b1 = 0.6
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