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Abstract 

Backgrounds: We reported that feeding 5% Asperagillus awamori-fermented burdock root diet was effective in 
preventing mouse hyperglycemia caused by alloxan.  

Methods: Diets containing 5% burdock roots were prepared from raw and Asperagillus awamori-fermented 
burdock root powders. Acatalasemic mice, having a quite low catalase activity in blood, and normal mice were 
fed these diets for 14 weeks, separately. Then, alloxan (200 mg/kg of body weight) or PBS was intraperitoneally 
administrated to each mouse. After 5 day from the administration, blood glucose assay and glucose tolerance test 
were carried out, and then insulin, C-peptide and lipid peroxide in plasma were examined.  

Results: Incidences of hyperglycemia in normal mice fed control, raw and fermented burdock root diets were 25, 
20 and 11%, respectively, and these in acatalasemic mice were 73, 80 and 27%. Insulin and C-peptide in plasma 
of mice fed raw burdock root diet or control diet were low compared to mice fed the fermented diet.  

Conclusions: Intake of raw burdock root does not suppress the alloxan-induced hyperglycemia but the 
fermented burdock root does. It is suggested that Asperagillus awamori plays an important role for the 
prevention. 
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1. Introduction  

Diabetes mellitus is a syndrome characterized by hyperglycemia, more than a desirable level of glucose in blood 
(Taylor, 1995). The morbidity causes blindness, renal failure and amputation, and diabetes is a worldwide 
disease and one of the major causes of death. Alloxan is a diabetogenic drug for animals, and alloxan with 
reducing agents in the body generated reactive oxygen species. These species cause oxidative stress and 
selectively injure β-cells in the pancreas so as to cause hyperglycemia as like diabetes Type 1 (Szkudelski, 2001; 
Lenzen, 2008). In order prevent this hyperglycemia, many researchers challenged to find (or pursue) 
anti-hyperglycemic compounds or products (Oloyede, Bello, Ajiboye, & Salawu, 2015; Perumal, Anaswara, 
Muthurama, & Krishan, 2014). We noticed that Japanese burdock root, Artium lappa, is edible in Korea and 
Japan and contains a considerable amount of polyphenols such as chlorogenic acid, caffeoylquinic acid, 
hydroxycinnamoylquinic acids and related compounds (Maruta, Kawabata, & Niki, 1995; Lin & Harnly, 2008), 
and investigated the effect of Aspergillus awamori-fermented burdock root on hyperglycemia. When mice were 
fed the Aspergillus awamori-fermented diet, hyperglycemia induced by alloxan was ameliorated (Takemoto, Doi, 
Zukeran, Inoue, Ishihara, & Masuoka, 2014) like as the intake of antioxidants. However, it is unclear whether 
raw burdock root is able to modulate alloxan-induced mouse hyperglycemia. In this study, we examined 
antioxidant activity of raw and the fermented burdock root powders and the effect of raw burdock root diet on 
alloxan-induced mouse hyperglycemia. 

2. Materials and Methods  

2.1 Materials 

Male mice of the C3H/AnL CSaCSa (normal) and C3H/AnL CSbCSb (acatalasemia) strains established by 
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Feinstein, Braun, and Howard (1967) were used. Animal experimental procedure was approved by the Ethics 
Review Committees for Animal Experimentation of Okayama University of Science. Mice were bred and 
maintained on a laboratory diet (CE-2 diet, Clea Japan, Tokyo) and water ad libitum until the start of the 
experiments. Catalase activity in the mouse erythrocytes was measured according to previous method (Masuoka, 
Wakimoto, Ubuka, & Nakano, 1996) and calculated as the difference between the hydrogen peroxide removal 
rate by hemolysate and the rate (0.73 μmol/s/g of hemoglobin) by hemoglobin (Takemoto, Tanaka, Iwata, 
Nishihara, Ishihara, Wang, Ogino, Taniuchi, & Masuoka 2009). Raw and fermented burdock root powders were 
prepared by Ahjikan Co. Ltd (Hiroshima, Japan) from burdock roots (harvested in Japan). Burdock roots were 
cut into small pieces and then dried using air drying oven at 50 ºC for 4 hrs (raw burdock root powders). The 
dried pieces were mixed with an equal amount of water and 0.1% Aspergillus awamori spores (final 
concentration, w/w) and the mixture was fermented at 35 ºC for 40 hrs (Aspergillus awamori-fermented burdock 
root powders) (Okazaki, Sitanggang, Sato, Ohnishi, Inoue, Iguchi, Watanabe, Tomotake, Harada, & Kato, 2013). 
Control diet was AIN-93M (Reeves, Nielson, & Fahey, 1993) and each burdock root diet contained 5% burdock 
root powders was prepared according to the composition, which was indicated in Table 1. Pellets of these diets 
(1.3 cm) were prepared and stored at -20 ºC until use. 

 

Table 1. Composition of diets (%, w/w) 

Component Control diet Raw burdock root diet Fermented burdock root diet 

Corn starch 46.5692 41.5692 41.5692 

Milk casein 14.0 14.0 14.0 

α-Corn starch 15.5 15.5 15.5 

Sucrose 10.0 10.0 10.0 

Soybean oil 4.0 4.0 4.0 

Cellulose powders 5.0 5.0 5.0 

Mineral mixture (AIN-93M) 3.5 3.5 3.5 

Vitamin mixture (AIN-93VX) 1.0 1.0 1.0 

L-Cystine 0.18 0.18 0.18 

Choline 0.25 0.25 0.25 

t-Butylhydroxyquinone 0.00008 0.00008 0.00008 

Dried burdock root powders 0.0 5.0 0.0 

Fermented burdock root powders  0.0 0.0 5.0 

Total (%) 100.0 100.0 100.0 

Control diet is AIN-93M diet. Raw burdock root diet is 5% raw burdock root diet. Fermented burdock root diet is 
5% Aspergillus awamori-fermented burdock root diet. 

 

2.2 Antioxidant Activity in Raw and Aspergillus awamori-Fermented Burdock Root Powders 

2.2.1 Extraction of Raw and Fermented Burdock Root Powders 

Five gram of each burdock root powders was extracted five-times with 25 mL of aqueous 50% methanol for 1 h. 
The extracts were gathered and evaporated at 40 ºC. The residue was dissolved with 10 mL of 50% methanol in 
water, and the solution was used as sample. 

2.2.2 Radical Scavenging Activity on DPPH 

Sample (0.03 mL) was added to the mixture consisted of 1.00 mL of 100 mM acetate buffer (pH 5.5), 1.87 mL 
of ethanol and 0.10 mL of ethanolic solution of 3 mM DPPH at 25 C. The absorbance at 517 nm (DPPH, 
=8.32 × 103) was recorded for 20 min (Blois, 1958). From decrease of the absorbance, scavenging activity was 
calculated and expressed as scavenged DPPH molecules per 1.0 g of powders. 

2.2.3 Determination of Polyphenol Contents 

Polyphenol contents in samples were determined by the method reported by Naser, Ayed and Metche (1996). 
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Sample (0.2 mL) was added to the mixture of 0.2 mL of Folin-Ciocalteau’s phenol regent and 4 mL of water, and 
the mixture was reacted 8 min. Then, 0.6 mL of 7% sodium carbonate aqueous solution was added to the mixture, 
and the mixture was reacted at 40 C for 30 min. Absorbance at 570 nm was recorded. Gallic acid was used as 
standard compound, and polyphenol content was expressed as amounts of gallic acid. 

2.3 Animal Experiments 

Acatalasemic mice (n=48) and normal mice (n=48) were used at the age of 14 to 15 weeks old (body weight was 
between 25 and 36 g) and were housed in a group of four. Acatalasemic and normal mice were divided into three 
kinds of diet groups, respectively. Control diet, raw and fermented burdock root diets were fed ad libitum for 14 
weeks. Then, each diet group further divided two groups. Alloxan (200 mg/kg of body weight) was 
intraperitoneally administrated using 0.106 M alloxan in phosphate buffered saline (PBS) to each mouse in a 
group (Kamimura et al., 2013), and the same volume of PBS was injected to each mouse in another group as 
control. Mice in each group were maintained on the same diet for one more week. After five days from alloxan 
(or PBS) administration, mice were fasted for 20 hrs, and blood glucose assay and glucose tolerance test (GTT) 
were carried out. After 2 days from the assay and GTT, mice were fasted for 20 hrs and were killed. Under 
diethyl ether anesthesia, each mouse blood was collected in test tube containing heparin as the anticoagulant 
from heart. Then, pancreas in each mouse was isolated, and the sections were prepared for microscopic studies. 
Blood was centrifuged and the plasma was isolated. Oxidative stress marker, as well as the insulin and C-peptide 
levels in plasma, was examined. 

2.4 Assay of Blood Glucose 

After fasting for 20 hrs, glucose content in the blood obtained from the tail was determined. As the blood volume 
for the determination of blood glucose was quite small (approximately 2 μL), the glucose contents in blood were 
measured with a “Glucose-Test-Ace R” apparatus (Sanwa Kagaku Kenkyusho Co., Nagoya, Japan) applying a 
glucose oxidase method.  

2.5 Glucose Tolerance Test (GTT) 

After fasting for 20 hrs, a forty percent aqueous glucose solution (5 mL/kg of body weight) was intraperitoneally 
administered to each mouse (Gao et al., 2007). At 0 and 30 min before and 15, 30, 60, 90 and 120 min after the 
administration, glucose contents in the blood were measured. 

2.6 Measurement of Lipid Peroxide in Plasma 

Lipid peroxidation in plasma was determined using a Bioxytech LPO-586 KIT (OXIS Health Products Inc, CA, 
USA). Malondialdehyde and 4-hydroxyalkenals as products of lipid peroxidation were reacted with 
N-methyl-2-phenylindole at 45 °C. The absorbance at 586 nm was recorded. Values of lipid peroxide in blood 
were calculated as malondialdehyde. 

2.7 Determination of the Insulin and C-peptide Levels in Blood 

The insulin and C-peptide plasma levels were determined using Mouse Insulin and C-peptide ELISA KITs 
(U-type) (Shibayagi Co. Ltd., Gunma, Japan). Each determination was carried out according to the 
manufacturer’s instructions. Biotin-conjugated anti-insulin antibody (45 μL) was added to each well in an 
antibody-coated 96-well plate. To the well, 5 μL of the sample or standard solution was added and reacted for 2 
hrs. Then 50 μL of peroxidase-conjugated avidin solution was added and reacted for 30 min. Chromogenic 
substrate solution (50 μL) was added and reacted for 30 min. The reaction was stopped and the absorbance at 
450 nm (sub-wave length, 620 nm) was recorded. 

2.8 Microscopic Studies of Pancreatic Tissues in the Mice Treated With Alloxan 

Isolated pancreatic tissues were fixed in Bouin's fluid and embedded in paraffin. Serial sections (6 μm) were cut 
from each paraffin-embedded tissue block, and several sections were stained with hematoxylin-eosin and mouse 
anti-insulin antibody (Santa Cruz Biotechnology) using the Vectastain Elite ABC Rabbit IgG Kit for 
visualization by light microscopy. The islets and other cells were recorded with a FX380 CCD Camera and a 
microscope (Olympus, Tokyo, Japan).  

2.9 Statistical Analysis 

Student's t-test (unpaired) was used to evaluate the statistical significance of difference. The difference was 
considered significant when p < 0.05. 
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radical species induced with alloxan. Recently, El-Deep et al. (2014) reported that intake of Asperagillus 
awamori of chickens under high ambient temperature improved the growth and induced increase of α-tocopherol 
(vitamin E) level in their muscles. As intake of vitamin E improved mouse hyperglycemia caused by alloxan 
(Kamimura et al., 2013), further study is currently underway.  

5. Conclusion 

Japanese burdock root is taken as a vegetable in Japan. Raw burdock root does not indicate anti-hyperglycemia 
caused by oxidative stress but the product fermented with Asperagillus awamori indicates anti-hyperglycemia 
activity. It is deduced that intake of the fermented burdock root product is useful in preventing hyperglycemia 
caused by oxidative stress. 
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