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Abstract 
This paper is mainly devoted to laying an empirical foundation for further research on complex spatial dynamics 
of two-population interaction. Based on the US population census data, a rural and urban population interaction 
model is developed. Subsequently a logistic equation on percentage urban is derived from the urbanization 
model so that spatial interaction can be mathematically connected with logistic growth. The numerical 
experiment by using the discretized urban-rural population interaction model of urbanization shows a 
period-doubling bifurcation and chaotic behavior, which is identical in patterns to those from the simple 
mathematical models of logistic growth in ecology. This suggests that the complicated dynamics of logistic 
growth may come from some kind of the nonlinear interaction. The results from this study help to understand 
urbanization, rural-urban population interaction, chaotic dynamics, and spatial complexity of geographical 
systems. 
Keywords: Allometric scaling, Bifurcation, Chaos, Complex dynamics, Logistic growth, Two-population 
interaction, Urbanization 
1. Introduction 
The study of the logistic equation as viewed from ecology indicates that a simple deterministic system can 
present periodic oscillation and chaotic behavior along with the model parameter change (May, 1976). However, 
why the simple model contains complex dynamics still remains ambiguous. Urban study can provide us with 
facilities for exploring the springhead of complicated dynamics of logistic process. In the urbanization process, 
the level of urbanization follows the sigmoid curve and can be described with the logistic function (Karmeshu, 
1988; United Nations, 1980; United Nations, 1993). Moreover, the urban system and ecological system show 
comparability in several aspects (Dendrinos, 1992; Dendrinos and Mullally, 1985), which implies that the 
process of urbanization might have period-doubling bifurcation or chaotic dynamics. In theory, urban system and 
the process of urbanization can generate complex behaviors such as chaos (e.g. Dendrinos, 1996; Dendrinos and 
El Naschie, 1994; Nijkamp, 1990; Nijkamp and Reggiani, 1998; Van der Leeuw and McGlade, 1997; Wong and 
Fotheringham, 1990).  
Many studies of chaotic cities are relative to spatial interaction and logistic growth. On the other hand, a great 
number of simulation analyses and empirical researches show that urban system bears the fractal structure (e.g. 
Batty and Longley, 1994; Chen and Zhou, 2003; Frankhauser, 1994; White and Engelen, 1994). Fractal structure 
and chaotic behavior coexist in lots of systems. Fractal property of urban systems suggests complex dynamics of 
urban evolution. What concerns us is not only the bifurcation and chaos in the sheer numerical simulation 
experiments but also the ones that can be captured from the observation data. One of the viewpoints is that 
fractal actually appears at the edge of chaos and the coexistence phenomenon of fractal and chaos does not imply 
the certain correlation between them (Bak, 1996). Perhaps this is true, but we still intend to investigate it from 
the standpoint of urban systems and urbanization dynamics in order to reveal the relation between the chaotic 
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behavior and fractal structure of nonlinear systems. 
Now chaotic cities and fractal cities have become important branch ranges of self-organized cities (Portugali, 
2000). Fractal cities mean the cities with self-similarity or scaling invariance, while chaotic cities suggest the 
cities with spatial regularity behind random behaviors. The studies of fractal cities and systems of cities are 
supported by a great number of observations (e.g. Batty and Longley, 1994; Chen and Zhou, 2004; Chen and 
Zhou, 2006; Frankhauser, 1994; White et al, 1997). However, most applications of chaos theory in the social 
sciences lack empirical content (Nijkamp and Reggiani, 1992). This situation has changed little for more than ten 
years. In fact, cities and networks of cities are typical complex systems suitable for exploring complicated 
dynamics (Allen, 1997; Wilson, 2000). The key lies in how to associate theory with practice and reality. The 
principal aim of this paper is at two aspects. One is to lay an empirical foundation for researching chaotic cities, 
and the other is to prepare for revealing the essence of complicated behaviors of simple models and the relation 
between chaotic cities and fractal cities. 
The following parts of this paper are structured as follows. In section 2, we build a nonlinear dynamical model 
about the urban-rural interaction based on the population census data of the United States of America (USA), and 
then derive the logistic equation of urbanization level from the model. In section 3, with the aid of the US census 
data, we demonstrate the feasibility and rationality of the model based on statistical analysis, logistic analysis 
and numerical simulation analysis. This part is used to consolidate the empirical foundation of the model. In 
section 4, we implement numerical simulation experiment with the model of urbanization dynamics, testifying 
whether or not such a model presents all the behavior characters of the logistic equation, including periodic 
oscillation and chaotic behavior. Finally, in Section 5, the discussion is concluded by making some remarks on 
the significance of the complicated dynamics research from the aspect of the two-population interaction in urban 
geography. 
2. Choice and transform of mathematical models 
2.1 Urban-rural interaction models 
A variety of mathematical models has been made to describe the spatial dynamics of the urban-rural population 
migration. Among these models, two are attention-getting. One is the Keyfitz-Rogers linear model (Keyfitz, 
1980; Rogers, 1968), and the other, the United Nations nonlinear model (United Nations, 1980; Karmeshu, 1988). 
The United Nations adopted a pair of nonlinear equations to characterize the urbanization dynamics 
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where r(t) and u(t) denotes the rural and urban population in time t respectively, a, b, c, d, φ and ψ are parameters. 
If parameters φ=ψ=0, we can derive the logistic model of urbanization level from the UN model. For many years, 
the United Nations has been using the logistic function to forecast the level of urbanization of each country in the 
world (United Nations, 1993; United Nations, 2004). 
However, empirical studies and statistical analyses show that the urbanization dynamics of many countries such 
as America, China, and India can be effectively described neither by the Keyfitz-Rogers model nor by the United 
Nations model. In short, rural population couldn’t migrate into urban regions and vice versa without spatial 
interaction between urban and rural population. In other words, population migration and exchange between 
urban and rural regions depends only on urban-rural population interaction. Consequently, two items of the 
United Nations model are actually excrescent and equation (1) should be simplified to such a form 
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According to equation (2), the rural population can not spontaneously flow into the cities and vice versa. The 
exchange of urban and rural population relies mainly on the urban-rural interaction. The urban-rural interaction 
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bears an analogy with the predator-prey interaction in ecology (Dendrinos and Mullally, 1985). The size of urban 
population is influenced by rural population size and in turn reacts on it. So both the growth rate of urban 
population and that of rural population depend to a great extent on the coupling or cross correlation between the 
urban and rural population. For a close region, it is theoretically expected b=d. As will be shown later, the US 
model of urbanization dynamics might be simpler than equation (2). That is c=0 in reality. 
2.2 Derivation of the logistic model 
In order to research into the above model, we need to examine it from two ways: one is the logical analysis, and 
the other empirical analysis. The logical analysis involves at least two aspects. First, whether or not the level of 
urbanization derived from the above model is similar to the logistic increase, and whether or not the total 
population in a region is limited. Second, whether or not the result of the numerical simulation is coincident with 
that of the mathematical deduction. 
First, we derive the well-known logistic model on the level of urbanization, i.e. urbanization ratio. The level of 
urbanization is defined as the proportion or share of urban population in relation to the total population in a 
region (United Nations, 2004). Thus, we have 
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where L(t) refers to the level of urbanization, P(t)=r(t)+u(t) to the total population, and V(t)=u(t)/r(t) to the 
urban-rural ratio of population. Differentiating L(t) with respect to t gives 
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Substituting equation (2) into equation (4) yields 
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For simplicity, taking a region as a close system, then we have b=d. In terms of the definition of urbanization 
level, equation (5) can be transformed into the following form 
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According as equation (3), we have an urban-rural ratio 
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This implies 1/V(t)=r(t)/u(t)=1/L(t)-1. Therefore, equation (6) can be transformed into a logistic equation 
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Thus, we have constructed a mathematical relation between models for two interacting population and the 
logistic growth. Let k=b+c-a=c+d-a represent the intrinsic rate of growth. Then equation (8) can be simplified as 
the usual form 
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Solving equation (9) yields the well-known expression of the logistic curve 
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where L0 represents the initial value of L(t). That is, when t=0, we have L(t)= L0. 
A key criterion to judge the urbanization model is the rationality of the increase curve of the total population. 
Taking derivative of population P(t) with respect to time t yields 
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Substituting equation (2) into equation (11) gives 
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Obviously, from equation (12) we can get two inconsistent equations as follows 
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According to equation (13), when a>c, the total population grows more quickly; while according to equation 
(14), when a>c, the total regional population grows slower. These two equations collide with each other. The 
inconsistency can be eliminated by two conditions: a=c or c=0. If a=c as given, then the total population will 
grow infinitely in the exponential way predicted by Malthus (1798/1996); On the other, if c=0, the total 
population will stop growing when it increases to certain extent. Under the latter circumstance, according as 
equation (13), since the rural population r(t)→0, the growth rate of the total population P(t) will gradually 
decrease to 0; According as equation (14), because the whole population will be completely urbanized, i.e. 
u(t)→P(t), the growth rate of the total population will tend toward 0 ultimately. In the real world, we do have 
c=0, as will be illustrated in the following empirical analysis. 
It is easy to see that b or d is a very significant parameter in equation (2). On the one hand, it controls the 
developing trend and quantity of the total population; on the other hand, it affects the original rate of growth k 
value of the logistic equation on level of urbanization. As we know, parameter k dominates the behavior 
characters of the dynamical system. When k>2.57, the logistic map coming from the discretization of equation 
(9) will present very complicated behaviors (May, 1976). So what is the case in reality? In the next section, we 
will validate the above models in virtue of the US observation data. Then we perform numerical simulation 
experiment to unfold some intrinsic regularity of the urbanization dynamics. 
3. Empirical foundation of two-population interaction model 
3.1 Data and method 
The main purpose of this study, as indicated above, is to lay an empirical foundation for further research on 
complex spatial dynamics of urban-rural interaction. So it is necessary to make relevant statistical analysis of the 
dynamical equations. There are two central variables in the study of spatial dynamics of urban development: 
population and wealth (Dendrinos, 1992). According to our theme, we only choose the first variable, population, 
to test the models. Generally speaking, the population measure falls roughly into four categories: rural 
population r(t), urban population u(t), total population P(t)= r(t)+u(t), and level of urbanization, L(t)= u(t)/ P(t). 
The American data comes from the population censuses whose interval is about 10 years. Although the website 
of American population census offers 22 times of census data from 1790 to 2000, we only use the data from 
1790 to 1960 (table 1). The reason is that the US changed the definition of cities in 1950, and the new definition 
came into effect in 1970. From then on, the American urban population was measured with the new standard. As 
a result, the statistic caliber of the population data from 1970 to 2000 might be different from those before 1970 
although they approximately join with each other (figure 1).  
<Table 1 The US rural and urban population and the related data (1790-1960)> 
<Source: http://www.census.gov/population.> 
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The data displayed in table 1 are fitted to the discretization expressions of the United Nations model and the 
Lotka-Volterra-type model respectively (r.e. Dendrinos and Mullally, 1985; Lotka, 1956; Volterra, 1931). Since 
the Keyfitz-Rogers model and the American urbanization model are both special cases of the United Nations 
model, there is no need to try Keyfitz-Rogers model particularly. The parameters of models are made by the least 
squares computation, which can make the key parameters, slopes, fall into the most reasonable range. 
After estimating the model parameters, we should make tests in two ways. One is the well-known statistical test, 
and the other is the logical test, which is often ignored in practice. If the model fails to pass the statistical test, it 
has problems such as incomplete or redundant variables, or inaccurate parameter values; if the model cannot pass 
the logical test, it has structure problem so that it cannot explain the phenomena at present and predict the 
developing trend in future. Statistical tests can be made in definite procedure, while the logical test needs to be 
done with the help of mathematical transformation and numerical simulation experiment. 
<Figure 1. The changing trend of the US urban, rural and total population (1790-2000)> 
<(Notes: The solid points are data from 1790 to 1960; the hollow points are data from 1970 to 2000. The 
definition of the city after 1960 is different from before, but the two calibers generally fit with each other.)> 
3.2 Parameters estimation and model selection 
In order to make statistical analysis, we must discretize the United Nations model so that it transform from 
differential equations into difference expressions, i.e., a 2-dimension map. Then the analysis of continuous 
dynamics changes to that of discrete dynamics. If ∆t=10 as taken, then dx/dt∝ ∆x/∆t. Let r(t), u(t) and 
r(t)*u(t)/[r(t)+u(t)] be independent variables, and ∆u(t)/∆t and ∆r(t)/∆t be dependent variables. A multivariate 
stepwise regression analysis based on the least squares computation gives the following model 
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This is a pair of difference equations of which all kinds of statistics including F statistic, P value (or t statistic), 
variance inflation factor (VIF) value and Durbin-Watson (DW) value can pass the tests at the significance level 
of α=0.01 (Appendix 1). In this model, c=0. Although we should have b=d in theory, they are not equal in the 
empirical results. There might be two reasons for this. One is that the US is not a truly closed system because of 
mass foreign migration; the other is that the natural growth of the urban population is dependent on the 
urban-rural interaction. The second reason might be more important. But on the whole, the equations as a special 
case of the United Nations model can better describe the American urban and rural population migration process 
in the recent 200 years. 
In light of equation (10), the level of urbanization should follow the logistic curve. It is easy to calculate the 
urbanization ratio using the data in table 1. A least squares computation involving the percentage urban data 
gives the following results 

te
tL 02238.041573.201

1)( −+
= .                           (16) 

The goodness of fit is about R2=0.9839. For convenience, we set t=year-1790 (figure 2). Thus we have 
k≈0.02238 as the estimated value of the intrinsic growth rate. On the other hand, we could estimate the original 
rate of growth k value by equation (15): one is k1=b-a≈0.03615-0.02584=0.01031, and the other is 
k2=d-a≈0.05044-0.02584=0.02460. The intrinsic growth rate should come into between k1=0.01031 and 
k2=0.03615 and indeed it does. The parameter values estimated from the dynamical system model, equation (15), 
are similar to that from the logistic model, equation (16). There are some differences between different estimated 
results due mainly to three factors. The first is non-closed region, the second imprecise data, and the third the 
computation error resulting from transformation from continuous equation to discrete expression. 
For comparison and selection, we also fit the American rural and urban data to the discretization of the 
predator-prey interaction model. Let r(t), u(t) and r(t)*u(t) be independent variables and ∆u(t)/∆t or ∆r(t)/∆t 
dependent variables. The multivariable stepwise regression based on least squares computation gives an 
abnormal result, which cannot be accepted. If we loosen the requirements, then the American urbanization 
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process could be expressed with the Keyfitz model. However, this mathematical expression has two vital 
shortcomings, which defies us to accept the Keyfitz model for the US urbanization. In short, neither the linear 
Keyfitz-Rogers model nor the usual non-linear Lotka-Volterra model is as good as the United Nations model in 
terms of logic sense and statistic effect (Appendix 2).  
<Figure 2 Logistic process of the US level of urbanization (1790-2000)> 
<(Note: The solid points are the data from 1790 to 1960, and the hollow points the data from 1970 to 2000)> 
We can generate the data of American urban, rural and total population and the urbanization level by using 
discrete dynamics model, and then draw a comparison between the simulation value and observed data. Figures 
3 and 4 respectively show the simulation results based on equations (15). It is easy to see that the change of the 
urban and total population approximately follow the path of the S-curve, while the rural population first 
increases, then decreases, and finally turns itself into the urban population completely (figure 3). Moreover, the 
level of urbanization increases in the logistic way (figure 4). The changing trend of the numerical simulation 
results displayed in figures 3 and 4 is roughly coincident with the actual observation data (figures 1 and 2). 
Although it is unpractical that the saturation value of the urbanization level is 100%, the characters of 
evolvement of the urban and rural population reflected by the discrete dynamical model, i.e., equation (15), 
comply with logic rules well. The total population converges, and the change of the percentage urban conforms 
to the logistic curve. 
To sum up, the American model of urban-rural population interaction can be expressed by equation (2) but the 
parameter c=0. This is the experimental foundation of theoretical analysis of discrete urbanization dynamics. So 
far, we have finished the building work of the model of urbanization based on the population observation in the 
real world. In the following section, we will discuss the complicated behaviors of the above model of 
urbanization dynamics in the possible world in theory. 
<Figure 3 Numerical simulation curve of rural, urban, and total population in the American urbanization 
process> 
< (Notes: The numerical simulation results are based on the discrete dynamical equations of urbanization, 
equation (15), the unit of population is taken as 10,000 persons.)> 
<Figure 4 Numerical simulation curve of American urbanization level (1790-2400)> 
< (Notes: The numerical simulation based on equation (15). The saturation value is 1. The curve is identical in 
shape to that of logistic growth indicated by equation (16))> 
4. Complex behaviors of urbanization dynamics 
One of the purposes of this work is to prepare for revealing the essence of complicated behaviors of simple 
models. The discrete equations of two-population interaction between urban and rural systems can exhibit all the 
complex dynamics arising from the logistic map, including period-doubling bifurcation and chaos. Chaos theory 
is a field on the random behavior and latent order of certain dynamical systems, which are highly sensitive to 
initial conditions (Malanson, et al, 1990). Chaos is often defined as intrinsic unpredictability of deterministic 
systems. In other words, a difference equation is regarded as a chaotic system if the solution to the equation is 
sensitively dependent on its initial conditions.  
The discrete urban-rural interaction model can show richer details of complicated behaviors than what the 
logistic map does, and especially, it can offer a new way of looking at complex dynamics of simple mathematical 
models. According to equation (15), the parameter c=0, thus equation (8) can be reduced to 
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where the intrinsic rate of growth is k=b-a. The discretization of equation (17) is a finite-difference equation 
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Defining a new variable xt=kLt/(1+k), we can turn equation (18) into the familiar parabola, i.e., a 1-dimension 
map xt+1=(1+k)xt(1-xt). 
As we know, according to May (1976), the quadratic map can present periodic oscillation and even more 
complicated chaotic behaviors under certain conditions. Since equation (17) is derived from equation (2), the 
behavior characters of equation (18) should be able to be produced by the discretization of equation (2). For 
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testing this hypothesis, we can perform some numerical simulation experiment by using equation (2), which can 
be discretized as a 2-dimension map 
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The conversion between differential equation and difference will result in some subtle change of parameter 
values. But for simplicity, we don’t modify the parameter symbols after converting equation (2) into equation 
(19). The numerical solutions of equation (19) shows that when the difference between b and a increases (please 
notice k=b-a), the growth curve of urbanization level Lt indeed changes from simplicity to complexity, from S 
shape to periodic oscillation and even to chaos. In short, all the behaviors of logistic map revealed by May (1976) 
can be exhibited by the discrete two-population interaction model (Figure 5).  
<Figure 5 Four types of changes of urbanization level by urban-rural interaction model: from fixed state to 
chaos> 
<(Notes: The parameter values are taken as a=0.025, c=0. In order to correspond to the logistic model, we make 
b=d. The initial urban and rural population values are based on the US census in 1790, i.e., r(0)=r0=3,727,559, 
u(0)=u0=201,655. It is easy to see that the numerical simulation results from the two-population interaction 
model are identical in curves to those from the logistic model by May in 1976)> 
As a matter of conciseness, we may as well set b=d based on the theoretical hypothesis. According to the 
estimated results of the US urbanization model, let a=0.025 and c=0. In addition, the US census data in 1790 are 
taken as the original urban and rural population values. Then, we increase the value of b and d continually. The 
numerical simulation result shows that when b=d<1.31, the urbanization level presents the S-shaped curve 
growth, i.e. a fixed state curve; when b=d>2.025 (k=b-a>2), the dynamical system comes into 2-period 
oscillation state; when b=d>2.475 (k=b-a>2.45), the system takes on 4-period oscillation state; then the system 
will fall into 8, 16, and 2n-period state as the values of b and d increase (n is a positive integer); when b=d>2.6 
(k=b-a>2.575), the system will perform random period or chaotic state. The growing limit of parameters is 
b=d=3.03. Compared with the work of May (1976), the period-doubling bifurcation route to chaos of the discrete 
urban-rural interaction model is identical in patterns to that of the logistic map. Of course, there might be subtle 
difference sometimes. Why the 2-dimension map exhibits the same complex dynamics with that arising from the 
1-dimension map? Maybe the two-population interaction model poses a new question about the essence of chaos 
(Figure 6). 
<Figure 6 A 1-dimension map and a 2-dimension map reach the same goal by different routes> 
Further, if we ignore the connection between the urban-rural interaction model and the logistic equation by 
permitting b≠d, then the behavior features of the dynamical system will become much richer. When we fix a, c, 
and d, the system will exhibit periodic oscillation or even chaos; however, when we fix b, the behavior 
characters of the system do not change along with the changes of the other parameters. It is obvious that the key 
parameter that determines the system behavior is b, or strictly speaking, is the difference between a and b. In 
detail, for instance, let’s consider a=0.025, c=0, and d=0.05 according to the aforementioned empirical analysis. 
The curve of the urbanization level changes along with b is in the same way with the result based on b=d, but the 
critical values of the period-doubling bifurcation route to chaos increases. 
Under the circumstances, when the system comes into the chaotic state, it still presents periodic oscillation. 
However, the period is not only a multiple of 2 any more, but a random integer. For example, when b=3.2, 
system will enter into period 5 state (figure 7). More experimental results show that system will present period 3 
or period 6 in the chaotic state. This illustrates the well-known Sharkovsky’s theorem, and remind us of Li and 
Yorke (1975)’s discovery. The proposition “period three implies chaos” can be expressed equivalently as “period 
any number beyond 2-multiple implies chaos”. 
<Figure 7 Period 5 oscillation of urbanization level: a special chaotic state> 
<(Note: The parameter values are such as a=0.025, b=3.2, c=0, d=0.05)> 

Based on the above simulation analysis, we can reach conclusions as follows. First, the key element of the 
urbanization process lies in rural population rather than urban population. According as the dynamical model of 
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urbanization for America, the non-linear term of urban-rural interaction connects the city on one end and the 
village on the other. It is the difference of parameters a and b that dominates the behavior features of the 
urbanization dynamics. This implies that it is the rural region and urban-rural interaction that determine the 
progress of urbanization. Secondly, only when b=d, there is strict mathematical relation between the urban-rural 
interaction model and the logistic equation. On the one hand, the logistic model parameter derived by 
mathematics is k=b-a, whose value controls the behavior characters of the logistic map; on the other, numerical 
simulation shows that it is the value of (b-a) that determines the behavior of the urban-rural interaction model. 
Evidently, the precondition of connecting the urban-rural interaction model with the logistic equation is b=d. 
Third, the periodic oscillation and chaotic behavior of urban-rural interaction maybe only belong to the results of 
the sheer theoretical analysis. As we know, since the number of the urban and rural population can not be 
negative in reality, namely r(t)≥0 and u(t)≥0, it is certain that L(t)≤1 in terms of equation (3). However, if the 
dynamic system exhibits periodic oscillation or even chaotic behavior, the simulation value of the rural 
population will be negative, namely r(t)<0. Thus the numerical simulation shows the abnormal phenomenon of 
urbanization ratio L(t)>1 (see figures 7). Actually, this case is impossible. So period-doubling bifurcation and 
chaos of urbanization seem not to happen in the real world, it only appears in the imaginary world as a 
theoretical product (Chen, 2009). 
For the sake of understanding the essence of complex dynamics, let’s implement a simple mathematical 
transformation. Removing the nonlinear terms indicating interaction in equation (2) yields 
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The difference between the growth rates of the urban and the rural population is as follows 
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Taking equation (7) into consideration, we have 
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Thus equation (22) can be transformed into a logistic equation 
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Although equation (20) also leads to logistic equation, the dynamical patterns of the linear differential equations 
are very simple. The numerical simulation based on the discretization of equation (20) shows no periodic 
oscillation, say nothing of chaos. This suggests that complicated dynamics such as period-doubling bifurcation 
and chaos coming from the logistic map is in fact rooted in interaction associated with nonlinearity. 
An allometric scaling relation between urban population and rural population can be derived from equation (20) 
such as 

σηηη )()()()( // trtrtrtu ru DDab === ,                      (24) 

in which η=u0r0
-b/a is a proportionality coefficient, and here r0 and u0 denote the initial values of rural and urban 

population respectively. Apparently, the allometric scaling exponent σ is given by 

r

u

D
D

a
b
==σ ,                                    (25) 
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where Du refers to the fractal dimension of urban population, and Dr to the fractal dimension of rural population. 
This suggests that the logistic equation and the related transformation may be the mathematical link between the 
chaos and fractals of urban evolvement. 
Another interesting discovery is that the logistic equation comes between the exponential growth models 
indicating simplicity, equation (20), and the two-population interaction model indicating complexity, equation 
(2). This reminds us that the logistic model maybe implies a mathematical transform between simple expressions 
and complex dynamics. As space is limited, it is impossible to make all these questions clear here and the 
pending questions will be discussed in future reports. 
5. Conclusions 
Urbanization is a complex process of spatial dynamics with two-population interaction. The mathematical model 
based on the US observation data can be proposed to describe the nonlinear evolvement. From the urban-rural 
interaction model, we can strictly derive the logistic equation about level of urbanization. As logistic growth 
exists widely in the nature and human society, the two-population interaction model may reflect a kind of 
ubiquitous dynamical systems. Therefore, some research conclusions can be generalized to other fields, 
including ecology, economics, and geology. Furthermore, since the logistic model is related to chaos, this implies 
that the process of urbanization has the potential possibility to bear periodical oscillation and chaotic behavior. 
Accordingly, the urban-rural nonlinear interaction models could help us better understand the urban system by 
chaos theory, and meanwhile comprehend more the nature of chaos by urban evolution. The main conclusions of 
this article are summarized as follows. 
First, the urban-rural population interaction model can exhibit periodical oscillation and chaotic behavior in 
theory. The period-doubling bifurcation diagram route to chaos is identical in patterns to that from the logistic 
model in ecology. This provides us a new perspective to understand the complicated dynamics of simple systems. 
The numerical simulations show that the urban-rural population interaction model can exhibit 2-period 
oscillation, 4-period oscillation, …, 2n-period oscillation, and finally chaos, along with the change of parameter 
values. The changing regularity reminds us of the logistic map. Further research suggests that the discrete 
two-population interaction model can tell us more about the complex systems than what the logistic model does. 
Secondly, complicated dynamics such as period-doubling bifurcation and chaos result from interaction instead of 
sheer logistic processes. The logistic model on the level of urbanization can be derived not only from urban-rural 
population interaction models, but also from the allometric equations of rural and urban population growth. 
However, the behavior patterns of the exponential growth models are very simple. In other words, periodical 
oscillation and chaotic behaviors can never be generated by means of the exponential growth equations. This 
implies that no complicated dynamics appears without interaction between rural and urban population. 
Thirdly, the logistic equation may possibly form a mathematics transform relation between simplicity and 
complexity, which provide us a new way to look at complexity. As indicated above, the logistic model can be 
derived from the urban-rural interaction models or from a pair of exponential equations. This suggests that the 
logistic equation may act as the mathematical transform from the nonlinear interaction models to the simple 
linear equations. Such a relation may become a bridge connecting simplicity and complexity. In particular, if 
such transform can be testified to have universal property, it can be developed into a fire-new logistic transform 
method. If so, the transform will probably associate the unanalysable nonlinear equation with simple rules and 
take the opportunity to solve some long-standing unanalysable nonlinear problems. 
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Appendices 
A.1 Regression analysis results of the US urbanization model 
The regression analysis results of the US model of urbanization based on the least squares computation are 
tabulated as follows (Table A1, Table A2). The contents include ANVOA summary, estimated values of model’s 
coefficients and related statistics. 
<Table A1 ANVOA summary of the US urbanization model (case 1)> 
<Table A2 Coefficients and related statistics of the US urbanization model (case 1)> 
When we take the rate of growth of the rural population as dependent variable, a least squares computation 
yields the following alternative model 
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If this model is employed to describe the growth of the rural population, the saturation value of the urbanization 
ratio will be less than 1, which tallies with the actual situation better. However, this model gives rise to two 
problems. First, the model cannot avoid multi-collinearity, which could be detected from the VIF value in Table 
A2. Second, based on the model, the total population will not converge but increase infinitely. 
A.2 Regression analysis results based on the Lotka-Volterra model 
The multivariable stepwise regression based on least squares computation gives the following expressions 
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The first equation has serious problems. Firstly, the estimated values of the parameters cannot pass logical test. 
The coefficient of the linear term, u(t) should be positive, but here it is negative. The physical meaning of the 
negative coefficient is inexplainable. What is more, the coefficient of the non-linear term, i.e., the cross term, 
r(t)u(t), should be negative, indicating that the urban-rural interaction can transform the rural population into the 
urban population, but it is positive here. This conflicts with the symbol of the non-linear term of the second 
equation, in which the coefficient value of the cross term is positive, too.  
Secondly, some values fail to pass the statistic test either. VIF value is far more than 10, which implies that there 
exists serious multi-collinearity between the three independent variables. If we eliminate the non-linear term, 
then new problems will rise. The test of serial correlation of residual errors can not be acceptable (DW=1.082), 
and the symbol problem of the linear term u(t) remains unresolved. If we further remove the linear term u(t), 
then the DW value will decrease to 0.527, which is more unacceptable (Table A3, Table A4). This suggests that 
the variables are insufficient, or the serial correlation is serious, either of which is against the basic rules of 
regression modeling. As for the second equation, nothing seems wrong statistically, but it cannot be understood 
in logic. According to this equation, the rural population will automatically flow into cities without the 
urban-rural interaction and the urban population will increase without any relation to itself.  
<Table A3 ANVOA summary of the US urbanization model (case 2)> 
<Table A4 Coefficients and related statistics of the US urbanization model (case 2)> 
If we loosen the requirements, then the American urbanization process could be expressed with the Keyfitz 
model such as 
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This mathematical expression has two vital shortcomings. The first is the logical problem. According as the 
model, urban population, rural population and the total population will increase exponentially without any limit, 



www.ccsenet.org/jgg                  Journal of Geography and Geology             Vol. 2, No. 1; September 2010 

Published by Canadian Center of Science and Education 13

which is against our common sense. The second is the statistic problem. That is, the second equation can not pass 
the DW-test (Table A3, Table A4).  
 
Table 1. The US rural and urban population and the related data (1790-1960) 

Time 
(year) 

[t] 

Interval 
(years) 

[∆t] 

Rural 
population 

[r(t)] 

Urban 
population

[u(t)] )()(
)()(
tutr

tutr
+

Rural rate 
of growth 

[∆r(t)] 

Urban rate 
of growth 

[∆u(t)] 

1790 10 3727559 201655 191305.67 125855.30 12071.60
1800 10 4986112 322371 302794.21 172831.00 20308.80
1810 10 6714422 525459 487322.03 223077.60 16779.60
1820 9.8125 8945198 693255 643391.97 284153.58 44228.48
1830 10 11733455 1127247 1028443.23 348484.30 71780.80
1840 10 15218298 1845055 1645549.78 439908.20 172944.10
1850 10 19617380 3574496 3023569.39 560942.30 264202.20
1860 10 25226803 6216518 4987478.10 342920.70 368584.30
1870 10 28656010 9902361 7359287.97 740346.40 422737.40
1880 10 36059474 14129735 10151800.00 481402.70 797653.00
1890 10 40873501 22106265 14346837.12 512383.50 810856.70
1900 9.7917 45997336 30214832 18235956.49 425582.20 1210127.90
1910 9.7917 50164495 42064001 22879255.97 163788.26 1244862.74
1920 10.25 51768255 54253282 26490822.68 221831.22 1454372.39
1930 10 54042025 69160599 30336844.29 341720.60 554473.90
1940 10 57459231 74705338 32478532.68 373837.30 1542285.60
1950 10 61197604 90128194 36448706.03 506197.80 2293539.90
1960 10 66259582 113063593 41776788.81  

Source: http://www.census.gov/population. 

 
Table A1. ANVOA summary of the US urbanization model (case 1) 

Dependent 
variable 

Model Independent 
variable 

R2 Std. Error of 
the Estimate 

Durbin- 
Watson 

F P-value 
(Sig.) 

∆r(t) 1 r(t) 0.682 233020.670 0.527 34.383 2.399E-05 

2 r(t), r(t)u(t)/P(t) 0.873 152286.817 1.472 51.482 1.917E-07 

3 r(t), r(t)u(t)/P(t), u(t) 0.946 102505.113 3.116 82.122 3.986E-09 

∆u(t) 1 r(t)u(t)/P(t) 0.905 295964.057 1.756 152.865 1.333E-09 
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Table A2. Coefficients and related statistics of the US urbanization model (case 1) 

Dependent  
variable 

Model Independent  
variable 

Regression 
Coefficients 

Std. Error t  P-value  
(Sig.) 

VIF 

∆r(t) 1 r(t) 0.00908 0.00155 5.864 2.399E-05 1 

2 r(t) 0.02584 0.00368 7.026 4.100E-06 13.201
r(t)u(t)/P(t) -0.03615 0.00763 -4.739 2.635E-04 13.201

3 r(t) 0.04128 0.00431 9.572 1.602E-07 40.048
r(t)u(t)/P(t) -0.14059 0.02444 -5.753 5.000E-05 299.145
u(t) 0.03419 0.00782 4.371 6.393E-04 145.326

∆u(t) 1 r(t)u(t)/P(t) 0.05044 0.00408 12.364 1.333E-09 1 

 
Table A3. ANVOA summary of the US urbanization model (case 2) 

Dependent  
variable 

Model Independent  
variable 

R2 Std. Error of 
 the Estimate 

Durbin- 
Watson 

F P-value  
(Sig.) 

∆r(t) 

1 r(t) 0.682 233020.670 0.527 34.383 2.399E-05

2 r(t), u(t) 0.819 181628.502 1.082 33.965 2.694E-06

3 
r(t), u(t),  
r(t)u(t) 

0.889 147333.597 2.225 37.343 6.232E-07

∆u(t) 

1 r(t) 0.887 322617.571 1.402 126.115  5.344E-09

2 r(t), r(t)u(t) 0.919 282511.849 1.913 85.165  6.473E-09

3 r(t), u(t) 0.914 290705.035 1.897 80.015 9.939E-09

 
Table A4. Coefficients and related statistics of the US urbanization model (case 2) 

Dependent  
variable 

Model Independent  
variable 

Regression 
Coefficients 

Std. Error t  P-value  
(Sig.) 

VIF 

∆r(t) 

1 r(t) 0.00908 0.00155 5.864 2.399E-05 1

2 
r(t) 0.01854 0.00306 7.026 2.168E-05 6.413 
u(t) -0.00980 0.00291 -4.739 4.237E-03 6.413 

3 
r(t) 0.03166 0.00507 9.572 2.152E-05 26.806 
u(t) -0.07763 0.02299 -5.753 4.520E-03 607.776 
r(t)u(t) 1.011E-09 3.410E-10 4.371 1.022E-02 419.272 

∆u(t) 

1 r(t) 0.02409 0.00214 11.230 5.344E-09 1

2 
r(t) 0.01567 0.00395 3.967 1.241E-03 4.424 
r(t)u(t) 1.62657E-10 6.716E-11 2.422 2.858E-02 4.424 

3 
r(t) 0.01433 0.00489 2.928 1.038E-02 6.413 
u(t) 0.01011 0.00466 2.169 4.654E-02 6.413 
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Figure 1. The changing trend of the US urban, rural and total population (1790-2000) 
(Notes: The solid points are data from 1790 to 1960; the hollow points are data from 1970 to 2000. The 

definition of the city after 1960 is different from before, but the two calibers generally fit with each other.) 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Logistic process of the US level of urbanization (1790-2000) 
(Note: The solid points are the data from 1790 to 1960, and the hollow points the data from 1970 to 2000) 
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Figure 3. Numerical simulation curve of rural, urban, and total population in the American urbanization process 

(Notes: The numerical simulation results are based on the discrete dynamical equations of urbanization, equation 
(15), the unit of population is taken as 10,000 persons) 
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Figure 4. Numerical simulation curve of American urbanization level (1790-2400) 
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       a. Logistic growth (b=c=0.25)               b. Two-period oscillation (b=c=2.25) 
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  c. Four-period oscillation (b=c=2.55)                d. Chaotic state (b=c=2.85) 

Figure 5. Four types of changes of urbanization level by urban-rural interaction model: from fixed state to chaos 
(Notes: The parameter values are taken as a=0.025, c=0. In order to correspond to the logistic model, we make 
b=d. The initial urban and rural population values are based on the US census in 1790, i.e., r(0)=r0=3,727,559, 

u(0)=u0=201,655. It is easy to see that the numerical simulation results from the two-population interaction 
model are identical in curves to those from the logistic model by May in 1976) 
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Figure 6. A 1-dimension map and a 2-dimension map reach the same goal by different routes 
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Figure 7. Period 5 oscillation of urbanization level: a special chaotic state 
(Note: The parameter values are such as a=0.025, b=3.2, c=0, d=0.05) 

 

 

 

1-dimension map 2-dimension map 

Logistic model Two-population 
interaction model 

Complex dynamics: period-doubling 
bifurcation and chaos 

Interaction determines complex behavior


