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Abstract

Existence of a limit cycle for the dynamical system well-known as the Prigogine brusselator model is proved when

parameters of the system take concrete values. The proof is conducted by the new method called discrete numerical (DN)

tracking of trajectory combined with the Poincare-Bendickson theorem.
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1. Introduction

Existence of a limit cycle for a differential equation is considerably nonlinear phenomena being of importance from the

point of view of practice as well as a theory. Therefore, establishing the fact that the given dynamical system has a closed

trajectory (cycle) is one of the essential problems of the Theory of Dynamical Systems. In spite of the rich arsenal of

quantitative and qualitative tools of study for periodical solutions (Anosov, 1986, Hale, 1963, Cesari, 1959, Arnold, 1986,

Lefever, 1971, Hassard, 1981, Andronov, 1966, Pliss, 1964, Krasnosel’skii, 1966, He, 2006), it should be admitted that in

each concrete case the proof of the fact that the dynamical system has a cycle stays not a simple task. On the other hand,

the majority of elaborations starting from the method of the first return function of Poincare up to recently ones are based

on the assumption about existence of a cycle. However, even for the systems in the plane, though qualitative picture is

thoroughly clear (Andronov, 1966), the problem of existence of a limit cycle is still a significant problem (Arnold, 1985,

ch. 5, sec. 4).

In the present work, the method of discrete numerical tracking (for short, DN tracking) of trajectory, which is developed

with the aim of establishing the existence of a closed trajectory when the right parts of a dynamical system are polynomials
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of low degree, is demonstrated on the example known as the Prigogine brusselator model (Lefever, 1971, Hassard, 1981):

dx/dt = a − (1 + b)x + x2y
dy/dt = bx − x2y, (1)

where a and b are positive parameters. The essence of the method was presented on the international conference

“Pontryagin-2008” (Azamov, 2008). It was earlier applied to establish the existence of a closed trajectory for the sys-

tem with the simplest quadratic nonlinearity (Azamov, 2009).

The bifurcation method enables to establish that as the point (a, b) goes through the parabola a2+1 = b a limit cycle arises

(Arnold, 1986, Hassard, 1981). Our purpose is to establish the existence of that for concrete values of a and b when the

bifurcation method, generally, does not work.

Note that if

a2 + 1 < b < (a + 1)2, (2)

then the system (1) has the unique equilibrium point P = (a, b/a) which is unstable focus. After shifting the origin to this

point the system (1) takes the form

dx1

dt = f1(z) = (b − 1)x1 + a2x2 +
b
a x2

1 + 2ax1x2 + x2
1x2,

dx2

dt = f2(z) = −bx1 − a2x2 − b
a x2

1 − 2ax1x2 − x2
1x2,

(3)

where z = (x1, x2) and f (z) = ( f1(z), f2(z)). Further constructions will be carried out for the values a = 1 and b = 2.01.

Remark. The reason for choice of these values for parameters is purely technical. This choice makes it possible to
conduct the proof strictly taking into account the errors in performing arithmetical and comparison operations by means
of computer. In fact, the method works for a certain range of values of a and b, for example, the method works for their
values in the set of (2) cut by the condition 0.1 < a < 2. The more exact the approximately integrating method and results
of the rounded arithmetical operations, the wider the set of values of a and b covered by the method. For the chosen
values, it turns out, the Runge-Kutta method with the accuracy of second order is just enough (see section 2) allowing to
reduce some details which are irrelevant for the purpose of the paper.

We shall construct a bounded region C which is invariant as t → +∞. Its boundary consists of arcs of the trajectories and

transversal segments.

2. Main Results

Let z0(t) be the solution of the system (3) with the initial condition z0(0) = (0.32, 0), and zn = (x1n, x2n) be the successive

approximations obtained in applying the following numerical integrating scheme with the step h:

zn+1 = zn + h[ f (zn) + f (zn + h f (zn))]/2, n = 0, 1, 2, · · · . (4)

Let

K0 = {z| − 0.31 ≤ x1 ≤ 0.51; −0.60 ≤ x2 ≤ 0.51},
K = {z| − 0.33 ≤ x1 ≤ 0.53; −0.62 ≤ x2 ≤ 0.53}.

Note that K0 ⊂ K and dist(K0, ∂K) = 0.02. Clearly, the rectangle K contains the equilibrium point O = (0, 0). As

the values a = 1, b = 2.01 satisfy the condition (2), then it is an unstable focus. Let N = 1055456, h = 10−6, and

T = Nh = 1.055456.

Assumption 1. For n = 1, 2, ...,N, the sequence of points zn = (x1n, x2n) satisfies the condition zn ∈ K.

Assumption 2. The solution z0(t) exists on the interval [0,T ] and satisfies the condition z0(t) ∈ K.

It should be noted that the existence theorems are not applicable to the system (1) on a priori given intervals, in particular,

on [0,T ], which we are considering, not to mention the extendability of the solution z0(t) on [0,+∞). Therefore, it is

not beforehand known that whether a solution z0(t) exists on the interval [0,T ], and if the condition z0(t) ∈ K, which is

necessary to estimate the accuracy of the Runge-Kutta method, holds.

The estimate of accuracy of approximate integrating for the cubic dynamical systems being used here is based on the

relation
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|z0(nh) − zn| ≤
M2

∗0M∗2 + 4M∗0M2
∗1

12
TeM∗1T h2, (5)

where M∗0 = maxz∈K | f (z)|, M∗1 = maxz∈K ||∂ f (z)/∂z||,M∗2 = maxz∈K

∣∣∣||∂2 f (z)/∂z2||∣∣∣, | · |, || · ||, ∣∣∣|| · ||∣∣∣ are the Euclidian norms

of a vector, a matrix, and a vector consisting of bilinear forms.

From now on, we consider z ∈ K. Note that validity of the inequality (5) rests upon the Assumptions 1 and 2.

Estimates of the type (5) are well-known (see, for example, Bakhvalov, (1973), p. 465, formula (9)). It should be noticed,

that it was performed there only for one equation. Moreover, in definition of L (that plays the role of M∗1) the operation

sup was taken only over the independent variable. As a result, L remains undefined when the solution is not known. The

strict proof of the inequality (5) can be provided immediately for the system of differential equations by using Adamar’s

and Gronwall’s lemmas.

We derive the relation (5). It is convenient for us to use the noninvariant norms (Kartan, 1971)

M0 = max
i

max
z∈K

| fi(z)|, M1 = max
i, j

max
z∈K

|∂ fi(z)/∂x j|,M2 = max
i, j, k

max
z∈K

|∂2 fi(z)/∂x j∂xk |, i, j, k = 1, 2.

If the dimensions of vectors z and f are equal to d, then

M∗0 ≤ d1/2M0, M∗1 ≤ dM1, M∗2 ≤ d3/2M2.

Thus, in the case d = 2, the estimation (5) becomes worse a little

|z0(nh) − zn| ≤
√

2

3

(
M2

0 M2 + 4M0M2
1

)
Te2M1T h2, (6)

The following inequalities can easily be verified for the system (3)

M0 < 2.88, M1 < 5.77, M2 < 5.08. (7)

As a result, in the case we deal with, the estimation (6) takes the following concrete form

|z0(nh) − zn| < 4.2 · 10−5; i = 1, 2; n = 0, 1, 2, ...,N. (8)

Let t ∈ [0,T ] and nh be the point of the net {nh| n = 0, 1, 2, ...,N} closest to the number t, i.e. n is the greatest integer that

is less than or equal to t/h. The estimation M0 < 2.88 implies

|z0(nh) − z0(t)| < √
2M0(t − nh) < 4.2 · 10−6; i = 1, 2; n = 0, 1, 2, ...,N. (9)

Thus under Assumptions 1 and 2, the sequence zn allows to trace the real trajectory z0(t) to within the accuracy

4.2 · 10−5 + 4.2 · 10−6 = 4.62 · 10−5.

However, in practice, it is impossible to deal with the exact values of zn because the formulas (4) are pure theoretical,

while in calculating zn+1 based on zn one has to round results of arithmetical operations. As the expressions on the right

part of the system (3) are polynomials of x1 and x2, then there are no other kinds of errors of calculations. To take into

account the rounding error we consider the sequence ζn = (ξn, ηn) along with zn. Consecutive terms of ζn are calculated

by the formula (4) with zn replaced by ζn, of course, only by rounding, naturally, on computer.

We assume that there is possibility to realize arithmetical operations with rounding with an accuracy of at least 15 decimal

places. More precisely, if s+, s−, and s× are values written in decimal form with 15 decimal places of the sum, difference

and product, respectively, of two numbers a, |a| < 1, and b, |b| < 1, then each of the quantities

|(a + b) − s+|, |(a − b) − s−|, |ab − s×|
does not exceed 1

2
· 10−15. Such a result is quite achievable on modern computers without any special algorithms to

increase the accuracy. As it is obvious from (3) that to find ξn+1 and ηn+1 based on the values ξn, ηn for each 40 operations
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of addition, subtraction, and multiplication are performed. Hence, to find each component of ζn starting from the value

ζ0 = z0 at most 40N = 42218240 < 5 · 107 operations are required.

It’s not difficult to verify

|zn − ζn| < 1.5 · 10−7. (10)

Lemma 1. Assumptions 1 and 2 hold.

Proof. It can immediately be verified in process of calculations on computer that ζn ∈ K0 for all n = 0, 1, 2, ...,N.
Therefore, dist(zn,K0) < 0.01. As dist(∂K,K0) = 0.02, then Assumption 1 holds.

Next, as z0 ∈ K0, then the inclusion z0(t) ∈ IntK is true anyway for small positive values of t.We show that z0(t) can not

reach the boundary ∂K of the rectangle K at any t ∈ (0,T ]. Suppose, contrary to our claim, that z0(t) belongs to ∂K at

some t∗ ∈ (0,T ], and n∗h is the closest to t∗ point of the net {nh| n = 0, 1, 2, ...,N} from the left, i.e. n∗ = [t∗/h]. Then

according to (8)-(10)

|ζn∗ − z0(t∗)| ≤ |ζn∗ − zn∗ | + |zn∗ − z0(n∗h)| + |z0(n∗h) − z0(t∗)| < 4.7 · 10−5.

As z0(t∗) ∈ ∂K, then ζn∗ � K0, that contradicts the fact that ζn ∈ K0 for all n = 0,N.

Corollary 1. The estimation
|z0(t) − ζn| < ε = 4.7 · 10−5 (11)

holds for all t ∈ [0,T ], where t and n are connected with the relation n = [t/h].

Thus, we are able to follow the behavior of the trajectory z0(t) by means of the points ζn. In particular, at N = 1055456

we have ζN = (0.40909..., 0.56978...) where all the written digits are correct.

(We adopt the convention to write the rounded values of numbers with five decimal places being followed three points for

unwritten digits. Absence of three points at the end of a decimal number means that its value is exact.)

Set z1−0 = ζN . According to (11) the point z0(T ) lies in the ε-neighborhood of z1−0.

Let z1+0 = z1−0−(0, 0.02). The segment [z1−0, z1+0] of the length 0.02 is parallel to the x2-axis and serves as the transversal

for the system (3) (see Lemma 2 below).

Next, we let the trajectory z1(t) of the system (3) go out from the point z1+0. For this trajectory, we perform operations

similar to those done in constructing the arc z0z1−0 of the trajectory z0(t). Appropriate constructions and reasoning will be

repeated 6 times and each time one will be convinced that they remain valid also for the trajectories going out from the

points ζi+0, i = 0, 5 (ζi+0 = ζ0 for i = 0). The corresponding data are given in Table 1 and illustrated in Figure 1.

Duration of the initial five arcs has been exactly chosen equal to Nh = 1.055456 while the duration of the last arc equals

the same value only approximately within ±10−5. The length of all segments S i, i = 1, 5 with the vertices ζi−0, ζi+0 equals

0.02 sharply. But, the length of the first segment S 0 with the vertices ζ0−0, ζ0+0 will be less than 0.02, where ζ0−0 = ζ6−0.

Lemma 2. The region C enclosed by the arcs
[
ζi+0, ζi+1−0

]
of the trajectories zi(t) and segments S i, i = 0, 5 is invariant at

t → +∞.
Proof. It is enough to show that the segments S i, i = 0, 5 are transversals to the vector field (3). As an example, let us take

the first segment 0.3 < ξ6−0 ≤ x1 ≤ ξ6+0; −10−4 < η6−0 ≤ x2 ≤ η6+0. For z ∈ S 0 we have

−0.9 < ẋ2 = −2.01x1 − x2 − 2.01x2
1 − 2x1x2 − x2

1x2 < −0.8,

0.45 < ẋ1 = 1.01x1 + x2 + 2.01x2
1 + 2x1x2 + x2

1x2 < 0.6.

These estimations show that vector field (3) along S 0 is directed down, which means transversality of S 0. The similar

property can be verified for the segments S i, i = 1, 5.

Theorem. If a = 1, and b = 2.01, then the system (3) has at least one closed trajectory.

Indeed, a trajectory z∗(t) which goes out from an inner point of the transversal [z1−0, z1+0] at t = 0 does not leave the region

C which contains the unique equilibrium point (0, 0) of the type of unstable focus. Therefore, by the Poincare-Bendickson

theorem ω-limit set for the trajectory z∗(t) must be closed trajectory.

Corollary 2. Given a = 1 and b = 2.01, the rectangle K contains at least one limit cycle of the system (3).

Indeed, it is known (Arnold, 1985, Ilyashenko, 1984) that an analytical dynamic system on the plane with regular equilib-

rium points may possess only finite number of closed trajectories. Particularly this property holds for the system (3). If it
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has the unique closed trajectory then it is obviously attractive. Now suppose that C1,C2, . . . ,Ck are closed trajectories of

the system (3). They all must surround the focus O and situated one inside another. As C1 is attractive from inside and Ck

is attractive from outside, then at least one of them must be attractive from both side.

In reality, the closed trajectory of the system (1) is, seemingly, unique. Unfortunately, the method of proof exposed here

allows neither to determine nor estimate the number of closed trajectories). Numerical experiments show that the closed

trajectory passes through the point x0 ≈ 1.0829, y0 = 2.01 and has the period τ ≈ 6.2866 (see Figure 1).

We have constructed ”the bag of Bendicson” which border is sewed from 6 arcs of the system (3). If we take instead of

T a value comparable with τ, for example, 6.2867, in the right part of the estimate (5) or (6) then the estimate becomes

useless because of the multiplier e2M1τ.
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Table 1. Parts of ∂C

Parts of ∂C The beginning The end

Arc 1 ξ0 = .32, η0 = 0 ξ1−0 = .40909..., η1−0 = −.56978...

Segment 1 ξ1−0, η1−0 ξ1+0 = ξ1−0, η1+0 = η1−0 − .02

Arc 2 ξ1+0, η1+0 ξ2−0 = −.04437..., η2−0 = −.31742...

Segment 2 ξ2−0, η2−0 ξ2+0 = ξ2−0 − .02, η2+0 = η2−0

Arc 3 ξ2+0, η2+0 ξ3−0 = −.27088..., η3−0 = .08981...

Segment 3 ξ3−0, η3−0 ξ3+0 = ξ3−0 − .02, η3+0 = η3−0

Arc 4 ξ3+0, η3+0 ξ4−0 = −.28501..., η4−0 = .40244...

Segment 4 ξ4−0, η4−0 ξ4+0 = ξ4−0 − .02, η4+0 = η2−0

Arc 5 ξ4+0, η4+0 ξ5−0 = −.13933..., η5−0 = .48829...

Segment 5 ξ5−0, η5−0 ξ5+0 = ξ5−0, η5+0 = η5−0 + .02

Arc 6 ξ5+0, η5+0 ξ6−0 = .30578..., η6−0 = −.00000...

Segment 6 ξ6−0, η6−0 ξ6+0 = .32, η6+0 = 0

1
x

0
K

K

2
x

Figure 1. Closed trajectory
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