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Abstract 
Two large coastal dune sheets, including the Santa Maria dune sheet and Vandenberg dune sheet, have been 
analyzed for late-Quaternary distributions, ages and volumes of dune sand deposition. Six new 
thermoluminescence (TL) ages establish the age range of dune sand deposition from >106±21 ka to <4.1 ka in 
the study area. Seven late-Pleistocene TL and 14C dated mid-depth samples (≤30 m depth subsurface), yield a 
mean of 33 ka for the late-Pleistocene dune deposits. Both TL and 14C dated Holocene dune deposits establish a 
transition from weathered middle-Holocene dune deposits to unweathered latest-Holocene dune deposits after 4 
ka. Marine sand supply to the large dune sheets occurred by 1) cross-shelf eolian transport during 
late-Pleistocene marine low-stands (70–13 ka), 2) shoreward wave transport during slowing of the Holocene 
marine transgression (9–5 ka), and 3) longshore littoral transport during the latest-Holocene marine high-sand 
(3.5–0 ka). Measured and dated dune deposit sections (n=66, ranging from 2 to 60 m depth) demonstrate 
substantial differences in preserved sand volumes between the two adjacent dune sheets, Santa Maria (~ 
2,300x106 m3) and Vandenberg (~430x106 m3). Asymmetric distributions of dune deposit volumes between and 
within the dune sheets show that long-term sand supply was locally controlled by paleo-shoreline orientations 
relative to corresponding deep-water wave propagation directions (260–290° TN) from the North Pacific Low 
Pressure Area. Recently declining sand supplies and/or -trapping efficiencies in the dune sheet littoral subcells 
led to ongoing shoreline retreat (≥ 200 m) and under-cutting of late- Holocene eolian sand ramps at the south 
ends of the Santa Maria and Vandenberg dune sheets. The termination of transgressive cross-shelf sand supply 
and locally variable longshore retention of littoral sand confirm previously reported framework models of 
regional coastal sand supply. Such models help to identify shorelines that are most susceptible to future beach 
erosion from predicted sea level rise following ongoing global warming.  
Keywords: Quaternary, coastal dunes, continental shelf, paleo-sea level, paleo-shoreline, paleo-wave climate, 
coastal sand supply 
1. Introduction 
The Santa Maria and Vandenberg dune sheets represent two key localities within the larger Central West Coast of 
North America region (Figure 1) that merit study for paleo-sea level and paleo-wave climate forcing of coastal 
sand supply in late Quaternary time. The two dune sheets are nearly adjacent to one another, being separated by 
the fault-block Point Sal/Casmalia Hills, and are of similar along-coast length (~ 25 km). They differ 
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substantially, however, in maximum landward width: Santa Maria (~ 15 km) and Vandenberg (~ 7 km). Other 
coastal dune sheets within the larger study region, extending ~ 1000 km both north and south of the Santa 
Maria-Vandenberg study area (Cooper, 1958; 1967), originated from shelf depocenters that fed landward eolian 
sand transport during late-Pleistocene marine low-stands (Peterson et al., 2007; 2015, 2017a). Shoreward wave 
sand transport during the Holocene marine transgression contributed littoral sand to the dune sheets, though 
latest-Holocene dune development was locally influenced by long-shore littoral transport (Peterson et al., 2009). 
Nearing the conclusion of these regional dune sheet studies, it was discovered that the Santa Maria-Vandenberg 
study area provided exceptional resolution of the relations between paleo-shoreline orientations, paleo-wave 
climate, and longshore sand transport mechanisms of coastal sand supply, as outlined below. 

 
Figure 1. Locations of the Santa Maria and Vandenberg coastal dune sheets 

The Santa Maria and Vandenberg coastal dune sheets (stippled pattern) are shown in the south-central coast of 
California, within the central West Coast of North America (inset). The Santa Maria River, and its two tributaries 
the Cuyama River (north) and Sisquok river (south) and the Santa Ynez River (bold lines) run through the 
paleo-dune sheets. Headwaters of the Santa Maria and Santa Ynez Rivers originate within the Transverse Ranges, 
which form the south-central California bight. Mid-latitude coastal dune sheets also occur at San Francisco, 
Monterey, and El Segundo. Very-large Quaternary coastal dune sheets occur in Oregon (OR) and Baja California 
Sur (BCS) as approximately located in the map inset.  
 
A group of late-Quaternary dune sheets (~280 km in total length) occurs along the Oregon coast (Figure 1, inset 
map), at distances of 900-1,200 km north of the Santa Maria and Vandenberg study area (Cooper, 1958). Net 
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northward littoral transport along marine low-stand shorelines in Oregon accumulated sand against an emerged 
shelf bight/bank complex during late-Pleistocene time (Peterson et al., 2007). Cross-shelf sand transport to the 
Oregon dunes occurred by eolian processes during late-Pleistocene marine low-stands (75-20 ka) and by 
shoreward wave transport during the following Holocene marine transgression. The closer San Francisco dune 
sheet, located ~350 km north of the Santa Maria/Vandenberg study area, originated from a slight northward 
transport of littoral sand, supplied by the Sacramento-San Joaquin river system, which developed a low-stand 
depocenter at the Farallon Islands (Peterson et al., 2015). The Farallon low-stand depocenter then fed eolian sand 
transport across the emerged shelf in late-Pleistocene time and ocean wave sand transport across the inner-shelf 
in middle-Holocene time. In late-Holocene time (≤ 5 ka), the littoral sand supply to the San Francisco dune fields 
diminished. It was not established whether the decrease in dune sand supply resulted from 1) terminated 
transgression shoreward-wave sand transport, or 2) onset of southward littoral sand transport. Two very-large 
dune sheets in Baja California Sur, Magdalena and Guerrero Negro, located respectively at ~980 and ~1,350 km 
southeast of the Santa Maria/Vandenberg study area, originated from consistent southeast littoral sand transport 
during both late-Pleistocene marine low-stands and the Holocene marine transgression (Peterson et al., 2017a). 
The paleo-shoreline orientations of the Baja California Sur west coast were insufficiently orthogonal to 
paleo-wave forcing directions to discriminate between potentially small changes in paleo-wave directions, as 
based coastal dune depositional records. 
The Santa Maria and Vandenberg dune sheets are located near the southern boundary of a persistent winter storm 
wind and wave generation area in the northeast Pacific Ocean, referred to here as the North Pacific Low Pressure 
Area (NPLPA) (Alder and Hostetler, 2015; Peterson et al., 2017b). The two dune sheets also occur in an area of 
locally anomalous shoreline orientation (north-south), resulting from tectonic uplift of the Point Conception 
coastal region (Figure 1) (Orme, 1999). A net southward littoral transport in the study area, from Morro Bay to 
south of Point Conception (Figure 1), was reported by Trask (1952), as based on augite tracer minerals in the 
modern beach sands. These unique conditions permit the use of the Santa Maria and Vandenberg dune sheets to 
formally test fundamental relationships between paleo-wave climates, paleo-shoreline orientations, and 
large-scale coastal sand supply within the Central West Coast of North America region. Coastal dune sheets 
serve as long-term records of coastal sand supply due to their preservation above the reach of marine 
transgressions and associated erosive wave ravinement. However, establishing the timing of coastal sand supply 
to coastal dune sheets is complicated by local topography and paleo-climate conditions that could influence 
eolian sand transport. These difficulties are overcome in the Santa Maria and Vandenberg dune sheets (Figure 1) 
by dating the major dune field advances and correlating the dune deposit ages to the longshore distribution of 
dune sand volumes. The temporal and spatial constraints of coastal dune sand deposition are then compared to 1) 
paleo-sea levels (Bard et al., 1990; Reeder-Myers et al., 2015), 2) local paleo-climate records (Anderson et al., 
2015), 3) modeled regional paleo-wind/wave stress (Alder and Hostetler, 2015), and 4) continental shelf 
bathymetry/paleo-shoreline orientations. Results of these comparisons discriminate between paleo-sea level 
change, paleo-wave forcing, and paleo-shoreline orientations and their control over large-scale coastal sand 
supply to the Santa Maria and Vandenberg study area. Findings from this study address both 1) large-scale 
geomorphic development of large coastal dune sheets in late-Quaternary time and 2) the potential for future 
beach erosion resulting from rising sea levels, given the trend of increasing global temperature (Kopp et al., 
2014).  
2. Background 
2.1 Geomorphic Settings 
Major reorientation and widening of the south-central California coast and continental shelf, from north to south 
in the study area, are attributed to Neogene tectonic uplift of the Transverse Ranges (Figure 1) (Orme, 1999). For 
example, coastline orientations and shelf widths change from southeast trending (~135° TN) and narrow widths 
(~1–7 km across-shelf distance), north of the Estero Embayment (Figure 2), to more southerly orientations (~ 
190° TN) and broader shelf widths (~10–25 km in across-shelf distance) between the Estero Embayment and 
Point Arguello. This change in shoreline orientation, from north to south, relative to modern deep-water wave 
directions, shifts incident wave attack from oblique along the northernmost coastline to nearly orthogonal along 
the southern coastline of the study region. 
The complex topography of the study area coastline (Figure 2) derives from a series of high-angle Quaternary 
faults that intersect the coast at normal to slightly oblique angles (Lettis and Hanson, 1992). Uplifted fault blocks 
form major points or littoral subcell headlands, including those at Point San Luis, Point Sal, Purisima Point, and 
Point Arguello. Fault-bounded river valleys include the Santa Maria and Santa Ynez River valleys. The Santa 
Maria and Vandenberg dune sheets are generally located within Quaternary basins, which are bounded by 
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uplifted fault blocks at Point San Luis, Point Sal, and Point Arguello (Lettis and Hanson, 1992). At smaller 
spatial scales, the landward extents of the Santa Maria and Vandenberg dune sheets are influenced by local 
topographic features. For example, the Santa Maria dune sheet is split into the north and south sides of the wide 
Santa Maria River Valley (Figure 2), which was deeply incised to at least 30 m depth (- 30 m elevation MSL) 
during the last marine low-stand, and then back-filled by alluvial deposits during the Holocene marine 
transgression (11–0 ka) (Knott and Eley, 2006).  

 
Figure 2. Geomorphic settings of the Santa Maria and Vandenberg dune sheets 

The dune sheets are shown relative to (1) shoreline orientations (northern segment ~135° TN, southern segment 
~190° TN), (2) shelf contours (-50, -100 and -150 m elevation, relative to mean sea level (MSL), (3) two major 
coastal rivers: the Santa Maria River and the Santa Ynez River, and (4) high-angle faults (dashed bold line). 
High-angle faults that intercept the modern coastline (Lettis and Hanson, 1992) are as follows from north to 
south: Los Osos fault (LOF), Pismo fault (PMF), Wilmar Avenue fault (WAF), Oceano Fault (OF), Casmalia 
fault (CMF), and Santa Ynez River Fault (SYRF). Submarine canyons (bold lines) intercept the outer-shelf 
offshore of Point Arguello and Point Conception. Mean deep-water wave directions (arrows) for winter months 
(DJF) and summer months (JJA) for years 2014-2015 were averaged from an offshore wave buoy (Figure 1) as 
summarized in Peterson et al. (2017b).  
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The Vandenberg dune sheet reaches maximum widths (~7 km) north of the Purisima Point headland (Figure 2). 
Paleo-transverse dune ramps on the southwest side of the Santa Maria River valley ascend (5–10 % gradient) to 
elevations of at least 100 m MSL along the Point Sal Ridge (Figure 3A) (Orme, 1992). The minor headland at 
Purisima Point is associated with local up-warping of resistant marine terrace(s) dated to marine isotope stage 5 
(MIS5) high-stands at 120-85 ka (Lettis and Hanson, 1992). The marine terrace platform(s) dip to the southwest 
(110 to 5 m elevation over 10 km) to yield gradual slopes (1–2 % gradient) that do not prohibit, but possibly 
influence, landward dune migration. Large parabolic dunes (5–10 m height) trend obliquely (~120–140° TN) 
away from the shoreline yielding the southeast-directed migratory dune transport over the broad slightly tilted 
marine terrace (Figure 3B). The southern part of the Vandenberg dune sheet abruptly narrows (< 1.0 km width) 
south of the Santa Ynez River in association with ~ 30–70 m uplift(s) of older marine terraces (MIS7 and/or 
MIS9) at the present coastline (Lettis and Hanson, 1992). Steep Holocene seacliffs, which are cut into the 
uplifted terraces at the southernmost end of the Vandenberg dune sheet (Johnson et al., 1991), possibly reduced 
dune sheet widths. However, the steep seacliff or windward bluff slopes did not preclude coastal eolian sand 
ramps (Peterson et al., 2017b) from reaching ~50 m elevations at ~0.5 km landward distances from modern 
beach backshores. 

 
Figure 3. Active and recently stabilized dune fields in the study area 

Part A: Large active transverse dunes (10 m height), located near the south end of the Guadalupe dune field 
within the Santa Maria dune sheet (Figure 2), are migrating upslope towards the southeast (~160° TN), forming a 
dune ramp (10° gradient) against the uplifted Point Sal Ridge (~150 m elevation) near site S34 (Table 2). View is 
to the north. Part B: Large parabolic dunes (5–10 m height) in the northern Vandenberg dune sheet include active 
dunes (arrow) and recently vegetated dune ridges (dashed lines). The photograph is from site V7 (Table 2), 
located within a sparsely vegetated dune field, located ~ 4 km landward of the shoreline (Figure 2). The 
parabolic dunes trend southeast (120° TN). View is to the southwest.  
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2.2 Paleo-sea Level Curves 
High-energy wave erosion from multiple late-Pleistocene marine transgressions truncated much of the 
topographic relief on the continental shelf in the study area (Figure 2). However, during late-Pleistocene marine 
low-stands (-100±25 m elevation between 80 and 15 ka), the supplies of discharged river sand and remobilized 
littoral sand could have accumulated in the mid-shelf littoral systems (Figure 4A). During the latest-Pleistocene 
time and the Holocene marine transgression (16–0 ka), wave ravinement could have remobilized mid-and 
inner-shelf sand deposits. As found for the nearby San Miguel Island (Figure 1) (Johnson, 1972), a shoreward 
wave transport could have delivered available shelf sand to the study area beaches and migratory dune fields 
following declining rates of sea level rise after 9 ka (Figure 4B) (Masters, 2006). Asymmetric wave transport can 
move sand from continental low-stand deposits shoreward during marine transgressions. Surplus beach sand 
supplies onshore eolian transport to develop coastal dunes during the slowing phase of marine transgression, as 
reported for South East Australia (Thom, 1984; Short, 1987) and many other coastlines around the world. The 
near high-stand conditions of latest-Holocene time (3–0 ka) could have been associated with the reduction or 
termination of transgressive sand supply in the Santa Maria and Vandenberg dune sheet areas, as found for the 
small San Miguel Island (Peterson et al. 2017b). However, the near high-stand sea levels would have been 
associated with relatively stable shoreline conditions for longshore littoral transport in the nearshore and 
inner-shelf of the continental margin between Point Sur and Point Conception (Figure 1). Such redistribution of 
sand in the littoral zone could then locally supply latest-Holocene dune development at subcell catchments 
(Peterson et al., 2009). 

 
Figure 4. Sea level curves for the study region 

Part A: Eustatic sea level curve from late-Quaternary time (300–0 ka), as redrawn from Bard et al. (1990). Part B: 
Relative sea level (RSL) rise for the Holocene marine transgression, as reported for the central west coast of 
North America (solid line) and modeled for the south-central California coastal region (solid squares). Figure is 
redrafted from Peterson et al. (2017b). 
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2.3 Paleo-Climate Records  
Paleo-climate records, based on dated pollen stratigraphy in offshore and onshore core sites, establish the 
potentials for river sediment supply and eolian transport during paleo-dune sheet development in the study area 
(Figure 2). The modern coastal climate is characterized by a fog-modulated semi-arid Mediterranean climate 
with a mean temperature of 14° C and a mean annual precipitation of 30 cm, yielding mixed coastal sage scrub 
and oak woodland/grass savanna communities (Huesser, 1995). During the last glacial interval, the mean 
temperature dropped to~ 5° C and annual precipitation reached 60–100 cm yr-1, as based on conifer taxa from the 
Transverse and Coast Range drainages. The increased precipitation (2–3 times greater relative to modern levels) 
should have substantially increased river sediment discharge to the continental shelf during late-Pleistocene time. 
However, the coastal lowlands remained marginally-semi arid, as shown by a lack of redwood tree pollen in 
glacial period deposits (Huesser, 1995). The glacial period changed to abrupt warming at 14 ka and drying 
conditions throughout the Holocene. Local creek floodplain and pond pollen records from the Vandenberg dune 
sheet area (Anderson et al., 2015) record communities of coastal sage scrub and woodlands by ~9 ka, with 
declining oak woodland communities until 4.8 ka. Continued drying lead to grassland and coastal sage 
communities during late-Holocene time (Anderson et al., 2015). Semi-arid coastal conditions in the study area 
should have promoted 1) eolian sand transport in the large migratory dune sheets throughout latest-Pleistocene 
and Holocene time and 2) reactivation/remobilization of some pre-existing late-Pleistocene dune and alluvium 
deposits in Holocene time. 
2.4 Late-Quaternary Sand Deposits 
Late-Quaternary sand deposits in the study area are informally identified as the Orcutt Formation of Pleistocene 
age (Woodring and Bramlette, 1950: Dibblee, 1950; Worts, 1951) and younger sands of Holocene age (Cooper, 
1967). The Orcutt sand members include sand deposits from 1) Pleistocene alluvial or uplifted beach deposits, 2) 
Pleistocene coastal dune deposits, and 3) locally remobilized or winnowed dune deposits from pre-existing 
Pleistocene sand sources. The locally remobilized paleo-dune deposits are characteristically thin, generally 
reaching only a few meters in thickness. By comparison, the thicker migratory paleo-dune sheets reach 10s of 
meters in thickness. The migratory paleo-dune deposits pinch-out with increasing landward distance (1–15 km) 
from the present coastline (Figure 2), suggesting their origins from marine/beach sand sources (Cooper, 1967). 
Paleo-dune sand supply in the Santa Maria dune sheet has been 14C dated to latest-Pleistocene time (~29–23 ka) 
(Orme, 1992) and to latest-Holocene time (< 3.5 ka) (Knott and Eley, 2006). The Pleistocene migratory dune 
deposits at the south end of the Santa Maria dune sheet were reportedly related to marine sand sources, though 
interpretations of specific sand supply origins differ from 1) supply during marine regression and river valley 
incision to 2) supply during glacial marine low-stands (Orme, 1992). The onset of Holocene dune development 
in the study area is locally dated to 8–9 ka in sea cliff exposures from the south end of the Vandenberg dune 
sheet (Johnson et al., 1991), but ages of the much broader dune deposits in the northern part of the Vandenberg 
dune sheet were not formally differentiated. The first objective of this study is to establish the source(s) of dune 
sand supply to the Santa Maria and Vandenberg coastal dune sheets. The paleo-dune sheet deposits were then 
analyzed for thickness and age. 
3. Methods 
3.1 Sampling Rivers, Beaches, and Paleo-Dune Deposits for Sand Source Indicators 
Modern river and beach sand deposits and paleo-dune deposits were sampled for texture and lithic fragment 
abundance from the study region between Point Sur to the north and Point Conception to the south (Figures 1 
and 2; Table 1). The river, beach, and paleo-dune samples were analyzed for 1) dominant sand sizes, 2) dry color, 
3) percent lithic rock fragments, and 4) heavy mineral rounding. Sample dominant grain sizes were visually 
estimated from AM/CAN StratigraphicTM grain size cards as follows: very fine lower (vfL) 6–88 µm, very fine 
upper (vfU) 88–125 µm, fine lower (fL) 125–177 µm, fine upper (fU) 177–250 µm, medium lower (mL) 250–
350 µm, medium upper (mU) 350–500 µm, coarse lower (cL) 500–710 µm, and coarse upper (cU) 710–1000 µm. 
Sand color, lithic fragment abundance, and heavy mineral roundness analyses were performed on fine upper (fU) 
-to- medium lower (mL) grain size splits (175–350 µm grain size range), which represent the dominant grain size 
distributions of dune sand in the study area. Sand dry color is based on Munsell soil color chart (Birkeland, 
1999). Light-mineral and heavy-mineral fractions were mounted in PiccolyteTM resin for petrographic 
microscopy analysis at 250x. The relative abundances of lithic-fragments grains within the light-mineral 
components were established from 250 grain counts per sample. The non-lithic grains in the light-mineral 
component were dominantly mono-crystalline quartz and feldspar. Relative grain roundness was established for 
colored mono-crystalline heavy-mineral grains. Grain roundness analyses were performed on pyroxenes and 
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amphiboles, which represent common and readily distinguishable minerals of intermediate abrasion resistance in 
the study region (Peterson et al., 2015). Grain roundness was estimated from visual comparison with an 
AM/CANTM grain rounding card from 50 grain counts per sample. The relative roundness categories are as 
follows: angular=1, subangular=2, subrounded=3, rounded=4, and well-rounded=5. The frequencies of grains in 
each of the five rounding categories were normalized to yield values of 1 to 5 in order of increasing rounding.  
 
Table 1. Locations of modern river and beach sand sample sites 

Site 
number 

Site  
name 

UTMn (m) UTMe (m)

River    
R1 Big Sur River 4016410 603790 
R2 Lime Kiln Creek 3985930 633450 
R3 San Carpoforo Creek 3959000 651620 
R4 Santa Maria River 3872710 736940 
R5 Santa Ynez River 3840400 726190 
Beach    
B1 Big Sur Beach 4015710 602640 
B2 Lime Kiln Beach 3985950 633410 
B3 San Carpoforo Beach 3958110 652140 
B4 Wind Surf Beach 3946920 660980 
B5 Cayucos Beach 3924890 689940 
B6 Morro Beach 3918660 693930 
B7 Pismo Beach 3890740 714850 
B8 Oso Flaco Beach 3879370 715860 
B9 SBC Park Beach 3871710 714510 
B10 Minuteman Beach 3859730 718620 
B11 Surf Beach 3840480 719310 
B12 Honda Beach 3832340 716840 
B13 Jalama Beach 3821800 729200 

Notes: Modern River and Beach sample locations are in UTM (10S) meters (m) in northings (n) and eastings (e). 
River samples were collected in bank bars. Beach samples were collected in summer beach berm or backshore 
locations. 
 
3.2 Mapping the Migratory Paleo-Dune Deposits 
In this study, several methods were used to establish the extents of paleo-dune sheet deposits, including 
interpretation of active- and sparsely-vegetated dune features in modern satellite images and examinations of 
subsurface morphostratigraphic sections. The morphostratigraphic sections were measured in road-cut exposures, 
2) shallow hand-auger holes (3–10 m depths subsurface) with a 7.5 cm diameter Doormer Sand AugerTM, 3) 
reviews of deeper geotechnical borehole logs (10–30 m depth subsurface) and deeper water well logs (30–100 m 
depth), and 4) upslope sea cliff and gully-cut traverses (30–100 m adjusted vertical sections). Section site 
coordinates and elevations are from 12 Channel-WAS GPS and GIS-DEMs (reported to the nearest 5 m elevation) 
or reported borehole survey data. The positions and elevations of the morphostratigraphic sections used in this 
article are presented in Table 2. The representative morphostratigraphic sections were analyzed for sand deposit 
grain size texture, including size and sorting, with AM/CAN StratigraphicTM grain size cards. The 
morphostratigraphic sections were analyzed for soil profile development, including soil color and paleosol 
development (Birkeland, 1999), and a measure of relative cementation or unconfined shear strength (kg cm-2) by 
pocket penetrometer (Peterson et al., 2006). Standard penetration test (SPT) values or blow counts per 15 cm 
drive intervals, ASTM Standard Guide D5434-12 (ASTM, 2017), from reported borehole records, are used to 
supplement the pocket penetrometer data in extended (deeper) geotechnical borehole sections. 
 
Table 2. Positions and elevations of morphostratigraphic sections 

Section
No. 

UTMn 
(m) 

UTMe
(m) 

Elev.
(m) 

Section
No. 

UTMn 
(m) 

UTMe
(m) 

Elev. 
(m) 
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S1 3891050 714770 5 V3 3859210 719340 45 
S2 3889980 715820 10 V4 3857700 720800 85 
S3 3888930 718119 30 V5 3857700 721800 70 
S4 3888400 717620 20 V6 385700 722900 110 
S5 3887280 719180 25 V7 3854780 721430 60 
S6 3887180 718590 20 V8 3853980 724040 120 
S7 3886960 720850 50 V9 3853700 720830 65 
S8 3885590 717150 15 V10 3853600 724320 105 
S9 3885420 720330 70 V11 3853390 719740 40 
S10 3884710 719970 55 V12 3852840 720760 60 
S11 3883930 722770 105 V13 3852460 723480 80 
S12 3882390 724440 135 V14 3852100 720710 25 
S13 3882290 722180 85 V15 3852290 722810 70 
S14 3882050 726380 125 V16 3852270 721490 40 
S15 3881910 727860 115 V17 3852120 718710 40 
S16 3881900 720370 35 V18 3851740 722610 45 
S17 3880230 724590 80 V19 3851330 718950 55 
S18 3881420 718990 35 V20 3851070 721890 55 
S19 3879710 724400 80 V21 3850820 718230 60 
S20 3878740 723230 90 V22 3850090 718580 60 
21 3878090 725730 100 V23 3850090 727740 200 
S22 3878140 727020 95 V24 3848910 720420 85 
S23 3877250 726450 115 V25 3848790 718750 65 
S24 3877180 727230 105 V26 3848660 716840 35 
S25 3876960 728560 90 V27 3848540 721150 85 
F5 3874500 716500 25 V28 3848810 721550 95 
S26 3875460 719370 40 V29 3848400 718400 70 
TM 3874000 717000 25 V30 3846950 718290 30 
S27 3872620 716610 50 V31 3846900 718900 50 
S28 3870900 716000 25 V32 3845350 719170 30 
S29 3869510 714170 30 V33 3844600 719200 20 
S30 3868260 718630 125 V34 3844440 722030 100 
S31 3868000 718620 135 V35 3843240 719690 15 
S32 3867770 729280 60 V36 3842950 720160 20 
S33 3868210 714720 145 V37 3840760 719680 25 
S34 3867690 713990 135 V38 3838950 719910 35 
OR 3867500 714500 160 V39 3838100 718740 45 
S35 3867050 713950 150 V40 3837420 718770 60 
S36 3866790 713570 95 V41 3837070 719570 40 
37 3866300 716000 260 V42 3837000 718700 65 
S38 3865970 716640 340 V43 3835130 718300 90 
S39 3865300 713740 160 V44 3834300 718070 90 
S40 3860200 732330 105 V45 3833000 717250 60 
V1 3860310 718710 35 V46 3833180 716920 55 
V2 3859730 718620 20 V47 3831970 716790 35 

Notes: Morphostratigraphic sections are from the Santa Maria (S) and Vandenberg (V) dune sheets, this article. 
Drill sites F5 and TM are from Knott and Eley (2006). Site OR is combined from Orme (1992) Mussel Rock 
gully sites B and E. Section site coordinates are in UTM meters (rounded to the nearest 10 m). Elevation (m) is 
estimated to the nearest 5 meters using GPS position data and GIS-DEM. Compiled sections from sea-cliff and 
gully-cut traverses are shown in bold. Their site positions are given from the top of the section.  
 
3.3 Dune Deposit Thermoluminescence (TL) Dating 
A total of six new thermoluminescence (TL) samples from the Santa Maria and Vandenberg dune sheets were 
analyzed for ages using standardized laboratory methods (TL Laboratory Data in Supplementary Materials). The 
TL dating method has been tested against 14C and OSL dating methods in several other coastal dune sheets in the 
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Central West Coast of North America (Peterson et al., 2006; Peterson et al., 2007; Peterson et al., 2015; Peterson 
et al., 2017a). TL dating is a reliable reconnaissance dating method for dune sheet sand deposits, which are 
assumed to have been essentially fully reset by sun light during episodic eolian transport, prior to deposition 
(Aitken, 1985). The TL samples used in this study were analyzed at the University of Wollongong, Wollongong, 
Australia. 
4. Results 
4.1 Sources of Modern Beach and Paleo-Dune Sand  
Modern river and beach deposits sampled in the study area (Figures 1 and 2) are coarser in dominant grain size 
(cL/mU) than representative paleo-dune deposits (mL/fU) in the Santa Maria and Vandenberg dune sheets (Table 
3). Therefore, river and beach sand source indicators, including lithic fragment abundance and heavy-mineral 
rounding, are based on the dominant dune sand sizes (fU/mL) sieved at 175-350 µm from the river and beach 
samples. River sand is represented by relatively high lithic fragment abundance (48–54 percent) in the light 
mineral fraction and modest grain angularity (1.7–2.7 roundness) in the heavy mineral fraction. Recycled marine 
sandstones, meta-sedimentary rocks, and igneous rocks in the Coast Range and Transverse Range river drainages 
(Yancey and Lee, 1972; Scott and Williams, 1978) likely account for the modest angularity of the pyroxene and 
amphibole sand grains in the river sand samples. Similar bedrock lithologies in modern beach cliffs could yield 
similar sand textural maturities, so river and eroding sea cliff sand sources are lumped together in this study of 
coastal sand supply.  
 
Table 3. Grain size, color, lithic abundance and rounding of sand in river, beach and paleo-dune deposits 

Sample  
site 

Bulk 
dominant 
grain size  

Dry 
color 

Light 
mineral 
lithics (%)

Heavy  
mineral 
roundness

Beach/ 
foredune width (m) 

River      
R1 mU 10YR6/2 54 2.3 na 
R2 cL 10YR6/3 50 1.7 na 
R3 cL 10YR5/2 53 2.1 na 
R4 mU 10YR6/3 48 2.5 na 
R5 mU 10YR6/2 52 2.7 na 
Beach      
B1 cL 10YR6/2 45 2.6 50 
B2 cU 10YR5/1 46 2.5 25 
B3 cU 10YR4/2 42 2.4 50 
B4 cL 10YR6/2 35 2.7 50 
B5 cL 2.5Y6/2 33 3.1 50 
B6 mU 2.576/2 31 3.8 250 
B7 mL 2.5Y7/3 33 3.9 200 
B8 mU 2.5Y7/4 30 4.1 >250 
B9 mU 2.5Y7/4 31 4.0 >250 
B10 mU 2.5Y7/3 29 4.2 200 
B11 mL 2.5Y7/2 25 4.1 150 
B12 mU 2.5Y7/2 28 4.0 50 
B13 cL 2.5Y7/4 26 4.3 30 
Paleo-dune      
S8 fU/mL 10YR6/4 31 4.1 na 
S9 mL 7.5YR8/4 29 3.8 na 
S13 mL 10YR6/3 26 4.0 na 
S14 mL/fU 10YR7/2 28 3.9 na 
S21 mL 10YR7/6 31 4.3 na 
S32* fU 10YR6/4 49 2.8 na 
S31@2.2m mL/fU 7.5YR6/6 30 4.1 na 
S34@8.5m mL 7.5YR5/4 27 4.0 na 
V7 mL 2.5Y8/3 35 3.7 na 
V8 mL/fU 7.5YR6/4 29 4.1 na 
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V11 mL 2.5Y8/2 31 3.9 na 
V13 mL 10YR6/4 28 4.0 na 
V24 mL 10YR8/3 23 4.3 na 
V35@5.0m mL 7.5YR6/6 26 4.1 na 
V39@2.0m mL/fU 2.5Y7/4 33 4.0 na 
V39@12.0m mL 7.5YR6/8 31 3.9 na 

Notes: Modern river and beach sand sample locations are shown in Supplementary Table 1. Paleo-dune deposit 
locations are shown in Table 1 (article). *S32 is a reworked floodplain dune deposit. Paleo-dune deposit samples 
are taken near the surface except where depths (m) are shown. Dominant grain size was visually estimated from 
bulk samples using a AM/CAN StratigraphicTM grain size card. Dry color, light mineral lithics (%) (percent 
multi-crystalline fragments) and roundness of heavy-mineral (mono-crystalline pyroxenes/amphiboles) are 
measured from sieved grain-size splits (175–350 µm). Beach/foredune width is measured landward from the 
mid-swash zone using satellite images 2013-2016 (Google Earth, 2016).  
 
Beach sand lithology and texture vary widely from relatively high lithic fragment abundance and low rounding 
of heavy minerals in the northern beaches to low lithic fragment abundance (< 35 %) and relatively high 
rounding (3.8–4.3 roundness) in the southern beaches (Table 3; Figure 5). The narrow northern beaches (B1–B5 
≤50 m width) reflect recent direct river sand supply. The wider southern beaches (B6–B11 150–250 m width) 
reflect increased textural maturity of sand grains, which experienced substantial abrasion from prolonged 
exposure to surf/eolian transport processes in the continental shelf. The modern beach sand samples in the 
vicinities of the Santa Maria and Vandenberg dune sheets (B7–B12) show moderately high textural maturity 
(lithic fragment abundance 25-33 % and heavy-mineral roundness 3.9–4.2), which preclude major amounts of 
river sand supplied directly to the modern beaches from the adjacent Santa Maria and Santa Ynez Rivers (Table 
3; Figure 5). Minor amounts of direct river sand supply to the southern beaches, however, likely occurred in 
latest-Holocene time. Though not observed in the beach sand mineralogy, some through-put of Santa Maria 
River and Santa Ynez River sand to the adjacent beaches is inferred from 1) late-Holocene aggradation of the 
lower river valley fills (Knott and Eley, 2006) and 2) river mouth breaching of beach berms during infrequent 
events of river flooding (Inman and Jenkins, 1999; Stillwater Sciences and Kear Groundwater, 2012). 

 
Figure 5. Sand source discrimination in the study area 

Sand source indicators, including light-mineral lithic fragment abundance (%) and heavy mineral rounding 
(angular=1 to well-rounded=5), of sand grains in the mL to fU (175–350 µm) size range in river, beach, and 
representative paleo-dune samples. One paleo-dune sample (S32) is from a winnowed layer (floodplain dune) 
above river floodplain deposits. Data are from Table 3. 
Sand samples from representative paleo-dune deposits in the Santa Maria and Vandenberg dune sheets (Table 3; 
Figure 5) reflect marine sand supply as based on low lithic fragment abundance (23–35 %) and rounding of 
heavy-mineral grains (3.7–4.3 roundness). The sole exception is sample S32 (lithic fragments 49 % and 
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heavy-mineral roundness 2.8), which is from a winnowed dune hummock in the Santa Maria River floodplain. 
The coastal dune sheet deposits were not derived from either 1) direct river sand supply or 2) beaches that were 
directly supplied by river sand throughput, as might have occurred during rapid marine regression and fluvial 
valley down-cutting (Orme, 1992). Rather, the textural maturity of paleo-dune sands in the Santa Maria and 
Vandenberg coastal dune sheets reflect dominant supply of abraded sand from the continental shelf. The shelf 
sand supply could have occurred via cross-shelf transport by eolian processes during marine low-stands and/or 
by shoreward wave transport during marine transgression. 
4.2 Paleo-Dune Deposit Type Discrimination 
Migratory paleo-dune deposits in the study area were discriminated from uplifted Pleistocene beach sand, 
winnowed alluvial floodplain sand, and/or slope wash/colluvium on the bases on dominant sand grain size 
(fU/mU), sorting (well/ very-well sorted), and a lack of gravel. Three relative ages (types) of migratory 
paleo-dune deposits were identified in the Santa Maria and Vandenberg dune sheets, based on sand deposit 
weathering or cementation, and absolute dating by TL or 14C methods. Active or recently-stabilized dune 
deposits (Figure 3) showed no apparent weathering of shallow subsurface deposits in representative soil profiles. 
These deposits represent unweathered Holocene (uHD) dune deposits. Weathered dune deposits are divided into 
two types: relatively uncemented dune deposits and cemented dune deposits. Absolute dating of representative 
dune deposit types in the study area, using TL and 14C methods (see Section 4.5 below), demonstrate that the 
weathered uncemented dune deposits are Holocene in age and the weathered cemented dune deposits are 
late-Pleistocene in age (Figures 6 and 7). For purposes of field mapping, the following criteria were used to 
discriminate between the three dune deposit types as follows; 1) unweathered Holocene dune deposits (uHD) of 
≥ 2.0 m layer thickness, which consist of fine/medium well-sorted sand with no pebbles, and unconfined shear 
strength ≤ 1 kg cm-2), 2) weathered Holocene dune deposits (wHD) ≥ 2.0m layer thickness, which consist of 
fine/medium well-sorted sand with no pebbles, sand grain reddening (FeOx staining) to hues of 7.5YR or 10YR, 
and unconfined shear strength 1.0–2.0 kg cm-2, and 3) cemented Pleistocene dune deposits (PD) ≥ 2.0m layer 
thickness, which consist of fine/medium well-sorted sand with no pebbles, which are cemented with unconfined 
shear strength of ≥2.5 kg cm-2. 

 
Figure 6. Representative Holocene dune sections in the study area 

Part A: Contact (dotted bold line) between 1) overlying unweathered Holocene dune (uHD) deposit with 
dominant grain size (mL), color (2.5YR7/4), and unconfined shear strength (p 0.5) and 2) underlying weathered 
Holocene dune (wHD) deposit with A/Bw soil horizon color 7.5YR 4/4 and unconfined shear strength (p 1.0). 
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Photo is from site S34, near the south end of the Santa Maria dune sheet. Part B: Weathered Holocene dune 
(wHD) deposit with unconfined shear strength (p 1.5) and large dune strata that dip 15– 30° to the northwest. 
Photo is from a sand quarry at site S20, near the middle of the Santa Maria dune sheet. See Figure 8 for site 
locations. 

 
Figure 7. Representative Pleistocene dune sections in the study area 

Part A: Contact (dotted bold line) between 1) overlying weathered Holocene dune (wHD) deposit with dominant 
grain size (mL), color (7.5YR6/6), and unconfined shear strength (p 1.0) and 2) underlying latest-Pleistocene 
dune (PD) deposit, estimated ~23–29 ka in age from Orme (1992), with unconfined shear strength (p 3.0). Hole 
handle is 1.0 m in length. Photo is from site S34. Part B: Oldest late-Pleistocene dune (PD) or ‘dissected’ 
Pleistocene dunes of Orme (1992), with variable podzolic-leaching soil colors (Birkeland, 1999), ranging from 
2.5YR7/5 light gray to 7.5YR7/6 reddish Fe-stained, and unconfined shear strength (p ≥4.5). White note book is 
0.2 m in length. Photo is from site S38. See Figure 8 for site locations. 
 
In this article, the non-dune late-Pleistocene or cemented sandy deposits, with unconfined shear strength ≥2.5 kg 
cm-2, are divided into 1) Pleistocene alluvium (PA), with angular/subangular gravel, as developed in river flood 
plain, gully fill or sheet wash settings and 2) Pleistocene beach deposits (PB), with rounded/subrounded gravel, 
as developed in uplifted marine terrace/platform settings. Remobilized ‘Holocene’ paleo-dune deposits (rHD) 
occur in discontinuous subaerial layers above some late-Pleistocene alluvial deposits and late-Pleistocene dune 
deposits. They likely developed episodically as winnowed hummocks, runoff sheet wash fans, and/or burrowed 
surface layers. The remobilized dune deposits (rHD) are of agricultural and archaeological interests, but they do 
not directly represent episodes of marine sand supply, so they are not addressed in greater detail in this article. 
4.3 Extent and thickness of migratory paleo-dune deposits in the Santa Maria dune sheet 
The landward extent and thickness of migratory dune deposits in the Santa Maria dune sheet were mapped on the 
bases of modern satellite and Lidar images and 43 morphostratigraphic sections (Figure 8; Table 4). 
Non-vegetated or sparsely vegetated parabolic dunes with unweathered subsurface dune deposits extend to 
distances of 0.5–5 km landward of the present shoreline with increasing width from north to south. The 
unweathered Holocene dune (uHD) deposits reach substantial thicknesses (10–20 m thickness) at sites S8, S19, 
F5, TM, and S28 in the Guadalupe dune fields (Figure 9). Large transverse dunes (5–10 m dune trough-crest 
heights) ramp up the south-westernmost slope of the Point Sal Ridge (Figure 3A), reaching elevations of 135–
145 m at sites S33 and S34. The increasing widths and thicknesses of the unweathered Holocene dune deposits 
in the southern half of the Santa Maria dune sheet are consistent with southerly net littoral transport in the area 
during latest-Holocene time (Peterson et al., 2009). Over-steepened eolian sand ramps extend from the modern 
beach to bluff tops, reaching 150-160 m elevation at sites S35 and S38 between Mussel Rock and Point Sal, at 
the southern end of the Santa Maria dune sheet.  
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Figure 8. Map of morphostratigraphic sections in the Santa Maria dune sheet 

Morphostratigraphic sites (S) (this article) and selected subsurface section sites, including OR (Orme, 1992) and 
TM and F5 (Knott and Eley, 2006) are shown in the Santa Maria dune sheet. Near surface deposits are 
designated Holocene dune (black square) and Pleistocene dune (black circle), Pleistocene beach platform (black 
rectangle) and Pleistocene alluvium (black inverted triangle). Unweathered (recently active) Holocene dunes 
(uHD) are discriminated from weathered (stabilized) Holocene dunes (wHD) and cemented Pleistocene dunes 
(PD). 
 
Table 4. Summary of deposits in morphostratigraphic sections of the Santa Maria dune sheet 

Site 
no. 

Unit 1 
depth (m) 

Unit 2 
depth (m) 

Unit 3  
depth (m) 

Site
no.

Unit 1 
depth (m) 

Unit 2 
depth (m) 

Unit 3 depth
 (m) 

S1 uHD(0-1.2) wHD(1.2-7.0) HA(7-11) S22 PD(0-5.0)   
S2 wHD(0-7.0) PA(7.0-8)  S23 wHD(0-15) PD(15-65) PA(65-68) 
S3 PA(0-3.0)   S24 wHD(0-6) PD(6-57) PA(57-59) 
S4 wHD(0-8.5) PA(8.5-10)  S25 rHD(0-1.0 PD(1.0-29) PA(29-30) 
S5 PA(0-3.0)   F5 uHD(0-22.1) HA(22.1-25)  
S6 wHD(0-3.5) PA(3.5-5.0)  S26 uHD(0-14) HA(14-15)  
S7 wHD(0-15) BR(15-25)  TM uHD(0-22.9) HA(23-28)  
S8 uHD(0-12) HA(12.0-13)  S27 uHD(0-35) HA(35-36)  
S9 PD(0-40.0) PA(40.0-43)  S28 uHD(0-19.0) HA(19-20)  
S10 wHD(0-2.0) PD(2.0-28) PA(28-29) S29 uHD(0-3.0) wHD(3.0-5.0)  
S11 PD(0-25) PA(25-27)  S30 wHD(0-5.5) PD(5.5-6.5)  
S12 PD(0-55) PA(55-57)  S31 wHD(0-2.0) PD(2.0-22.5) PA(23-25) 
S13 rHD(0-1.5 PD(1.5-43) PA(43-44) S32 rHD(0-1.0) PA(1.0-3.0)  
S14 rHD(0-1.0) PD(1.00-8.5) PA(8.5-9) S33 uHD(0-8.0) wHD(8.0-24) PD(24-34) 
S15 PD(0-5.0) PA(5.0-6)  S34 uHD(0-10.0) wHD(10-23) PD(23-34) 
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S16 wHD(0-3.8) PD(3.8-5.0)  OR PA(10-22) PD(22-26) PA(26-39) 
S17 PD(0-4.0)   S35 uHD(0-2.0) wHD(2.0-4.0)  
S18 uHD(0-10) wHD(10-30) HA(30-35) S36 uHD(0-10) wHD(10-40) PA(40-45) 
S19 wHD(0-2.5) PD(2.5-3.5)  S37 PD(0-13) BR(13-15)  
S20 wHD(0-15) PD(15-18)  S38 PD(0-15) BR(15-20)  
S21 wHD(0-4.0) PD(4.0-7.0)  S39 uHD(0-5.0) wHD(7.0-9.5)  
    S40 rHD(0-3.0) pA(3.0-7.0)  

Notes: Morphostratigraphic section site and letter/number code (Table 2) with units (deposit types) in depth 
subsurface (m). Deposit types include unweathered Holocene dune sand (uHD), weathered Holocene dune sand 
(wHD), remobilized Holocene dune (rHD), Holocene alluvium (HA), Pleistocene dune (PD), Pleistocene 
alluvium (PA), Pleistocene Beach (PB), and bedrock (BR). Section S1 was extended (3.5-11.0 m depth 
subsurface) using geotechnical data from borehole #5 log (Earth Systems Pacific, 2005). Water well data were 
used to extend section S4 from 3.5 to 10 m depth and to extend section S12 from 2.5 m to 55 m depth. Several 
previously published gully-cut sections and associated 14C ages (Orme, 1992) were combined to form the 
composite OR section. Only complete paleo-dune deposit units (bold type) were used for dune sheet volume 
estimates.  

 

Figure 9. Representative morphostratigraphic sections from the Santa Maria dune sheet  
Two previously published sections with associated radiocarbon dates (Orme, 1992) are combined here to form 
the composite section OR. See Figure 8 for core site locations.  
 
The landward extents of weathered Holocene dune deposits are established by 1) remnant parabolic or transverse 
dune topography and 2) morphostratigraphic sections (Figure 8; Table 4). The greatest landward extents (~11 km) 
of the weathered Holocene dune (wHD) deposits occur near the middle of the Santa Maria dune sheet at sites 
S21 and S24. Remnant parabolic dune features and deposits reach elevations of 90–115 m at sites S20, S23, and 
S24 along the north side of the Santa Maria River valley where they reach thicknesses of 6–15 m (Figure 6B). 
The weathered Holocene dunes are sharply truncated to the south by the Santa Maria River flood plain, thereby 
demonstrating that the emplacement of the weathered Holocene dunes pre-dated latest-Holocene cut-and-fill of 
the Santa Maria floodplain. Weathered Holocene dune deposits underlie the unweathered Holocene dunes that 
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ramp up the Point Sal Ridge, such as exposed in a large gully cut at sites S33 and S34 (Figure 6A). The 
weathered Holocene dunes extend well landward of the active dunes to reach S30 located ~5.5 km from the 
coastline on the eastern flank of Point Sal Ridge at an elevation of 125 m (Table 2). At the opposite (north) end 
of the Santa Maria dune sheet, the weathered Holocene dune deposits only reach modest elevations of ~20 m, as 
at sites S4 and S6, where they are mapped to ~ 2–2.5 km landward of the present shoreline. The weathered 
Holocene dunes at sites S4 and S6, at the northernmost end of the Santa Maria dune sheet, overlie a seaward 
sloping apron of latest-Pleistocene or earliest-Holocene pebbly sand alluvium, which possibly derived from 
stream-reworked paleo-dune deposits. Weathered Holocene dune deposits of variable thickness and width also 
rim the western edge of the Mesa bluffs, located east of an abandoned channel of the Arroyo Grande Creek. 
Late-Pleistocene dune deposits (PD) are extensive in the Santa Maria dune sheet, where they extend to landward 
distances of ~15 km and ~ 7 km, respectively, on the north and south sides of the Santa Maria River Valley 
(Figure 8; Table 4). The late-Pleistocene dune deposits on the north side of the Santa Maria River Valley form a 
broad ridge (Mesa-Nipomo sand ridge) reaching up to 130 m in elevation between the bounding Santa Maria 
River and Arroyo Grande tributary alluvial valleys (Table 2). Measured sections and/or water well records at 
sites, S9, S10, S12, S13, S23, S24, and S25 establish maximum thicknesses (~30-60 m) of late-Pleistocene dune 
deposits overlying late-Pleistocene alluvium (Figure 10). South of the Santa Maria River Valley the 
latest-Pleistocene dune deposits underlie the weathered Holocene dunes, as at sites S33 and S34 (Figures 7A and 
9) on the north slope of Point Sal Ridge. Near that locality, latest-Pleistocene dune deposits and reworked 
dune/alluvium deposits (composite site OR in Figure 9) are dated to 23–29 ka (Orme, 1992). Much older 
late-Pleistocene dune deposits reach ~13–15 m in thickness at sites S37 and 38, respectively, located at 260 m 
and 340 m elevation on the eastern crest of the Point Sal Ridge (Figure 7B), where they were referred to as 
‘dissected paleo-dunes’ by Orme (1992).  

 
Figure 10. Representative morphostratigraphic sections from the Santa Maria dune sheet  

Water well logs were used to confirm the vertical depths of paleo-dune deposits in S4 and S12. Steep slope 
traverses in river valley sides were used to measure sections S9, S10, S13, S23, S24 and S25, as corrected for 
vertical depths. 
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4.4 Extent and Thickness of Migratory Paleo-Dune Deposits in the Vandenberg Dune Sheet 
The landward extent and thickness of migratory dune deposits in the Vandenberg dune sheet were mapped on the 
bases of modern satellite and Lidar images and 47 morphostratigraphic sections (Figure 11; Table 5). 
Non-vegetated and sparsely vegetated parabolic dunes with unweathered subsurface dune deposits extend to 
distances of 1–4 km landward of the present shoreline located north of Purisima Point in the Vandenberg dune 
sheet. The recently active or unweathered Holocene dune (uHD) deposits range from 2–9 m thickness in auger 
and geotechnical boreholes, such as at sites V7, V8, V9, Vll, and V26 (Figure 12). The landward extents of the 
recently active dune fields diminish to less than 1.0 km width south of the minor Purisima Point headland, and to 
less than 0.5 km width south of the Santa Ynez River. The localized accumulation of unweathered Holocene 
dune deposits north of the Purisima Point headland indicates partial interruption of net southerly littoral transport 
in the northern part of the Vandenberg dune sheet. However, the general lack of unweathered Holocene dune 
deposits in the southernmost part of the Vandenberg dune sheet, south of site V42, suggests an ongoing loss of 
littoral sand around Point Pednerales to the south, in latest-Holocene time. 

 
Figure 11. Map of morphostratigraphic sections (V) in the Vandenberg dune sheet  

 
Near surface deposits are designated Holocene dune (black square) and Pleistocene dune (black circle), 
Pleistocene beach platform (black rectangle) and Pleistocene alluvium (black inverted triangle). Unweathered 
(recently active) Holocene dune deposits (uHD) are discriminated from weathered (stabilized) Holocene dune 
deposits (wHD) and cemented Pleistocene dune deposits (PD). 
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Table 5. Summary of deposits in morphostratigraphic sections of the Vandenberg dune sheet 
Site 
no. 

Unit 1 
depth (m) 

Unit 2 
depth (m) 

Unit 3 depth 
(m) 

Site
no. 

Unit 1 
depth (m) 

Unit 2 
depth (m) 

Unit 3 depth 
(m) 

V1 PB(0-0.5)   V25 rHD(0-1.0 PB(1.0-3.0) BR(3-5) 
V2 uHD(0-2.0) PB(2.0-3.5)  V26 uHD(0-4.8) wHD(4.8-17) PD(17-24) 
V3 rHD(0-0.5) PB(0.5-2.0)  V27 PD(0-3.0) PB(3.0-5.0) BR(5-6) 
V4 PB(0-0.7) BR(0.1-1.7)  V28 rHD(0-2.0) PD(2.0-2.5) PB(2.5-3) 
V5 PB(0-3.0)   V29 uHD(0-4.0) wHD(4.0-9.8) PD(9.8-12) 
V6 rHD(0-1.00 PB(1.0-2.0)  V30 uHD(0-3.0) wHD(3.0-7.6) PD(7.6-12) 
V7 uHD(0-7.4) wHD(7.4-17) PA(17-18) V31 rHD(0-0.5) PD(0.5-1.5)  
V8 wHD(0-5.0) PA(5.0-10) BR(10-11) V32 PA(0-2.0)   
V9 uHD(0-8.4) wHD(8.4-17) PA(17-18) V33 PA(0-3.0) BR(3.0)  
V10 wHD(0-4.0) PA(4.0-9.0)  V34 PA(0-2.0) PB(2.0-4.0) BR(4-5) 
V11 uHD(0-9.0) wHD(9.0-21) BR(21-22) V35 PA(0-4.0) PD(4.0-5.0) PB(5-6) 
V12 wHD(0-13) PA(13-16) BR(16-17) V36 rHD(0-0.5) PA(0.5-1.5)  
V13 wHD(0-5.0) PA(5.0-7.0)  V37 wHD(0-3.0) PB(3.0-5.0)  
V14 Hmud (2-7)   V38 PB(0-2.0)   
V15 wHD(0-5.0) PA(5.0-7.0)  V39 uHD(0-8.8) wHD(8.0-18) PA(18-25) 
V16 rHD(0-1.0) PB(1.0-1.5)  V40 wHD(0-21) PA(21-30) PB(30-40) 
V17 wHD(0-4.0)   V41 PB(0-3.5)   
V18 rHD(0-1.0 PB(1.0-1.5)  V42 uHD(0-1.0) wHD(1-20) PD(20-23) 
V19 rHD(0-0.5) PB(0.5-1.2) BR(1.2-3) V43 uHD(0-1.0) wHD(1-55) PA(55-60) 
V20 rHD0-0.5) PB(0.5-1.5) BR(1.5-2) V44 PB(0-1.0)   
V21 uHD(0-5.0) wHD(5.0-10) BR(10-11) V45 uHD(0-1.0) wHD(1-30) PA(30-49) 
V22 wHD(0-3.0) PD(3.0-6.0) PB(6-9) V46 uHD(0-1.0) wHD(1-43.0) PD(43-48) 
V23 PD(0-3.0) PB(3.0-5.0)  V47 PB(0-3.0)   
V24 rHD(0-0.3) PD(0.3-4.0) PB(4-5)     
Notes: Morphostratigraphic section site and letter/number code (Table 2) with units (deposit types) in depth 
subsurface (m). Deposit types include unweathered Holocene dune sand (uHD), weathered Holocene dune sand 
(wHD), remobilized Holocene dune (rHD), Holocene alluvium (HA), Pleistocene dune (PD), Pleistocene 
alluvium (PA), Pleistocene Beach (PB), and bedrock (BR). One barrage pond site (V14) contains Holocene mud 
(Hmud) at 2–6.6 m depth subsurface (Anderson et al., 2015). Geotechnical borehole records (VAFB, 2016) and 
corresponding extensions of morphostratigraphic sections are as follows: V7 borehole 31MW8 and 31MW11 at 
7–18 m depth subsurface, V8 boreholes 54MW and 27MW3 at 5–11 m depth, V9 boreholes 31MW8 and 
31MW10 at 7–18 m depth, V10 borehole 27MW3 at 4–9 m depth, V11 borehole 15MW8 at 12-22 m depth, V12 
borehole 34MW1 at 6–16 m depth, V21 borehole 13MW5 at 5–11 m depth, V26 borehole 40MW2 at 7–24 m 
depth, V29 borehole 25MW5 at 5–14 m depth, V30 borehole 33J-B6 at 3–12 m depth, and V43 borehole 
9MW10 at 6–20 m depth. Previously reported sea-cliff stratigraphic sections (Gray, 2004) were also used to 
extend some morphostratigraphic profiles as follows: V26 Purisima Point section +3-10 m elev., V40 and V42 
Bear Creek traverse +20-50 m elev., V45 Delphy traverse +5–60 m elev., and V46 Honda Canyon traverse +3-55 
m elev. Only complete paleo-dune deposit units (bold type) were used for dune sheet volume estimates.  
 
Weathered Holocene dune deposits underlie the unweathered dune deposits and extend 0.5–3 km landward of the 
unweathered dune deposits in the northern part of the Vandenberg dune sheet (Figure 11; Table 5). The 
weathered Holocene dune (wHD) deposits in the Point Purisima vicinity (site S26) reach a maximum thickness 
of 17 m (Figure 12). The landward extents of the weathered Holocene dunes decrease to about 0.5 km distance 
near the south end of the Vandenberg dune sheet, but reach maximum thicknesses of 54 m and 42 m, respectively, 
in steep eolian sand ramps (Peterson et al., 2017b) at sites V43 and V46 (Figure 13). 
Late-Pleistocene dune deposits in the northern part of the Vandenberg dune sheet (Figure 11; Table 5) are very 
limited in landward extent (< 5 km) and thickness (3–7 m), as mapped between sites V26, V24 and V27 (Figure 
12). Late-Pleistocene erosion locally reduced the late-Pleistocene dune deposit thickness (~2 m thickness) in 
some sea cliff sections, as preserved under late-Pleistocene slope-wash alluvium in V35 (Figure 14a) located 
north of the Santa Ynez River mouth. Late-Pleistocene dune deposits south of the Santa Ynez River mouth, in 
the southern part of the Vandenberg dune sheet, are extremely narrow (<0.5 km width) and thin (~3 m thickness) 
where exposed in eroded gully/sea cliff sections at sites S42 and S46 (Figure 13). 
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Figure 12. Representative morphostratigraphic sections are shown from the Vandenberg Dune sheet 

Geotechnical borehole logs were used to extend sections at sites V7, V8, V9, Vll, and V26 
 

 
Figure 13. Representative morphostratigraphic sections are shown from the Vandenberg dune sheet Geotechnical 

borehole logs were used to extend sections at sites V29, V30, and V43. A short section, between 13 and 14 m 
deep, is missing from V29 due to a borehole cave-in. A small uHD inset in V46 occurs at a locally eroded and 
back-filled topographic bench in the sea cliff/bluff slope. Steep sea cliff traverses, corrected for vertical depth, 
were used to measure sections V39 and V46. Combined sea cliff and gully cut traverse were used to measure 

section V42 
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Figure 14. Representative dune sections from the Vandenberg dune sheet 

Photos of two late-Pleistocene dune sections show relations of the thin Pleistocene dune sheet. Part A is from site 
V35 in a sea cliff cut exposure (~ 7 m height) showing remnant Pleistocene dune deposits (PD) between 
overlying Pleistocene sheet wash alluvium (PA) and underlying Pleistocene beach sand deposits (PB), which are 
FeOx stained and include pebbles and cobbles. The beach platform bedrock (BR) is tilted Monterey (shale) 
formation. Part B is from site V24 in a borrow pit exposure (4 m height) of 1) a remobilized Holocene dune 
deposit (rHD), over 2) a Pleistocene loess/Pleistocene dune layer (PL/PD) overlying 3) a leached (10YR8/3) 
Pleistocene dune deposit (PD). A TL sample at ~ 3 m depth (black solid circle) yielded an age of 47.1 ka for the 
late-Pleistocene dune deposit. 
 
4.5 TL and 14C Dating of Dune Deposits 
In this section, selected TL and 14C sample ages from representative paleo-dune deposits in the Santa Maria and 
Vandenberg dune sheets (Table 6) are presented to discriminate between sand supply origins from different 
paleo-sea level conditions. The specific TL laboratory procedures and sample analytical data used in this study 
are shown in TL Laboratory Data in Supplementary Materials. TL sample ages for the late-Pleistocene dune 
deposits in the Santa Maria dune sheet range from >106±21 ka (basal paleo-dune deposit in site S9) to 40.8±4.6 
ka (shallow paleo-dune deposit in S14) (Figure 10). A single TL sample from the late-Pleistocene dune deposits 
in the northern part of the Vandenberg dune sheet (site V24) yielded an age of 47.1±4.8 ka (Figures 12 and 14B). 
Multiple coastal loess layers of marine low-stand origins (Peterson et al., 2014) in sites S9, S10, S13, and S14 
are consistent with late-Pleistocene TL ages that correspond to eustatic marine low-stand conditions (Figure 4A). 
TL samples from the most landward weathered Holocene dune deposit in the Vandenberg dune sheet (site V8) 
and from the base of an unweathered Holocene dune deposit in the Santa Maria dune sheet (site S28), 
respectively, yielded ages of 4.1±0.6 ka, and <4.1±0.5 ka (Figures 9 and 12). A bounding age of ~4 ka between 
the weathered Holocene dune deposits and the overlying unweathered Holocene dune deposits is supported by 
reported 14C sample ages in the study area, as shown below.  
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Table 6. TL/14C ages from the Santa Maria and Vandenberg dune sheets 
Dune sheet/ 
site 

Age  
type 

TL age (ka) 
14C age (BP)/Lab# 

Deposit
type 

Strat. 
Position 

Ref. 

Santa Maria      
S1 (Ca-SLO-801) 14C 7,780±220 cal BP/ UCR1336 Tivela na (1) 
S1 (Ca-SLO-801) 14C 9,310±150 cal BP/ UCR1338 Tivela na (1) 
S1 (Ca-SLO-832) 14C 8,470± cal BP/ B39980 Tivela na (1) 
S1 (Ca-SLO-832) 14C 8,920±cal BP/ B141923 Tivela na (1) 
S1 (Ca-SLO-1797) 14C 9,600±60 cal BP/ B111349 Tivela na (1) 
S9 (36 m) TL >106±21 ka/ W4955 PD B (2) 
S10 (0.6 m)SLO-2357 14C 6,233±150 cal BP/B205674 wHD T (2) 
S10 (2.0 m)SLO-2357 14C 6,204±120 cal BP/B205677 wHD B (3) 
S13 (13 m) TL 46.7±2.5 ka/ W4956 PD S (2) 
S14 (3 m) TL 40.8±4.6 ka/ W4957 PD S (2) 
TM (TMA8) (23 m) 14C 3,510±70 yr BP/ B167955 HA T (4) 
F5 (F5-19) (22 m) 14C 4,360±70 yr BP/ B120500 HA T (4) 
S28 (18 m) TL <4.1±0.5 ka/ W4958 uHD B (2) 
OR (E)QF3 (17 m) 14C 23,560±360 yr BP PA/D T (5) 
OR (Bb)QF2 (25 m) 14C 26,650±260 yr BP PD S (5) 
OR (Ba)QF1 (30 m) 14C 29,020±290 yr BP PA/D B (5) 
S34 (PS9b) (127 m) 14C 360±80 yr BP/B459187 uHD T (2) 
Vandenberg      
V7 (VAFB2166) 14C 930±120 cal BP/ B63695 uHD T (6) 
V8 (3 m) TL 4.1±0.6 ka/ W4954 wHD T (2) 
V14 Mod Pond (6 m) 14C 2,760 yr BP HA B (7) 
V17 (SBA707-90b2) 14C 4330±110 cal BP/B456056 wHD T (2) 
wV17(SBA707-95b) 14C 380±90 cal BP /B454738 uHD T (2) 
V24 (3 m) TL 47.1±4.8 ka/ W4952 PD S (2) 
V26(VAFB0225) 14C 3,040±100 cal BP/ B63695 uHD B (6) 
V37(SBa931A) 14C 7,830 yr BP/ UCR268 wHD S (8) 
V37(SBa931A) 14C 8,900 yr BP wHD B (8) 
V37(VAFB931A1) 14C 8560±350 cal BP/UCR268 wHD B (6) 
V37(VAFB931A2) 14C 9340±120 cal BP/ B17001 wHD B (6) 
wV40(VAFB534-1) 14C 510±60 cal BP/ B22818 uHD T (6) 
wV40(VAFB534-2) 14C 1,510±70 cal BP/ B22817 uHD S (6) 
V42(BearCyn) 14C 9,030±390 yr BP wHD B (9) 
nwV43(VAFB677-1) 14C 660±50 cal BP/ B112444 uHD T (6) 
nwV43(VAFB677-2) 14C 930±80 cal BP/ B112445 uHD S (6) 
swV43(VAFB67-11) 14C 670±50 cal BP/ B112440 uHD T (6) 
swV43(VAFB671-2) 14C 2,780±130 cal BP/ B112439 uHD B (6) 
V45(SBa670-1) 14C 590±100 yr BP/ uHD T (9) 
V45(VAFB670-1) 14C 3,430±90 cal BP/ B16999 wHD T (6) 
V45(SBa670-2) 14C 3,930±110 yr BP wHD T (9) 
V45(VAFB670-2) 14C 5,290±80 cal BP//B16018 wHD S (6) 
V45(VAFB670-3) 14C 7,330±100 cal BP/ UCI182 wHD S (6) 
V46(VAFB530-1) 14C 680±60 cal BP/ B64145 uHD T inset (6) 
V46(SBa530-1)  14C 1,270±70 yr BP uHD S inset (9) 
V46(VAFB530-2) 14C 5,730±80 cal BP/ B64150 wHD S (6) 
V46(VAFB530-3) 14C 7,450±80 cal BP/ B64151 wHD S (6) 
V46(VAFB530-4)  14C 9,000±90 cal BP/ B31172 wHD B (6) 
V46(VAFB530-5)  4C 9,240±120 cal BP/ B17260 wHD B (6) 
V46(SBa530-2)  14C 13,890±330 yr BP PD T (9) 

Notes: TL sample sites correspond directly to morphostratigraphic sections (Table 1). Sample depths (m) are in 
meters subsurface. Previously published archaeology 14C sample sites (site number) correspond to the nearest 
morphostratigraphic sections (S, V) in this study. Several 14C sample sites include sea cliff or bluff top locations, 
positioned due west (w), northwest (nw) or southwest (sw) of the nearest morphostratigraphic sites. 14C samples 
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are from charcoal or shells (calibrated for local marine reservoir). See references for laboratory details. Sample 
ages are in ka for TL samples and in yr BP (±1 σ) or cal BP (±2 σ) and rounded to the nearest 10 years for 14C 
samples. Sample stratigraphic positions are given relative to top (T), internal strata (S) and bottom (B) of 
corresponding deposit types. Deposit types include: unweathered Holocene dune (uHD), weathered Holocene 
dune (wHD), Pleistocene dune (PA), Holocene alluvium (HA), and Pleistocene alluvium (PA). Tivela stultorum 
(Pismo beach clams) represent the presence of perennial beaches in the Santa Maria dune sheet area. References 
include (1) Masters (2006), (2) this article, (3) Jones and Mikkelsen (2006), (4) Knott and Eley (2006), (5) Orme 
(1992), (6) Vandenberg Air Force Base (VAFB, 2017), (7) Anderson et al., (2015), (8) Glassow and Snethkamp 
(1981), and (9) Johnson et al., (1991). The three new 14C ages used in this study are from sites S34 (PS9b) and 
V17 (SBA707-90b2) and wS17 (SBA707-95b2) with a marine reservoir correction of Delta R =225±25 yr. 
 
Reported 14C deposit ages establish an approximate boundary between 1) the termination of weathered Holocene 
dune deposits at sites V17 (4,330±110 cal BP), V45 (3,430±90 cal BP), and V46 (3,930±110 yr BP) in the 
Vandenberg dune sheet and 2) the onset of unweathered Holocene dune deposition in sites V26 (3,044±100 cal 
BP) and swV43 (2,780±130 cal BP) in the Vandenberg dune sheet and in site TM (<3,510±70 yr BP) in the Santa 
Maria dune sheet (Table 6). The unweathered dune deposition has continued locally until present time (0 ka) in 
the Guadalupe dune fields, between sites S8 and S28 in the Santa Maria dune sheet (Figure 8) and at Purisima 
Point at site V26 in the Vandenberg dune sheet (Figure 11). However, the latest-Holocene dune ramp advance 
has recently terminated between Mussel Rock and Point Sal at the south end of the Santa Maria dune sheet, with 
a terminal Holocene dune deposit age of 370±80 cal BP at site S34. The latest-Holocene dune sheet advance has 
also terminated just west of site V17 in the northern part of the Vandenberg dune sheet with a terminal Holocene 
dune deposit age of 380±90 cal BP. A narrow strip of discontinuous unweathered Holocene dunes is located 
along the crest and seaward slope of the westernmost bluffs south of site V39 in the Vandenberg dune sheet 
(Figure 11). These erosional remnants of latest-Holocene dune deposits at the south end of the Vandenberg dune 
sheet are dated to 1,510±70 –to- 510±60 cal BP (site wV40), 930±80 –to- 660±50 cal BP (site nwV43), and 
2,780±130 –to- 670±50 cal BP (site swV43). The youngest ages might represent surface midden occupations, 
thereby post-dating terminal dune advance. 
The onset of weathered Holocene dune deposition in the study area is dated to about ~9000 yr BP by ages of 
8,560±350 –to- 9,340±120 cal BP (site V37), 9030±390 yr BP (site V42), and 8950±40 –to- 9240±120 cal BP 
(site V46) in the Vandenberg dune sheet (Table 6). The earliest developments of Holocene perennial beaches in 
the northern Santa Maria dune sheet as established by 14C-dated Pismo beach clams (Tivela stultorum) in midden 
sites near S1 (Figure 8) are dated to 7780±220 cal BP –to- 9308±150 cal BP (Ca-SLO-801), 8470±70 cal BP –to- 
8920±70 cal BP (Ca-SLO-832), and 9600±60 cal BP (Ca-SLO-1797) as reported in Masters (2006). The 
earliest-Holocene dune sand supply is expected to have been contemporaneous with early beach development at 
~9 ka, in the Santa Maria dune sheet. A pair of 14C ages (6204±120 and 6233±150 cal BP) in a thin weathered 
Holocene dune deposit at site S10 on the western edge of the Mesa Bluffs predates bluff slope truncation by an 
abandoned channel of the Arroyo Grande Creek, shown in Figure 8, in mid-Holocene time.  
Late-Pleistocene dune 14C ages range in age from 29,020±290 yr BP in recycled dune sand alluvium in the 
composite site OR in the Santa Maria dune sheet –to- 13,890±330 yr BP near the top of a thin and discontinuous 
pre-Holocene dune layer in site V46 of the Vandenberg dune sheet (Table 6). The timing of the major 
depositional phases of paleo-dune deposits, including the late-Pleistocene (cemented dune deposits), the 
middle-Holocene (weathered dune deposits), and the latest-Holocene (unweathered dune deposits) in the study 
area, are related to corresponding paleo-sea level conditions below. 
5. Discussion 
5.1 Timeline of Dune Field Advances 
The three paleo-dune deposit types that have been dated in the Santa Maria and Vandenberg dune sheets (Table 6) 
correspond to three different paleo-sea level conditions in the study area (Figure 15). First, the late-Pleistocene 
dune deposits developed during a prolonged period (70–13 ka) of low sea levels (-50 to -130 m elevation) along 
the mid-continental shelf. The late-Pleistocene dune sand was transported across the emerged shelf by eolian 
processes, as occurred in the nearby San Francisco and Monterey dune sheets (Peterson et al., 2015). Second, the 
middle-Holocene dune deposits correspond to the slowing of the Holocene marine transgression (9–5 ka), when 
shoreward wave transport overtook shoreline retreat to supply perennial beaches in the study area (Masters, 
2006). And third, the latest-Holocene dune deposits correspond to near high-stand conditions of paleo-sea level 
(~3.5–0 ka), when net southward longshore transport delivered sand to the southern portions of littoral subcells 
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in the study area (Peterson et al., 2009).  

 
Figure 15. Timelines for coastal sand supply in the study area 

Timelines for paleo-sea levels, sand transport mechanisms, and paleo-dune deposition from late-Pleistocene 
(80 ka) to the present (0 ka). Paleo-sea levels are from Figure 4. Dune deposit ages are grouped from Table 6. 
 
A general hiatus in dune sand supply would have occurred between the termination of cross-shelf eolian 
transport following shelf submergence, after 18 ka (Figure 15) and the onset of perennial beach development (~9 
ka) in the study area. The occurrence of such a hiatus is consistent with significant differences in weathering and 
cementation between overlying Holocene dune deposits and underlying cemented latest-Pleistocene dune 
deposits in the study area (Figure 7A). The termination of cross-shelf transgression sand supply, after 5 ka, and 
the onset of localized sand supply by longshore transport, by ~3.5 ka, are established by the 14C records of dune 
deposit ages, though visual differences in dune soil weathering are locally striking (Figure 6A). 
5.2 Paleo-Dune Field Migrations as Indicators of Local Paleo-Wind Directions  
Hill-shaded Lidar elevation DEMs (NOAA, 2017) were used to establish orientations of parabolic and transverse 
paleo-dune forms in the Santa Maria and Vandenberg dune sheets. The paleo-dune migration bearings reflect 
dominant local wind directions associated with the ages of the paleo-dune deposit types. Representative 
morphostratigraphic sites (4-6 in number) were selected from surface exposures of each dune deposit type in the 
northern and southern areas of the Santa Maria dune sheet (Figure 8) and in the northern area of the Vandenberg 
dune sheet (Figure 11) to measure the corresponding dune form migration bearings relative to true north (° TN). 
Paleo-wind directions are taken to be 180° from the preserved dune form migration bearings.  
In the northern areas of the Santa Maria dune sheet (Figure 16A), the measured paleo-dune forms yield the 
following mean and standard deviations (±1 σ) of migration bearings from 1) late-Pleistocene dune deposits at 
sites S11, S13, S14, S17, and S22 (143±7°), 2) middle-Holocene dune deposits at sites S2, S6, S20 and S23 
(107±5°), and 3) latest-Holocene dune deposits at sites S18, S26, F5 and TM (110±3°). The migration bearing 
means ±2 σ of the late-Pleistocene and Holocene dune forms do not overlap, indicating a small but significant 
difference in local paleo-wind directions between late-Pleistocene and Holocene times. There are no significant 
differences in migration bearings between the middle-Holocene and latest-Holocene dune forms in the northern 
area of the Santa Maria dune sheet, spanning the Holocene period of local warming and drying (Anderson et al., 
2015). Dune migration directions in the southern areas of the Santa Maria dune sheet show substantial variability, 
likely due to wind flow influences from the high gradient slopes of the Point Sal Ridge (Figure 16B).  
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Figure 16. Paleo-dune form orientations in the Santa Maria dune sheet 

Part A: Hill-shaded Lidar DEM for the northern area of the Santa Maria dune sheet. Part B: Hill-shaded Lidar 
DEM for the southern area of the Santa Maria dune sheet. Dune form ages are from corresponding 
morphostratigraphic sections (S), including unweathered Holocene dune deposits (uHD), weathered Holocene 
dune deposits (wHD), and cemented Pleistocene dune deposits (PD). Dune form migration directions (arrows) 
are shown for parabolic and transverse dune forms. See Table 2 for site elevations. Lidar data are from NOAA 
(2017). 
 
In the northern area of the Vandenberg dune sheet (Figure 17A) the dune form migration bearings of the 
middle-Holocene dunes at sites V8, V10, V13, V15, V22, and V29 (136±11°) are not substantially different from 
the latest-Holocene dunes at sites V7, V9, V11, V21, and V26 (122±10°). No preserved topographic dune forms 
were apparent in deflation surfaces of the late-Pleistocene dune deposits at sites V25, V24, V27 and V31 in the 
Vandenberg dune sheet. Though local pollen records demonstrate progressive warming and drying throughout 
the Holocene (Anderson et al., 2015), the paleo-climate changes did not include significant changes in dominant 
local wind directions between middle-Holocene and latest-Holocene time in the study area dune sheets. 
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Middle-Holocene sand ramps developed against sea cliffs at the south end of the Vandenberg dune sheet (Figure 
17B), where they locally barraged late-Pleistocene gullies that were cut into the uplifted marine terraces (~90 m 
elevation), such as at site V44. However, latest-Holocene shoreline retreat has undercut and over-steepened the 
middle-Holocene sand ramps, leading to the narrow (~0.5 km width) strip of truncated eolian sand ramps or 
‘remnant perched dunes’ (Peterson et al., 2017b) along the bluff edge (Figure 11). 

 

Figure 17. Paleo-dune form orientations in the Vandenberg dune sheet 
Part A: Hill-shaded Lidar DEM for the northern area of the Vandenberg dune sheet. Part B: Hill-shaded Lidar 
DEM for a representative section of middle-Holocene eolian sand ramps that barraged (dammed) gullies cut into 
uplifted late-Pleistocene marine terraces in the southernmost part of the Vandenberg dune sheet.  
Dune form ages are from corresponding morphostratigraphic sections (V), including unweathered Holocene 
dune deposits (uHD), weathered Holocene dune deposits (wHD), and cemented Pleistocene dune deposits (PD). 
Dune form migration directions (arrows) are shown for parabolic and transverse dune forms. See Table 2 for site 
elevations. Lidar data are from NOAA (2017). 
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5.3 Distribution of Dune Deposit Volumes 
Dune sheet landward extents (Figures 8 and 11) and deposit thicknesses (Figures 9, 10, 12, and 13) were likely 
influenced by topographic relief relative to wind directions in the Santa Maria and Vandenberg dune sheets 
(Figures 16 and 17). To reduce the bias of topographic influences on paleo-dune deposit distributions, the dune 
sand accumulations are normalized to volumes. The dune deposit volumes are based on mapped surface areas, as 
shown in Figures 8 and 11, and measured deposit thicknesses (Tables 4 and 5), as averaged for the north and 
south parts of each dune sheet (Table 7). The Santa Maria and Vandenberg dune sheets are divided, respectively, 
at the Oso Flaco Lagoon and Santa Ynez River mid-points. Dune deposit volume calculations are generally 
rounded to the nearest 10 million cubic meters due to estimated 5–10 % mapping area uncertainties. The loss of 
paleo-dune deposits to reworking and/or burial in the Santa Maria River Valley (Knott and Eley, 2006), or to 
reworked dune sand alluvium in gully/slope-wash fills in the steepest bluff slopes (Orme, 1992), are not 
evaluated in this article.  
 
Table 7. Estimated dune deposit volumes 

Dune Sheet Late Pleistocene (PD)
depth/area/volume 
m/km2/m3 

Middle Holocene (wHD)
depth/area/volume 
m/km2/m3 

Latest Holocene (uHD) 
depth/area/volume 
m/km2/m3 

Santa Maria    
North 36/63/1,200x106 9/27/240x106 8/18/140x106 
South 14/10/140x106 10/13/130x106 13/36/470x106 
Total vol. 1,340x106 vol. 370x106 vol. 610x106 
    
Vandenberg    
North 3/4/10x106 7/37/260x106 5/22/110x106 
South 1/0.5/0.5x106 18/3/50x106 0.5/1/0.5x106 
Total vol. 10x106 vol. 310x106 vol. 110x106 

Notes: Dune deposit volumes (m3) are computed from measured surface areas (km2) (Figs. 6 and 9) and 
corresponding averaged thickness (m) of deposit type sections (bold type in Tables 4 and 5). The north and south 
areas of the Santa Maria and Vandenberg dune sheets, respectively, are divided at the Oso Flaco and Santa Ynez 
River mid-points (Figures 6 and 9). Due to the steep sand ramp geometry in the southernmost parts of the Santa 
Maria dune sheet (sites 36 and 39) and the Vandenberg dune sheet (sites V42, V43, V45, and V46) the 
thicknesses of the dune deposits for those sections are taken to be one half of their reported values from Tables 4 
and 5.   
 
The estimated late-Pleistocene dune deposit volumes in the Santa Maria dune sheet are highly asymmetric 
ranging from 1,200 million cubic meters (1,200x106 m3) in the north –to- 140x106 m3 in the south (Table 7). The 
asymmetry reverses in latest-Holocene time as the latest-Holocene dune deposit volumes vary from 140x106 m3 
in the north –to- 470x106 m3 in the south. Late-Pleistocene dune deposits reach only ~10 million cubic meters in 
the northern part of the Vandenberg dune sheet, and they are negligible to the south of the Santa Ynez River. The 
middle-Holocene and latest-Holocene dune deposit volumes, respectively, in the northern part of the Vandenberg 
dune sheet are estimated to be 260x106 m3 and 110x106 m3. By comparison, the middle-Holocene and 
latest-Holocene dune deposits in the southern part of the dune sheet, respectively, reach only 50x106 m3 and 
~0.5x106 m3. The paleo-wave climates and paleo-shoreline orientations that led to the very-asymmetric 
paleo-dune volume distributions in the Santa Maria and Vandenberg dune sheets are discussed in detail below.  
5.4 North Pacific Ocean Wind/Wave Stress 
Paleo-wave climates in the south-central California coastal region (Figure 2) have been estimated from modeled 
paleo-sea level pressure gradients, as down-sampled from the GENMOM model (Alder and Hostetler, 2015), at 
3 ka time slices from 21 to 0 ka (Figure 18). The paleo-wave climate forcing is calibrated to modern deep water 
wave directions from an offshore buoy, Santa Barbara Buoy LLNR 198 (Figure 1; NOAA, 2016), as previously 
reported by Peterson et al. (2017b). The dominant wave forcing in the study area occurs during winter months, 
Dec-Jan-Feb (DJF), when averaged significant wave heights (H1/3) are 1.5–3.5 m, and extreme storm waves 
reach 7–8 m height. Averaged monthly winter wave directions for the years 2014-2015 yielded a mean of ~290° 
TN. The winter storm waves propagate to the southeast from the North Pacific Low Pressure Area (NPLPA). The 
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NPLPA migrated to its present position from a more southerly position during the last glacial maximum (LGM) 
at ~21–18 ka. This northward migration of the NPLPA would have resulted in a 25–30° clockwise rotation of 
winter storm wave propagation directions from the LGM (21 ka) to the present (0 ka). The nearly north-south 
oriented paleo-shorelines of the Santa Maria and Vandenberg dune sheets should have been very susceptible to 
these changes in the paleo-wave propagation directions, as discussed below. 

 

Figure 18. Paleo-wind and associated wave stress from the Northeast Pacific Ocean 
Surface air pressure gradients (hPa) and wind stress vectors (ms-1) are shown for winter months (DJF) at 3 ka 
time slices for the last 21 ka (Alder and Hostetler, 2015). The modeled winter winds are used to estimate winter 
storm wave forcing in the North Pacific Low Pressure Area (NPLPA). For reference purposes, the storm wave 
propagation directions (bold arrows) are drawn from the central position of the 1000 hPa contour to the study 
area shoreline. The stepped black line approximates the North America West Coast. Figure is redrafted from 
Peterson et al. (2017b). 
 
5.5 Shelf Bathymetry, Paleo-Shoreline Orientations, and Dune Sand Supply  
Several data sets are combined to construct a framework model of offshore sand supply to the paleo-dune 
deposits in the Santa Maria and Vandenberg study area. The origins of the large late-Pleistocene dune deposits in 
the San Maria dune sheet (Figure 8) are of particular interest. The volume of late-Pleistocene dune deposits in 
the Santa Maria dune sheet, 1,340x106 m3 (Table 7), are conservative due to presumed erosion and/or burial of 
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pre-Holocene dune deposits in the Santa Maria River Valley. A late-Pleistocene paleo-wind direction of ~320° 
TN is reversed from late-Pleistocene dune form migration bearings of ~140° in the northern area of the Santa 
Maria dune sheet (Figure 16A). A projection of the 320° wind direction intersects the low-stand paleo-shoreline, 
at -100±25 m elevation (Figure 4A), which is 20–30 km distance to the northwest of the Santa Maria River 
Valley. Paleo-wave climate forcing (Figure 18) of slight net northward littoral transport along the -100 m 
elevation contour, confirms the potential for the development of a low-stand depocenter, at a paleo-shoreline 
inflection area, located northwest of the Santa Maria River Valley (Figure 19). River sand discharged to the 
low-stand paleo-shorelines by the Santa Maria River throughout low-stand time, 70-13 ka (Figure 15), could 
have supplied the large low-stand depocenter during late-Pleistocene time. 

 
Figure 19. Low stand sand supply to the Santa Maria and Vandenberg dune sheets  

Deep water winter-wave propagation directions (arrows) during latest-Pleistocene time (21 ka) are from Figure 
18. Paleo-shoreline elevations of ~100±25 m during late Pleistocene low-stand conditions are from Figure 4A. 
An interpreted low-stand (mid-shelf) depocenter (shaded) is projected from paleo-wind directions (Figure 16A) 
and paleo-wave climate/paleo-shoreline geometries. Late-Pleistocene dune deposits mapped onshore (shaded) 
are from Figures 8 and 11. 
 
Unlike the large late-Pleistocene dune deposit volumes in the Santa Maria dune sheet, no obvious mid-shelf 
features were found to correspond to the very-small late-Pleistocene dune volumes (10x106 m3) in the north part 
of the Vandenberg dune sheet (Table 7; Figure 19). A slight net northward transport of discharged river sand from 
the Santa Ynez River, intersecting the low-stand paleo-shorelines some ~20 km offshore of the present Santa 
Ynez River mouth, could have supplied a southeast directed cross-shelf eolian supply to the small paleo-dune 
deposits. However, no late-Pleistocene migratory dune deposits were observed north of San Antonio Creek 
(Figure 11), leaving the origins of the very-small late-Pleistocene dune deposits at Purisima Point unresolved. 
Middle-Holocene paleo-dune deposits are widespread in the Santa Maria and Vandenberg dune sheets, 
respectively, accounting for 370x106 m3 and 310x106 m3 in total volumes (Table 7). The middle-Holocene dune 
volumes in the Santa Maria dune sheet are assumed to be conservative due to their apparent erosion from alluvial 
truncation along both the north and south sides of the Santa Maria River Valley (Figure 16). A lack of Holocene 
deposits along the sides of the Santa Ynez River Valley (Figure 11) precludes any significant loss of onshore 
dune deposits to the Santa Ynez River Valley processes. The sources of middle-Holocene dune deposits to both 
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the Santa Maria and Vandenberg dune sheets were derived from the remobilization of pre-existing sand deposits 
from the mid- and inner-continental shelf (Figure 20) during the Holocene marine transgression. Nearly 
orthogonal deep water wave directions at ~9–6 ka (Figure 18) likely led to the relatively even distribution of 
middle Holocene dune deposits between the north and south parts of the Santa Maria dune sheet. As will be 
discussed below, it is not known whether such an even north-south distribution also once occurred in the 
Vandenberg dune sheet.  

 
Figure 20. Marine transgression sand supply to the Santa Maria and Vandenberg dune sheets  

 
Deep water winter-wave propagation directions (arrows) during middle-Holocene time (9–6 ka) are from Figure 
18. The paleo-shoreline shown at the -20 m elevation contour is taken from the paleo-sea level curve at 8 ka 
(Figure 4B). Middle-Holocene dune deposits, mapped onshore (shaded), are from Figures 8 and 11. Middle 
Holocene dune migration directions (arrows) are from Figures 16 and 17. 
The substantial asymmetry between middle-Holocene dune deposit volumes in the north part (260x106 m3) and 
south part (50x106 m3) of the Vandenberg dune sheet (Table 7) could be influenced by the higher elevations of 
uplifted marine terraces (MIS7 terraces in Figure 4A), differing by as much as 50 m of relative uplift to the south 
of the Santa Ynez River. However, mean surface elevations of the most-proximal middle-Holocene dune deposits 
(Table 2) only vary by about 30 percent between the north part (46±14 m 1σ elevation) and south part (65±15 m 
1σ elevation) of the Vandenberg dune sheet. These differences are seemingly too small to account for the 5x 
difference in dune deposit volumes. As will be discussed below, the small volume of middle-Holocene dunes in 
the south part of the Vandenberg dune sheet could be attributed to extensive sand ramp erosion in very 
latest-Holocene time.  
Latest-Holocene dune deposit volumes are unevenly distributed between the Santa Maria dune sheet (610x106 
m3) and Vandenberg dune sheets (110x106 m3) (Table 7), thereby arguing for origins that differ from those of the 
middle-Holocene dune deposits. As previously mentioned in Section 5.3 above, there are opposite asymmetries 
in latest-Holocene dune deposit distributions in the north part (140x106 m3) and south part (470x106 m3) of the 
Santa Maria dune sheet relative the north part (110x106 m3) and south part (0.5x106 m3) of the Vandenberg dune 
sheet. Such asymmetries between the two dune sheets and within the two dune sheets can be explained by 
conditions of net southward longshore transport and relative efficiencies of sand trapping within the different 
subcells during the latest-Holocene conditions of marine high-stand (Figure 21). The Santa Maria dune sheet 
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benefitted from longshore transport of innermost-shelf deposits from distances of as much as 100 km to the north 
of the dune sheet (Figure 2). The availability of such sand supplies from the inner-shelf is indicated by the 
presence of late-Holocene dunes (≤ 6 ka) at Morro Bay (Orme and Tchakerian, 1986). By comparison, the 
Vandenberg dune sheet only received limited sand supply from southward longshore sand transport around Point 
Sal. The relative trapping efficiencies of the different subcells during latest-Holocene time are discussed below. 

 
Figure 21. High-stand sand supply to the Santa Maria and Vandenberg dune sheets 

Deep water winter-wave propagation directions during latest-Holocene time (3–0 ka) are from Figures 2 and 18. 
Orientations of innermost-shelf contours (-20 m elevation) are shown (bold lines) at the south ends of subcells at 
Point Sal, Purisima Point and Point Pednerales. Latest-Holocene dune deposits mapped onshore (shaded) are 
from Figures 8 and 11. Latest-Holocene dune migration directions (arrows) are from Figures 16 and 17. 
 
Latest-Holocene deep-water winter waves approached the study area shorelines from the northwest (Figures 2 
and 18), but shoreline orientations at the Point Sal, Purisima Point and Point Pednerales were nearly orthogonal 
to the incident wave approach (Figure 21). These nearly orthogonal shoreline orientations reduced net southward 
longshore sand transport in the southern parts of the corresponding subcells. Such reductions in longshore 
transport efficiency should 1) locally increase sand residence time in the nearshore and associated beaches and 2) 
permit onshore winds to transport surplus beach sand to adjacent dune fields (Peterson et al., 2009). Although all 
three subcells, including Point San Luis-Point Sal, Point Sal-Purisima Point, and Purisima Point-Point 
Pednerales, show similar orientations of their southernmost shorelines, only the Point Pednerales headland area 
lacks an equivalent nearly-orthogonal orientation of the innermost-shelf bathymetric contour at -20 m elevation. 
The higher relative-angle of incident wave attack in the nearshore area at the south end of the Vandenberg dune 
sheet permitted effective longshore sand transport around the Point Pednerales promontory. The loss of 
nearshore sand from the south end of the Point Pednerales subcell probably 1) limited a contiguous development 
of latest-Holocene dune deposits south of site V39 and 2) lead to widespread erosion of both the latest-Holocene- 
and middle-Holocene sand ramps in the southernmost end of the Vandenberg dune sheet (Figures 11 and 17B).  
5.6 Declining Rates of Longshore Sand Supply and Implications for Future Beach Erosion 
Declining rates of recent longshore sand supply in the Santa Maria and Vandenberg dune sheet beaches are 
evident from deflation and/or slope failures of eolian sand ramps at the south ends of the dune sheets (Figures 
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16B and 17B). Coastline orientations at the fault block headlands of Point Sal and Point Arguello (Figure 2) are 
sufficiently offset to serve as check-valves, permitting episodic southward sand transport around the 
promontories but no returning northward sand transport. Declining rates of longshore sand replenishment in the 
Point Sal subcell have led to 1) deflation of latest-Holocene dune deposits in the transverse dune sand ramp at 
site S29 (Table 4), thereby exposing underlying middle-Holocene dune deposits north of Mussel Rock and 2) 
implied beach retreat between Mussel Rock and Point Sal. Beach retreat at the southernmost end of the Santa 
Maria subcell is implied by the undercutting of the latest-Holocene sand ramp at site S36 (Figure 22A). The 
progressive slope failures at site S36 have increased slope gradients from 15° in the un-eroded ramp deposits 
above 90 m elevation –to- 35° (angle of repose) in eroded slopes below the 90 m elevation rim. A seaward 
projection of the original ramp slope angle (15°) yields a beach retreat of ~200 m at the south end of the Santa 
Maria dune sheet. The dated termination of latest-Holocene dune ramp advance south of Mussel Rock at site S34 
(370±80 cal BP) (Table 6) suggests that the ongoing shoreline retreat between Mussel Rock and Point Sal, at the 
south end of the Santa Maria dune sheet, is very recent (<500 yr BP).  

 
Figure 22. Retreating Holocene sand ramps in the Santa Maria and Vandenberg dune sheets 

Part A. Photo (view east) of an eroded eolian sand ramp at site S36, (95 m elevation), between Mussel Rock and 
Point Sal, at the south end of the Santa Maria dune sheet (Figures 8 and 9). Landward extents of weathered 
middle-Holocene dune (wHD) deposits and late-Pleistocene dune (PD) deposits are shown in the 
photo-background. Photo (1989): Copyright (C) 2002-2017 Kenneth & Gabrielle Adelman, California Coastal 
Records Project www.Californiacoastline.org. Part B: Photo (view north) of an eroded eolian sand ramp at site 
V39 (45 m elevation) near the south end of the Vandenberg dune sheet (Figures 11 and 13). Eroded unweathered 
latest-Holocene dune (uHD) deposits overlie a sharp contact (white dashed line) with weathered 
middle-Holocene dune (wHD) deposits.  
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Sand ramp erosion at the south end of the Vandenberg dune sheet is far more advanced than in the Santa Maria 
dune sheet. No contiguous latest-Holocene sand ramp deposits exist south of site V39 in the Point Pednerales 
subcell (Figures 11 and 13), and widespread erosion of the middle-Holocene sand ramp deposits occurs between 
sites V39 and V46 (Figure 22B). Sea cliff retreat is locally reduced or stabilized between site S46 and Point 
Pednerales (Figure 11) due to tectonic uplift of bedrock above the high tide level at the southernmost end of the 
Vandenberg dune sheet (Figure 13). Mean 14C ages of terminal latest-Holocene eolian sand ramp remnants at site 
wV40 (~1.0 ka) and site swV43 (~1.7 ka) (Table 7) suggest that sand ramp erosion at the south end of the 
Vandenberg dune sheet was likely underway by 1.0–1.5 ka. It is assumed that a potential future sea level rise of 
1–2 m following predicted global warming in the next century (DeConto and Pollard, 2016; Mengel et al., 2016) 
will accelerate the ongoing beach retreat and further erode the remaining eolian sand ramp deposits at the south 
ends of the Santa Maria and Vandenberg dune sheets.  
Most importantly to regional coastal sand supply, the dune sheet records of localized sand supply, termination of 
cross-shelf sand supply, and diminishing longshore sand catchment, serve as proxies for much broader shoreline 
responses to future accelerated rates of sea level rise. The along-coast extents of ‘active migratory dunes’ in the 
study area (~250 km in length) from Point Sur to Point Conception (Figure 1), total only about 25 km in length. 
They are localized in the Guadalupe dune field just north of Point Sal Ridge (Figure 8), the Purisima dune field 
located just north of Purisima Point (Figure 11), and the Morro Bay sand spit (Figure 2). The other 90 percent of 
the study area coastline is contributing sand to the southward net longshore transport, with little to no river sand 
supply and no new cross-shelf sand supply. The narrow beaches (≤ 50 m width) that comprise > 75 percent of the 
study area coastline (Table 3) will not survive a near future 1–2 m rise in sea level, based on a conservative 
≥50:1 ratio of retreat distance to sea level rise.  
5.6 Regional Comparisons of Large Paleo-Dune Sheets in the Central West Coast of North America 
The Santa Maria and Vandenberg dune sheets are like the other major paleo-dune sheets in the Central West 
Coast of North America in that they largely originated from late-Pleistocene marine low-stand sand depocenters 
(Figure 1). The higher-latitude shelf depocenter in Oregon (OR) received sand from rivers located up to several 
hundred kilometers south of the associated onshore paleo-dune sheets (Scheidegger et al., 1971; Peterson et al., 
2007). The lower-latitude shelf depocenters in Baja California Sur (BCS) were apparently supplied by shelf sand 
sources located up to several hundred kilometers north of their respective onshore paleo-dune sheets (Peterson et 
al., 2017a). But the mid-latitude Santa Maria and Vandenberg low-stand shelf depocenters developed in 
close-proximity to the Santa Maria and Santa Ynez River valleys (Figure 2), as did the nearby San Francisco and 
Monterey shelf depocenters, relative to their respective river sand sources, i.e. the Sacramento-San Joaquin and 
Salinas Rivers (Schlocker, 1974; Best and Griggs, 1991; Peterson et al., 2015). The mid-latitude shelf 
depocenters, located offshore of San Francisco and Santa Maria, were situated nearly due east of the North 
Pacific Low Pressure Area (NPLPA) position in late-Pleistocene time. These mid-latitude positions resulted in a 
slight northward littoral transport (Figure 18) and long-term sand storage in broad emerged-shelf sand traps. The 
accumulated depocenter sand was transported directly across the shelf by 1) eolian transport during marine 
low-stand conditions and 2) shoreward wave transport during the Holocene marine transgression.  
The Santa Maria and Vandenberg paleo-dune sheet shorelines experienced a slight southward littoral transport 
during latest-Holocene time due to a northward shift of the NPLPA in late-Holocene time (Figure 18). A similar 
reversal of net littoral transport directions between late-Pleistocene and latest-Holocene time were interpreted to 
have occurred in the two other mid-latitude dune sheets at San Francisco and Monterey Bay (Figure 2) (Peterson 
et al., 2015). However, substantial changes in modern coastline orientations in the Santa Maria-Vandenberg 
study areas (Figure 21) clearly identified the locally variable sand trapping efficiencies of the corresponding 
littoral subcell shorelines (Peterson et al., 2009) under the reversed net-southward littoral transport conditions in 
latest-Holocene time. Due to both their mid-latitude locations and variable coastline orientations, the paired 
Santa Maria and Vandenberg dune sheets uniquely resolved all three of the coastal sand supply conditions during 
late-Pleistocene, middle-Holocene, and latest-Holocene time, in the study region.  
6. Conclusions 
The Santa Maria and Vandenberg dune sheets are uniquely situated to test relations between paleo-sea levels, 
paleo-wave climate, paleo-shoreline orientations, and long-term coastal sand supply. The timings of marine sand 
supply to the two dune sheets correspond to 1) marine low-stand conditions during late- Pleistocene time, 2) 
shoreward wave transport following slowing of the Holocene marine transgression, and 3) alongshore variations 
in net-southward littoral sand transport during the latest-Holocene marine high-stand. Paleo-climate conditions 
were favorable to eolian sand transport throughout latest-Pleistocene and Holocene time. However, local 
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topography influenced dune migration directions and possibly the landward extent and thickness of some dune 
deposits. To compensate for topographic relief influences, dune sand supply was normalized to sand volume 
measurements. Strong asymmetries in sand volumes from the different ages of dune sand supply to the Santa 
Maria and Vandenberg dune sheets demonstrate the key importance of paleo-shoreline orientations relative to 
estimated paleo-wave propagation directions from the North Pacific Low Pressure Area. In latest-Holocene time, 
alongshore variations in littoral sand trapping efficiencies gave rise to localized dune sand accretion or 
permanent sand loss around fault/lithology offset promontories. Ongoing sand loss and associated shoreline 
retreat at the south ends of the Santa Maria and Vandenberg dune sheets could be accelerated by future sea level 
rise following predicted global warming during the next century. Regionally, the dune sheet records of 
terminated across-shelf sand supply and ongoing net longshore transport serve as proxies for narrow beach 
susceptibility to future sea level rise.  
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