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Abstract 

A single-screw laboratory extruder was used to conduct an L18 (22  36) Taguchi fractional factorial study of 
aquafeed processing. The ingredients were based on a formulation for nutritionally-balanced Nile tilapia diets 
containing distillers dried grains with solubles (DDGS) and soybean meal as the main protein sources, in 
addition to constant amounts of corn flour, whey, and fishmeal. The effects of three levels of DDGS (20, 30 and 
40%), soybean meal (30, 40 and 50%), ingredient moisture content (20, 30 and 40% db), screw speed (100, 150 
and 200 rpm), die dimension (L/D ratios of 5, 9 and 13), barrel temperature (80-100-100°C, 80-120-120°C and 
80-140-140°C) and two levels of screw configuration (compression ratios of 2:1 and 3:1) on extrudate physical 
properties (moisture content, water activity, bulk density, unit density, expansion ratio, pellet durability index, 
water absorption and solubility indices, water stability, color) and extruder processing parameters (resulting 
temperatures, die pressure, extruder torque, mass flow rate, apparent viscosity, and specific mechanical energy) 
were determined. Data from raw materials, processing conditions, and extrudate properties were used to develop 
surface response curves and equations. However, predominantly low R2 values (< 0.5) only permitted linear 
relationships between some independent parameters and response variables. Regarding main effects, die pressure 
significantly decreased with higher DDGS levels, moisture content, temperature, lower die L/D, and higher 
screw compression. Expansion ratio decreased significantly with higher moisture content and lower die L/D. 
Significant differences in color were caused by changes in DDGS levels and moisture content. In summary, 
DDGS, moisture content, die dimension, and extrusion conditions had the biggest impact on most of the 
extrudate physical properties and processing conditions. Different combinations of these independent factors can 
be used to achieve desired extrudate physical properties and processing conditions. 

Keywords: alternative protein, aquaculture, extrusion, modeling, physical properties 

Abbreviations: DDGS: Distillers dried grains with solubles 

1. Introduction 

Depletion of wild fisheries, combined with rising demands for seafood products for human foods, has led to 
increased aquaculture production during the last several decades. Depending upon the species and maturity, fish 
have high dietary protein demands of up to 55% (NRC, 1993). Fish meal is one of the main protein sources used 
in aquatic feeds; because of good amino acid balance, high palatability, and growth performance, continually 
increasing demand for the limited supply of wild fish has steadily increased fish meal prices. For example prices 
for fish meal for July 2010 were above $1370 per ton, compared to $600 per ton for July 2005 (USDA, 2010). 
For certain fish species, feed costs alone can represent up to 70% of the total production cost for an aquaculture 
operation (Webster & Lim, 2002; Metts et al., 2007). Protein accounts for the major feed cost. Studies have 
shown that less expensive alternative protein sources can, at least partially, replace fish meal, satisfy protein 
demands, and result in good growth performance. These alternatives include various animal and plant sources. 
Ayadi et al. (2010) provided a comprehensive review of many of these feed ingredients. For instance, meat and 
bone meal has been used in salmonids feeds (Bureau et al., 2000). Poultry by-product meal has been used in 
commercial diets for sunshine bass and hybrid striped bass (Rawles et al., 2009; Rawles et al., 2010). Soybean 
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meal (SBM) is one of the most studied and widely used plant protein sources in commercial aquatic feeds for 
many species, such as tilapia, hybrid striped bass, rainbow trout, Atlantic salmon (Salmo salar) and sunshine 
bass (Morone chrysops × M. saxatilis) (Steffens, 1994; Thompson et al., 2008; Furuya et al., 2004; Rawles et al., 
2009). Distillers dried grains with solubles (DDGS) is another ingredient. It is the major nonfermentable 
coproduct of fuel ethanol production, and is mostly made from corn grain. Compared to other protein sources, 
such as SBM, DDGS is very competitive on a cost per unit protein basis, highly palatable to fish (Lim et al., 
2009), and does not contain anti-nutritional factors that are present in most pulses. In numerous studies, DDGS 
has been examined as a potential protein ingredient in fish feed for species such as Nile tilapia, channel catfish, 
and rainbow trout (Webster et al., 1993; Wu et al., 1996; Cheng & Hardy, 2004; Lim et al., 2007).  

Nile tilapia (Oreochromis niloticus) originated in Africa, and is one of the most important cultured fish species 
worldwide. Global tilapia production has increased exponentially within the last 30 years. For example, in 1998, 
0.7 million metric tonnes (t) of Nile tilapia were produced, compared to 2.3 million t in 2008, of which Asia has 
become the major producer (FAO, 2010). For the US market, tilapia production increased from 15,521 t in 1998 
to 81,130 t in 2008 (FAO, 2010). It is the fifth most popular seafood consumed in the US (ATA, 2010). Tilapia 
has relatively fast growth, undemanding feed conditions, and physical hardiness (Fitzsimmons, 2006). Even 
though Nile tilapia has been classified as herbivorous, it has been reported that Nile Tilapia can also feed on 
insects, algae, and potentially other fish (Njiru et al., 2004). Protein requirements depend on maturity; they can 
be up to 45% for Nile tilapia fry (El-Sayed & Teshima, 1992; Hafedh, 1999), whereas bigger fish can require 
down to 30% protein or less (Hafedh, 1999; Bahnasawy, 2009).  

Dietary components are only one aspect of fish feeding, however. The other is feed production. High quality 
aquatic feeds are commonly produced by extrusion processing, which can produce floating or sinking feeds and 
improve nutrient digestibility (Pezzato, 1999). Extrusion processing has become very popular in the feed and 
food industries due to high versatility, productivity, and product quality. Previous research by our group has 
focused on several processing aspects of DDGS-based feeds. Single-screw and twin-screw extrusion have been 
used to produce feeds for tilapia, channel catfish, yellow perch, and rainbow trout. The effects of various levels 
of DDGS inclusion, ingredient moisture content, protein content screw speed, barrel temperature, and die 
dimension, on resulting extruder processing conditions and extrudate properties have been examined 
(Chevanan et al., 2007a, 2007b, 2007c, 2008, 2009, 2010; Kannadhason et al., 2009a, 2009b, 2010; Rosentrater 
et al., 2009a, 2009b; Ayadi et al., 2011a, 2011b, 2011c). Additionally, we have used these extruded feeds in 
feeding trials to test their efficacy (Schaeffer et al., 2009, 2010). Most of these studies, however, were empirical 
and deterministic in nature. Follow-up modeling studies on extrusion can help to predict output parameters (e.g. 
extrudate properties) based on extruder processing settings and/or formulations of the raw blends. 

Extrusion cooking involves many complex processes that can be difficult to control due to interactions between 
mass, energy, and momentum transfer phenomena. Physicochemical changes impact extrudate properties, and 
can be difficult to predict (Wang et al., 2001). Some research has been conducted on modeling of extrusion 
processes and resulting product quality. For example, Meng et al. (2010) used second-order polynomial 
regression to model twin-screw extruder system parameters (feed moisture content, screw speed, and barrel 
temperature) and physical properties of chickpea flour-based snacks. A similar modeling study was 
accomplished by Ding et al. (2005) for rice-based expanded snacks. Chevanan et al. (2007c) developed neural 
network and regression models of single-screw extrusion of aquaculture feeds containing DDGS; data collected 
from different trials were combined to predict extrudate properties and extrusion processing parameters based 
on die dimensions, ingredient moisture content, barrel temperature, and screw speed. Wang et al. (2001) 
modeled twin-screw extrusion to control extrudate quality attributes. Multiple regression models were 
developed by Ganjal et al. (2004) to relate the radial expansion of extrudates to die nozzle dimensions and back 
pressure at the die for acetylated starch in a twin-screw extruder. Ali et al. (1996) developed a regression model 
to study the effects of temperature and screw speed on the radial, axial, and overall expansion, as well as bulk 
density of extruded corn grits in a single-screw extruder. 

In this study, the goal was to model the effects of various levels of DDGS, soybean meal, ingredient moisture 
content, screw speed, screw compression ratio, die dimension, and barrel temperature on resulting extrudate 
physical properties (e.g., moisture content, water activity, bulk density, unit density, expansion ratio, pellet 
durability index, water absorption and water solubility indices, water stability, and color) and on resulting 
extruder processing conditions (barrel temperature, die pressure, extruder torque, mass flow rate, apparent 
viscosity, and specific mechanical energy). 
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2. Materials and Methods 

2.1 Feed Blend Preparation 

DDGS was provided by Dakota Ethanol, LLC (Wentworth, SD) and soybean meal was obtained from 
Dakotaland Feeds, LLC (Huron, SD). Low temperature menhaden fish meal was purchased from Consumers 
Supply Distributing Co. (Huron, SD); corn flour was from Cargill Dry Corn Ingredients, Inc. (Paris, IL); dried 
whey was from Midor Ltd. (Elroy, WI). 

Six ingredient blends (Table 1) were adjusted to a target protein content of ~ 30% db, a target fat content of ~ 17% 
db, and three different moisture contents of 20, 30, and 40% db. With increasing DDGS levels (20, 30, 40% db), 
and thus decreasing soybean meal levels (50, 40, 30%), but constant levels of fish meal (approximately), corn 
flour, and whey, these ingredients were used to prepare nutritionally-balanced diets for Nile tilapia (Schaeffer et 
al., 2010; Chevanan et al., 2007b). DDGS and soybean meal were ground with a laboratory mill (Model 4, 
Thomas Scientific, Swedesboro, NJ) to a flour with an average particle size of approximately 500 micrometer 
(μm). The whey was sieved in manually (Sieve No. 14, ASTM E-11, Daigger, Vernon Hills, IL) to prevent 
coagulation within the blends. The components were then blended in a rotary mixer for 10 min (Kushlan 
Products, Inc., Goldendale, WA). After all ingredients were thoroughly combined, each blend was adjusted to 
the desired moisture content of 20, 30, and 40%, respectively, by adding adequate amounts of water, and then 
thoroughly mixed using a laboratory-scale mixer (Professional 6, KitchenAid, St. Joseph, MI). 

 

Table 1. Ingredient components (for each diet) used in the study 

 Dry weight of ingredients (g/kg)

 Diet1 Diet2 Diet3 

DDGS 20 30 40 

Soybean meal 50 40 30 

Corn flour 15 15 15 

Whey 5 5 5 

Fishmeal 10 10 10 

TOTAL 100 100 100 

 

2.2 Experimental Design and Extrusion Processing 

A L18 (2
2 36) Taguchi fractional factorial design (Table 2) was used for the study. The treatment combinations 

consisted of 18 uniquetrials, which consisted of different combinations of 2 levels of screw compression ratio 
(2:1, 3:1), 2 levels of fishmeal (9.99% and 9.98%), 3 levels of DDGS (20, 30 and 40%), 3 levels of soybean 
meal (30, 40 and 50%), 3 levels of raw blend moisture content (20, 30 and 40% db), 3 levels of screw speed (100, 
150 and 200 rpm), 3 levels of die dimension (L/D ratios of 5, 9 and 13), and 3 levels of barrel temperature 
profile (80-100-100, 80-120-120 and 80-140-140°C). 

A single-screw extruder (Model PL 2000, Brabender Plasti-Corder, South Hackensack, NJ), with a barrel length 
of 317.5 mm, was used to extrude each blend. Three different dies were used, with length to diameter (L/D) 
ratios of 5, 9 and 13. The center of the die assembly was conical, and tapered from an initial diameter of 6.0 mm 
to an exit diameter of 2.0, 3.2 or 6.0 mm, respectively, at the discharge opening. A 7.5 HP (5.5 kW) motor was 
connected to the extruder drive shaft. During extrusion, the screw speed was adjusted to 100, 150 and 200 rpm, 
respectively. For all runs, the temperature of the feed zone was controlled and maintained at 80ºC, that of the 
transition zone at 100, 120, or 140ºC, respectively, and that of the die zone at 100, 120, or 140ºC, respectively. 
The raw blends were manually funneled into the extruder in constant quantities to avoid jamming at the opening 
of the barrel and to provide a continuous feed. All processing data were collected every 60 s, and the average of 
eight (n = 8) recordings were used for statistical analyses, except for mass flow rate where three samples (n = 3) 
were used. 

2.3 Raw Ingredient Properties 

Each raw blend was analyzed for moisture content, water activity, and color (Hunter L, a, b values). Methods 
used will be discussed subsequently. 
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Table 2. Experimental design used in the study 

 Ingredient Properties Extruder Properties 

Treatment Fishmeal DDGS SBM MCraw Screw Speed Screw compression ratio Die L/D Temperature profile

  (g/kg) (g/kg) (g/kg) (g/kg) (rpm) (°C) 

1 9.98 20 30 20 100 2:1 5 80-100-100 

2 9.98 40 40 30 150 2:1 9 80-120-120 

3 9.98 30 50 40 200 2:1 13 80-140-140 

4 9.98 30 40 20 200 3:1 9 80-100-100 

5 9.98 20 50 30 100 3:1 13 80-120-120 

6 9.98 40 30 40 150 3:1 5 80-140-140 

7 9.99 20 40 40 150 2:1 13 80-100-100 

8 9.99 40 50 40 100 2:1 9 80-100-100 

9 9.99 30 30 20 150 2:1 13 80-120-120 

10 9.99 40 50 20 200 2:1 5 80-120-120 

11 9.99 30 30 30 100 2:1 9 80-140-140 

12 9.99 20 40 30 200 2:1 5 80-140-140 

13 9.99 30 50 30 150 3:1 5 80-100-100 

14 9.99 40 30 30 200 3:1 13 80-100-100 

15 9.99 30 40 40 100 3:1 5 80-120-120 

16 9.99 20 30 40 200 3:1 9 80-120-120 

17 9.99 40 40 20 100 3:1 13 80-140-140 

18 9.99 20 50 20 150 3:1 9 80-140-140 

* The experimental design consisted of an L18 Taguchi fractional factorial design with 18 total treatment 
combinations. MCraw is raw blend moisture content, die L/D is length to diameter ratio of the die, SBM is soybean 
meal 

 

2.4 Extrusion Processing Parameters 

2.4.1 Temperature Profile, Die Pressure and Torque 

The absolute pressure at the die zone and the actual temperature profile at the feed, metering, and die zones were 
simultaneously monitored every minute for eight (n=8) recordings using a combined thermocouple/pressure 
transducer (GP50, New York Ltd., Grand Island, NY). Likewise, the net torque exerted on the screw drive shaft 
was recorded with a torque transducer (Measurement Specialists, Huntsville, AL) at a sensing range of 0-390 N.m 
every minute for eight (n=8) recordings. 

2.4.2 Mass Flow Rate (MFR) 

Extrudate samples exiting the die were collected at 30 s intervals, dried, and weighed using an electronic balance 
(PB 5001, Mettler Toledo, Switzerland) to quantify the mass flow rate.  

2.4.3 Apparent Viscosity (ηapp) 

The extruder was approximated as a coaxial cylinder-shaped viscometer, where the screw and barrel were 
considered as an inner and an outer cylinder, respectively (Rogers, 1970; Lu et al., 1992; Rosentrater et al., 2005; 
Chevanan et al., 2007a). The apparent viscosity of the dough was calculated using: 


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where ηapp is the apparent viscosity of the dough (Pa•s), τ is the net torque exerted on the screw shaft (N•m), ω is 
the screw speed (rpm), Css is an empirical correction factor for the shear rate which relates to the screw 
configuration, and Csr is an empirical correction factor for the shear rate which relates to the barrel size, where: 
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where rcorr is the radius correction factor due to the frustum geometry of the screw (m), rb is the barrel radius (m), LS 
is the screw length in the axial direction (m), and reff is the effective radius of the screw obtained from the sum of 
the screw root and half of the flight height (m). Specific values for these parameters have been discussed elsewhere 
(Rosentrater et al., 2005).  

2.4.4 Specific Mechanical Energy (SME) 

Specific mechanical energy (J/g) was calculated using equation (5), following Harper (1981): 

feedm
SME

60

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(5) 

where τ is the net torque exerted on the screw shaft (N.m), ω is the screw speed (rpm), and mfeed is the mass flow 
rate of the input dry feed (g/min), calculated using the following equation: 
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where MCf is the moisture content of the raw feed blend (% wb) and MCe is the moisture content of the extrudate 
at the die (% wb). 

2.4.5 Extrudate Physical Properties 

After the prepared blends were cooked in the extruder and dried for 72 h at room temperature (25±1ºC), they were 
then analyzed for moisture content (% db), water activity, bulk density (kg/m3), unit density (kg/m3), expansion 
ratio, pellet durability index (%), water absorption and water solubility indices (%), water stability (min), and color. 
For all treatment runs, three samples (n=3) were used to determine the physical properties. 

2.4.6 Moisture Content (MC) 

According to AACC method 44-19 (2000), the moisture content of the raw material and extrudate samples for each 
blend were determined using a laboratory oven (Thelco Precision, Jovan, Wincester, VA) at 135ºC for 2 h. 

2.4.7 Water Activity (aw) 

Water activity was measured for the raw material and extrudate samples from each treatment with a water activity 
meter (aw Sprint TH-500, Novasina, Pfäffikon, Switzerland). The sample bowl was filled with each sample and 
then placed into the measuring chamber of the pre-calibrated instrument. 

2.4.8 Bulk Density (BD) 

Bulk density (BD) was determined as the ratio of the mass of extrudates in a given bulk volume. A standard bushel 
tester (Seedburo Equipment Company, Chicago, IL) was used following the method described by USDA (1999). 

2.4.9 Unit Density (UD) 

The extrudates were cut to a length of 25.4 mm, weighed on an analytical balance (Adventurer™, Item No. AR 
1140, Ohaus Corp. Pine Brook, NJ), and then measured with a digital caliper (Model No. CD-6’’C, Mitutoyo 
Corp., Tokyo, Japan) to determine their diameter. According to Rosentrater et al. (2005) the unit density (UD, 
kg/m3) was calculated as the ratio of the mass m (kg) to the volume V (m3) of each measured and weighed 
extrudate sample, assuming a cylindrical shape for each extrudate: 

UD = Vm /                                       (7) 

2.4.10 Expansion Ratio (ER) 

The diameter of the extrudates was measured with a digital caliper (Digimatic caliper, Model No: CD-6’’C, 
Mitutoyo Corp., Tokyo, Japan), and then the ratio at that diameter to the diameter of the die nozzle (2.0, 3.2, or 6.0 
mm) was used to quantify the radial expansion ratio. 
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2.4.11 Pellet Durability Index (PDI) 

Pellet durability index was determined following Method S269.4 (ASAE, 2004). Approximately 100 g of 
extrudates from each blend were manually sieved (ASTM E-11, Daigger, Vernon Hills, IL) for about 10 s to 
remove initial fines, and then tumbled in a pellet durability tester (Model PDT-110, Seedburo Equipment 
Company, Chicago, IL) for 10 min. Afterwards, the samples were again hand sieved for about 10 s, and then 
weighed on an electronic balance (Explorer Pro, Model. EP4102, Ohaus, Pine Brook, NJ). PDI was calculated as: 

PDI (%) =   100/ MbMa                                 (8) 

where Ma is the mass (g) after tumbling and Mb is the sample mass (g) before tumbling. 

2.4.12 Water Absorption and Water Solubility Index 

Water absorption index (WAI) and water solubility index (WSI) were measured according to the method of 
Anderson et al. (1969) and Jones et al. (2000). Extrudate sample of each treatment combination were ground with 
a cyclone mill (Cyclone Sample Mill, Model 3010-830, UDY Corporation, Fort Collins, CO) to an average particle 
size of about 500 μm. Approximately 2.5 g of the extrudate powder was suspended in 30 mL of water in a tarred 50 
mL centrifuge tube. The tube was placed in a laboratory oven (Thelco Precision, Jovan, Wincester, VA) at 30°C 
and stirred periodically every 10 min for 30 min. Afterwards, the water-extrudate suspension was centrifuged for 
15 min at 3000 rpm in a laboratory-scale centrifuge (Durafuge 100, Precision, Winchester, VA). The supernatant 
was decanted into tarred aluminum dishes and dried for 2 h at 135°C in the laboratory oven. The ratio of the 
remaining gel mass in the centrifuge tube to the original sample mass (approximately 2.5 g) was used to determine 
the water absorption index: 

WAI = WsWg /
 

(9) 

where Wg is gel weight (g) and Ws is the original sample weight (g). 

WSI was calculated as the ratio of the dry solids (remaining from evaporation of the supernatant from the WAI test) 
to the original sample mass, following AACC Method 44-19 (2000). 

WSI (%) = 100)/( WsWds  (10) 

where Wds is the dry weight of the supernatant (g) and Ws is original weight of the sample (g). 

2.4.13 Water Stability 

Water stability is defined as the amount of time that it takes for an extrudate to begin to break apart after it has been 
placed in water. For extrudates of each blend, a 1-g sample was placed in 200 mL of distilled water and gently 
stirred using a magnet stirrer (PMC No. 524C, Barnstead International, Dubuque, IA) until the extrudates began to 
visibly dissolve, and the time was then recorded. 

2.4.14 Color 

A spectrophotometer (LabScan XE, HunterLab, Reston, VA) was used to determine color, where L quantified 
brightness/darkness, a redness/greenness, and b yellowness/blueness of the samples. 

2.5 Statistical Analysis 

Each blend was extruded once. For each treatment combination, three replicates (n=3) were determined for all 
physical properties. All collected data were analyzed with Microsoft Excel v.2007 and SAS v.9 (SAS Institute, 
Cary, NC). The Proc GLM (general linear models) procedure was used to identify the main effects (i.e., individual 
effects due to each independent variable) and the treatment (simultaneous) combination effects using a Type I error 
rate (α) of 0.05. Then, post-hoc LSD tests were used to determine where the specific differences occurred. 
TableCurve 3D v.4.0.01 (SYSTAT Software, Inc., San Joes, CA) was also used for response surface modeling. 

3. Results 

3.1 Extrusion Processing Parameters 

3.1.1 Die Pressure 

The barrel of the extruder essentially acts as a pressure cooker, where steam and pressure are released at the die 
opening (Harper, 1981). The design of the die can impact pressure release as well as result in additional pressure. 
Die pressure and temperature highly affect expansion and mass flow of extrudate. At lower temperatures and lower 
pressures, less water evaporates which results in less expansion. Hence, moisture content and screw speed are 
important factors that affect die pressure and extrudate expansion as well. 
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With changes in screw speed, no significant differences were detected for the die pressure for the main effects 
(Table 4). This may be related to the high standard deviations. Generally, all standard deviations for the recorded 
parameters for processing conditions (SME, torque, viscosity) were relatively high. The highest value for die 
pressure was recorded at 1603.00 MPa (Run 4), while the lowest value was at 42.50 MPa (Run 15) (Table 5). As 
expected, the die pressure decreased with higher moisture content. This is in agreement with other extrusion 
studies (Lin et al., 2002; Meng et al., 2010; Singh et al., 2007). At high moisture water can act as a lubricant, and 
will reduce friction of the extruded dough, which in turn decreases die pressure (Lin et al., 2002). This is reflected 
in the values for the aw, which increased with higher blend moisture content. The data for raw blend awvaried 
between 0.62-0.66, 0.74-0.77, and 0.78-0.80 for 20, 30, and 40% moisture content, respectively (Table 3). Raising 
the processing temperature from 100 to 140°C resulted in a significant decrease in die pressure of 43.2% (Table 4). 
Similar results were reported by other investigators (Fletcher et al., 1985; Kirby et al., 1988; Singh et al., 2007). 
Furthermore, the die pressure showed a significant decrease with a larger die diameter. The die pressure dropped 
by 46.0% by decreasing the die L/D from 13 to 5 (Table 4). This is in agreement with other observations (Sokhey 
et al., 1997), and was expected due to an increasing die area, and thus less resistance to flow. Increasing the DDGS 
level from 20 to 40% yielded a drop in pressure by 31.4%. Likewise, a similar trend was observed by Chevanan et 
al. (2010). Changes due to increasing DDGS, MC, temperature, and die diameter resulted in significantly lower die 
pressure values. Examining the treatment combination effects (Table 5) reveals that many treatments were 
significantly different from each other, which resulted from simultaneous changes of the combined independent 
variables. 

 

Table 3. Physical properties of the raw feed blends* 

 
* Means followed by similar letters for a given dependent variable are not significantly different among treatments 
at P < 0.05, LSD. Values in parentheses are standard deviation. aw is water activity, L is brightness, a is 
redness/greenness, b is yellowness/blueness. 

 

3.1.2 Torque 

Torque quantifies the force that is required to rotate the extruder screw. Thus, it is affected by the viscosity of the 
dough, moisture content, temperature, and screw speed (Akdogan, 1996). High torque requires more energy and 
can lead to wear of the extruder. Optimal torque values can save energy and reduce stress on the equipment. 

Regarding the main treatment effects (Table 4), no clear pattern of changes in torque could be observed for several 
independent variables, which again might be related to the high standard deviations. The highest torque value was 
recorded for run 13 at 51.73 N.m, whereas the lowest was recorded for run 8 at 8.26 N.m (Table 5). Some 
significant differences in torque were detected with interactive changes across the treatment combinations (Table 
5). The torque decreased with higher levels of DDGS, and with higher moisture content. Conversely, torque 
increased with higher levels of SBM. Changes in screw speed yielded no significant differences in torque for the 
main effects, which was related to the high standard deviations. But the dough did exhibit shear thinning behavior: 
the apparent viscosity decreased significantly by 42.2% when increasing the screw speed from 100 to 200 rpm 
(Table 4). The different screw configurations also had a significant effect on torque. This was as expected, due to 
the changes in flight height of the screw which increased compression and thus torque for the 2:1 compression 
ratio screw versus the 3:1 compression ratio. And, as die L/D increased, the torque increased due to greater 
resistance to flow, which resulted in a higher pressure.  

3.1.3 Mass Flow Rate 

A common way to examine the productivity of an extruder is to measure its output. Previous studies have shown 
that the amount of extrudate produced per unit time is impacted by screw speed, die geometry, shear rate, diet 
formulation (such as DDGS level), moisture content, and the viscosity of the dough melt (Chevanan et al., 2008; 
Kannadhason et al., 2010). In this study, except for screw speed, none of the independent variables had significant 
effects on MFR for the main effects, which again was related to the high standard deviations observed in the data. 

Property 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

aw 0.64g 0.74e 0.80a 0.66f 0.77d 0.78c 0.80ab 0.80ab 0.62h 0.62h 0.74e 0.74e 0.74e 0.74e 0.79b 0.80ab 0.62h 0.62h

(-) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

L 62.43a 55.05de 54.04ef 56.76cd 51.57g 53.18fg 53.99ef 52.94fg 59.16b 58.23bc 57.30c 59.11b 57.30c 55.05de 54.04ef 53.99ef 58.23bc 62.43a
(-) (0.82) (1.37) (1.33) (0.93) (1.11) (0.84) (0.61) (0.46) (2.08) (1.19) (0.55) (0.92) (0.55) (1.37) (1.33) (0.61) (1.19) (0.82)
a 3.63g 5.63b 5.57b 4.54ef 5.38bc 6.24a 4.98d 6.45a 4.34f 5.13cd 4.86de 4.38f 4.86de 5.63b 5.57b 4.98d 5.13cd 3.63g
(-) (0.18) (0.10) (0.35) (0.31) (0.33) (0.18) (0.21) (0.19) (0.16) (0.07) (0.13) (0.07) (0.13) (0.10) (0.35) (0.21) (0.07) (0.18)
b 18.59g 20.71abc 20.49bcd 19.15efg 18.82fg 21.28ab 19.74de 21.43a 19.24efg 20.01cde 19.91cde 19.63def 19.91cde 20.71abc 20.49bcd 19.74de 20.01cde 18.59g
(-) (0.47) (0.45) (0.72) (0.91) (0.97) (0.42) (0.33) (0.32) (0.59) (0.36) (0.32) (0.22) (0.32) (0.45) (0.72) (0.33) (0.36) (0.47)

Treatment
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For the main effects, with increasing screw speed from 100 to 150 rpm, MFR increased significantly by 109.8% 
(Table 4). The highest MFR was detected for run 3 at 225.60 g/min, while the lowest was for run 8 at 67.13 g/min 
(Table 5). Treatment combination effects were also studied and response surface generated for MFR, SS, and 
DDGS level (Figure 1). As shown in Figure 1, the higher screw speed and lower levels of DDGS substitution 
resulted in decreased flow rate. Overall, changing in DDGS levels in diet did not have considerable impact on 
extrudate output.  

 

Table 4. Main effects of DDGS, SBM, moisture content of raw material, screw speed, screw compression ratio, 
die L/D, and extruder temperature profile on raw blends, measured processing properties, and extrudate physical 
properties* 

 

  Raw Materials Processing conditions

awRaw LRaw aRaw bRaw P at Die Torque MFR ηapp SME

Variable (Mpa) (N m) (g/min) (Pa s) (J/g)
DDGS (% db)

20 0.73a 57.25a 4.50c 19.19c 932.04a 29.14a 115.32a 1880.83a 860.90a
(0.07) (4.48) (0.72) (0.70) (484.21) (11.98) (31.43) (1094.42) (367.52)

30 0.73a 56.43a 4.96b 19.86b 790.56ab 30.41a 129.67a 1637.52a 716.52ab
(0.07) (2.17) (0.53) (0.76) (580.72) (17.13) (56.00) (783.61) (423.89)

40 0.72a 55.45a 5.70c 20.69a 639.02b 18.43b 111.58a 1067.25b 513.44b
(0.08) (2.38) (0.53) (0.65) (302.58) (11.10) (51.14) (648.75) (210.87)

SBM (% db)
30 0.72a 56.85a 4.95a 19.91a 713.02a 22.08b 102.92a 1405.04b 606.10a

(0.07) (3.44) (0.88) (0.98) (523.26) (10.16) (34.69) (898.54) (220.73)
40 0.73a 56.20a 5.04a 19.96a 787.58a 24.54b 132.61a 1365.37b 673.92a

(0.07) (2.24) (0.52) (0.71) (576.56) (13.36) (49.13) (624.69) (360.37)
50 0.72a 56.09a 5.17a 19.88a 861.02a 31.36a 121.04a 1815.18a 810.84a

(0.08) (3.86) (0.89) (1.10) (299.51) (17.89) (53.30) (1124.53) (471.29)
MCRaw (% db)

20 0.63c 59.54a 4.40c 19.27c 1220.75a 28.17a 106.14a 1686.17a 624.98b
(0.02) (2.46) (0.65) (0.76) (346.90) (10.49) (35.13) (721.03) (186.87)

30 0.75b 55.90b 5.12b 19.95b 602.00b 32.29a 133.67a 1948.87a 929.56a
(0.01) (2.61) (0.49) (0.80) (312.52) (16.94) (44.99) (1125.72) (505.40)

40 0.79a 53.70c 5.63a 20.53a 538.88b 17.52b 116.76a 950.55b 536.33b
(0.01) (0.91) (0.62) (0.80) (446.25) (11.55) (57.15) (504.72) (208.11)

SS (rpm)
100 - - - - 718.88a 23.18a 76.31c 1922.54a 612.02a

(474.17) (14.08) (7.68) (1129.17) (344.64)
150 - - - - 884.60a 27.97a 120.18b 1551.38b 710.81a

(481.08) (15.72) (41.49) (812.55) (397.06)
200 - - - - 758.15a 26.83a 160.08a 1111.67c 768.04a

(485.30) (13.81) (37.87) (563.07) (366.22)
Screw comp.

2:1 - - - - 950.83a 32.05a 135.01a 1964.79a 769.13a
(521.87) (14.26) (66.32) (1085.34) (269.57)

3:1 - - - - 705.40b 22.97b 110.78a 1310.41b 660.87a
(441.37) (13.88) (32.09) (744.16) (408.05)

Die L/D
5 - - - - 544.81c 22.06b 103.08a 1345.70b 729.19a

(508.60) (17.97) (34.12) (1115.82) (531.36)
9 - - - - 807.42b 25.43ab 127.83a 1397.26b 601.21a

- - - - (466.37) (13.41) (47.60) (654.04) (223.36)
13 - - - - 1009.40a 30.50a 125.66a 1842.63a 760.47a

(346.56) (10.44) (55.72) (873.81) (276.47)

T (oC)
100 - - - - 1002.50a 31.77a 121.83a 1774.88a 796.78a

(463.65) (15.90) (40.82) (860.92) (399.40)
120 - - - - 789.63b 22.90b 111.63a 1431.02ab 627.75a

(486.22) (13.93) (44.18) (1105.86) (326.42)
140 - - - - 569.50c 23.31b 123.10a 1379.70b 666.34a

(399.99) (12.28) (56.84) (728.32) (375.58)
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* Means within a column (a given dependent variable) followed by similar letters for a given independent 
variable are not significantly different at P < 0.05, LSD. Values in parentheses are standard deviation. SBM is 
soybean meal; MCRaw is raw blend moisture content; SS is screw speed; Screw Comp. is screw compression ratio; 
die L/D is length-to-diameter ratio of the die; T (°C) is temperature profile (100 is 80-100-100°C, 120 is 
80-120-120, 140 is 80-140-140°C); aw Raw is water activity of raw blend; LRaw is brightness/darkness of the raw 
blend; aRaw is redness/greenness of the raw blend; bRaw is yellowness/blueness of the raw blend; P is die pressure; 
MFR is mass flow rate; ηapp is dough apparent viscosity; SME is specific mechanical energy; MCExt is extrudate 
moisture content; awExt is extrudate water activity; BD is extrudate bulk density; UD is extrudate unit density; ER 
is extrudate expansion ratio; PDI is extrudate pellet durability index; WAI is water adsorption index; WSI is 
water solubility index; LExt is extrudate brightness/darkness; aExt is extrudate redness/greenness; bExt is extrudate 
yellowness/blueness. 

 

 
 

  Extrudate Properties

MCExt awExt BD UD ER PDI WAI WSI WS LExt aExt bExt

Variable (% db) (kg/m3) (kg/m3) (%) (min)
DDGS (% db)

20 9.74a 0.41a 217.52a 9.74a 0.90a 94.00a 3.37a 19.20a 20.73a 44.09a 3.94b 12.76b
(1.82) (0.04) (27.80) (1.82) (0.08) (4.04) (0.26) (0.96) (7.76) (5.05) (0.49) (2.27)

30 8.88b 0.41a 218.29a 8.88b 0.8a 94.94a 3.24ab 19.61a 20.39a 42.27a 4.77a 14.55a
(0.85) (0.04) (29.38) (0.85) (0.18) (4.71) (0.35) (1.60) (10.19) (4.31) (0.73) (1.94)

40 9.00ab 0.39a 221.61a 9.00ab 0.89a 94.85a 3.05b 18.20b 22.22a 41.91a 5.17a 14.43a
(0.83) (0.04) (18.46) (0.83) (0.16) (4.36) (0.31) (0.79) (6.33) (3.62) (1.01) (1.83)

SBM (% db)
30 9.31a 0.41a 214.33a 9.31a 0.86b 94.53a 3.28a 19.50a 21.22ab 42.22a 4.68ab 13.93a

(1.57) (0.04) (16.14) (1.57) (0.16) (4.73) (0.39) (1.77) (9.94) (3.65) (1.01) (2.52)
40 9.22a 0.40a 228.11a 9.22a 0.86b 95.20a 3.35a 18.55b 17.34b 42.33a 4.94a 14.32a

(1.44) (0.04) (31.62) (1.44) (0.17) (3.07) (0.25) (0.92) (6.74) (3.90) (1.06) (2.24)
50 9.10a 0.40a 214.97a 9.10a 0.95a 94.07a 3.02b 18.95ab 24.78a 43.71a 4.26b 13.50a

(0.78) (0.04) (24.46) (0.78) (0.07) (5.06) (0.26) (0.88) (5.71) (5.48) (0.49) (1.64)
MCRaw (% db)

20 8.79b 0.41a 231.54a 8.79b 0.99a 91.96b 3.17a 18.85ab 17.44b 45.39a 5.06a 15.54a
(1.23) (0.05) (26.40) (1.23) (0.06) (5.00) (0.27) (0.97) (6.67) (3.25) (1.09) (1.16)

30 8.89b 0.40a 228.40a 8.89b 0.92b 94.34b 3.31a 19.51a 18.42b 44.62a 4.61ab 14.47b
(0.99) (0.04) (16.86) (0.99) (0.09) (3.66) (0.38) (1.73) (7.91) (3.53) (0.70) (1.42)

40 9.93a 0.40a 197.47b 9.93a 0.77c 97.49a 3.18a 18.65b 27.47a 38.27b 4.22b 11.73c
(1.36) (0.03) (15.96) (1.36) (0.17) (1.84) (0.34) (0.93) (5.87) (2.17) (0.76) (1.70)

SS (rpm)
100 8.36b 0.41a 221.90ab 8.36b 0.84b 94.78a 3.37a 19.29a 22.33a 42.30a 4.97a 14.22a

(0.81) (0.04) (11.70) (0.81) (0.16) (3.98) (0.39) (1.84) (9.07) (3.52) (1.03) (1.51)
150 9.50a 0.40a 206.41b 9.5a 0.89b 94.16a 3.09b 19.17a 20.08a 43.28a 4.47a 13.62a

(1.09) (0.04) (19.77) (1.09) (0.16) (4.47) 0.29 (0.83) 8.13 (4.84) (0.74) (2.13)
200 9.76a 0.40a 229.10a 9.76a 0.95a 94.85a 3.19ab 18.55a 20.92a 42.69a 4.45a 13.90a

(1.47) (0.05) (34.27) (1.47) (0.10) (4.68) (0.27) (0.91) (7.43) (4.86) (0.92) (2.72)
Screw comp.

2:1 8.06b 0.46a 222.61a 8.06b 0.88a 95.91a 3.07b 18.68a 24.56a 42.30a 4.41 13.54a
(0.56) (0.01) (29.52) (0.56) (0.15) (3.85) (0.24) (0.83) (6.26) (4.47) (0.67) (1.98)

3:1 9.78a 0.37b 217.40a 9.78a 0.90a 93.94a 3.29a 19.17a 19.39b 42.98a 4.74 14.10a
(1.16) (0.02) (23.07) (1.16) (0.14) (4.44) (0.35) (1.46) (8.48) (4.39) (1.01) (2.23)

Die L/D
5 9.25a 0.40a 233.02a 9.25a 0.82c 91.35b 3.04b 19.53a 24.98a 45.76a 4.28b 14.38a

(1.13) (0.04) (21.60) (1.13) (0.22) (4.39) (0.27) (0.59) (7.81) (4.58) (0.47) (1.41)
9 9.10a 0.41a 224.97ab 9.10a 0.90b 96.23a 3.24ab 18.92ab 19.94ab 42.69b 4.57ab 13.56a

(1.49) (0.04) (22.20) (1.49) (0.06) (1.89) (0.39) (1.97) (8.38) (3.41) (0.89) (2.40)
13 9.26a 0.40a 199.42b 9.26a 0.96a 96.21a 3.37a 18.56b 18.42a 39.82c 5.03a 13.80a

(1.29) (0.04) (19.37) (1.29) (0.05) (4.30) (0.25) (0.71) (7.07) (2.96) (1.15) (2.51)

T (oC)
100 9.03a 0.40a 221.36a 1160.89a 0.95a 94.47a 3.05b 18.95ab 23.42 42.91a 4.68a 14.24a

(1.42) (0.05) (30.00) (142.38) (0.06) (4.86) (0.26) (1.09) (7.08) (5.09) (0.74) (2.10)
120 9.64a 0.41a 219.75a 1185.14a 0.88b 94.59a 3.29a 18.59b 21.78a 42.83a 4.42a 13.48a

(1.46) (0.04) (19.24) (155.36) (0.18) (5.05) (0.26) (0.88) (7.57) (2.98) (0.86) (2.40)
140 8.94a 0.40a 216.30a 1096.63b 0.85b 94.73a 3.31a 19.47a 18.14a 42.52a 4.79a 14.02a

(0.85) (0.04) (26.49) (163.00) (0.16) (2.99) (0.41) (1.69) (9.13) (5.02) (1.13) (1.98)
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Chevanan et al. (2007a) made similar observations as well. With changes in die L/D ratio, only the die diameter 
changed, whereas the length stayed the same. With a smaller die diameter, pressure and shear increased, which led 
to an increase in viscosity. Increasing the screw compression led to a decrease in apparent viscosity by 33.3%, and 
was pseudoplastic behavior. 

3.1.5 Specific Mechanical Energy 

Specific mechanical energy consumption quantifies the net energy that is required to convey the material through 
the extruder per unit rate of mass flow. For the main effects, no clear pattern of changes could be observed with 
varying levels of the independent variables, which again was related to the high standard deviations. The highest 
SME was detected at 1449.40 J/g (Run 13) and the lowest at 297.70 J/g (Run 8; Table 5). With increasing DDGS 
level, SME showed a significant decrease (Table 4). With increasing SBM, however, the SME increased as well. 
Increasing the screw speed and compression ratio of the screw yielded an increase and decrease in SME by 25.4% 
and 14%, respectively. As temperature profile and L/D ratio increased, SME exhibited curvilinear behavior. 

3.1.6 Temperature  

Temperature settings were adjusted in the beginning of each extrusion run to the desired value. However, 
throughout processing, temperatures within the different zones increased due to friction (Table 5) and were 
adjusted by using external air when temperature increased more than 5°C. These temperature effects were 
expected, due to frictional heating and shear forces in the barrel during extrusion processing. This was due to the 
design of the extruder (i.e. the conveying mechanism of the flighted screw, the viscous properties of the raw 
material, and the grooved walls that reduce slip and cause friction) (Harper, 1981). 

3.2 Extrudate Physical Properties 

3.2.1 Moisture Content 

The moisture content of the raw blends had one of the most important impacts on almost all extrudate physical 
properties and their cohesiveness (Table 4). Previous studies have shown that extrudate MC increased with higher 
DDGS levels (Ayadi et al., 2011b; Kannadhason et al., 2010) as well as the MC of the raw blends (Kannadhason et 
al., 2009b; Rosentrater, 2009b). In this study, extrudate MC decreased significantly (by 8.8%) when DDGS 
content of the blends increased from 20 to 30%, whereas MC did not show significant effects when increasing 
DDGS level from 30 to 40%. Increases with higher initial MC were as expected due to the higher water content of 
the raw blends. The difference between initial and final MC can be caused by greater flashing of moisture during 
exiting the die. The highest value for extrudate MC was 12.01% (Run 16) and the lowest was 7.24% (Run 1) 
(Table 6). Regarding the other independent variables, some differences occurred for the extrudate MC, in terms of 
main effect or treatment combination effects (Table 6). Also, using the 3:1 screw (with a higher compression ratio) 
yielded higher extrudate MC, by 21.3%.  

 

Table 6. Treatment effects on extrudate physical properties* 

 

Property 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
MC 7.24k 8.10i 8.62gh 7.67j 7.88ij 8.84fg 11.43b 9.27e 10.12d 10.28cd 8.22hi 10.54c 9.19ef 9.41e 9.43e 12.01a 8.11i 9.33e

(g kg -1) (0.09) (0.05) (0.10) (0.06) (0.11) (0.04) (0.04) (0.32) (0.21) (0.32) (0.05) (0.23) (0.29) (0.58) (0.31) (0.45) (0.12) (0.13)

aw 0.47a 0.45c 0.44c 0.47a 0.46b 0.45c 0.38f 0.37gh 0.38fg 0.37fgh 0.39e 0.37gh 0.37gh 0.35i 0.38fg 0.41d 0.37fg 0.36h

(-) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)

BD 241.22d 230.81e 177.10l 267.39a 215.98g 203.16j 175.04l 209.17hi 196.62k 254.73c 228.93ef 259.34b 228.85ef 206.49ij 210.82h 209.55hi 225.29f 204.00j

(kg m-3) (2.08) (2.10) (4.78) (1.42) (2.19) (1.41) (2.56) (3.11) (3.36) (0.66) (2.48) (1.24) (0.74) (1.40) (2.76) (0.28) (0.40) (1.89)

UD 1012.01ij 1132.85eh 1254.34bcd 1109.81ei 1329.95ab 1170.72def 1389.22a 1257.15bcd 1182.74cde 1023.55i 925.42j 1081.64fi 1045.62i 1153.98efg 1164.84dg 1279.89bc 1080.48fi 1068.86ghi

(kg m-3) (58.16) (51.00) (49.20) (50.00) (200.92) (167.36) (65.73) (62.34) (55.12) (27.95) (148.21) (43.24) (52.83) (75.80) (198.15) (80.01) (224.16) (46.30)

ER 0.94de 0.91e 0.94de 0.99bc 0.94de 0.56g 0.90e 0.85f 1.02ab 1.05a 0.82f 0.84f 0.99bc 0.99bc 0.53g 0.85f 0.97cd 0.94de
(-) (0.04) (0.02) (0.02) (0.03) (0.02) (0.03) (0.01) (0.02) (0.03) (0.02) (0.02) (0.15) (0.01) (0.03) (0.07) (0.03) (0.06) (0.05)

PDI 87.79gh 96.07a-e 98.99a 97.61abc 97.95abc 97.07a-d 96.35a-e 98.44ab 92.93ef 86.49h 94.38b-f 91.01fg 88.70gh 97.94abc 97.04a-e 97.07a-d 93.11def 93.83c-f
(%) (0.20) (0.11) (0.17) (0.08) (0.01) (0.05) (4.60) (0.06) (8.71) (0.30) (2.29) (0.53) (0.76) (0.30) (0.06) (0.23) (2.97) (0.27)

WAI 3.00i 3.04ghi 3.03hi 3.05gh 3.55d 2.77k 3.55d 2.81k 3.33f 2.90j 3.90a 3.48e 2.81k 3.08g 3.30f 3.60c 3.67b 3.04ghi
(-) (0.01) (0.04) (0.02) (0.02) (0.01) (0.02) (0.01) (0.02) (0.00) (0.01) (0.02) (0.06) (0.00) (0.06) (0.01) (0.01) (0.01) (0.01)

WSI 20.10b 17.72gh 18.56efg 17.98fgh 18.64def 19.05cde 19.51bc 17.73gh 19.06cde 19.10cde 22.72a 19.58bc 20.24b 18.16fgh 19.10cde 17.93fgh 17.43h 19.45bcd
(%) (0.15) (0.40) (0.22) (0.05) (0.08) (0.50) (0.18) (0.55) (0.03) (0.71) (0.09) (0.11) (0.17) (0.45) (0.22) (1.72) (0.16) (0.45)

WS >30.00a 19.67c >30.00a 15.33de 22.33b >30.00a 14.83de >30.00a 9.17f 19.50c 7.83f 10.37f >30.00a 20.33b >30.00a >30.00a 13.83e 16.83d
(min) (0.00) (4.73) (0.00) (0.58) (2.52) (0.00) (2.25) (0.00) (1.04) (0.87) (1.53) (1.10) (0.00) (1.53) (0.00) (0.00) (1.26) (1.26)

L 48.96a 43.94b 35.55g 43.53b 42.61bc 39.20de 36.53fg 38.42ef 42.44bc 48.10a 42.44bc 48.64a 49.40a 40.66cd 40.25de 39.64de 41.11cd 48.18a
(-) (0.35) (1.19) (0.92) (0.19) (1.42) (3.18) (0.37) (0.92) (0.54) (0.55) (1.94) (1.19) (0.23) (1.04) (0.10) (1.56) (1.11) (0.37)

a 3.96e 4.54cde 3.87ef 5.39b 4.15e 4.53cde 4.04e 5.05bcd 5.61b 4.40de 5.15bc 4.20e 4.01e 5.60b 4.58cde 3.21f 6.92a 4.06e
(-) (0.16) (0.80) (0.19) (0.07) (0.21) (0.89) (0.11) (0.25) (0.05) (0.39) (0.39) (0.16) (0.48) (0.20) (0.40) (0.88) (0.24) (0.38)

b 14.84bcd 13.63de 11.26fg 16.47ab 12.59ef 12.46ef 10.58gh 12.98e 16.21ab 15.33abc 14.85bcd 15.15a-d 14.99a-d 15.60ab 13.52de 9.60h 16.56a 13.83cde
(-) (0.47) (1.85) (0.44) (0.11) (0.45) (1.72) (0.22) (0.57) (0.06) (1.03) (1.09) (0.08) (1.51) (0.64) (0.75) (1.88) (0.61) (1.02)

Treatment
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* Means followed by similar letters for a given dependent variable (row) are not significantly different at P<0.05, 
LSD. Values in parentheses are standard deviation. MC is moisture content, aw is water activity, BD is bulk density, 
UD is unit density, ER is expansion ratio, PDI is pellet durability index, WAI is water absorption index, WSI is 
water solubility index, WS is water stability; L is brightness/darkness of extrudate; a is redness/greenness of 
extrudate; b is yellowness/ blueness of extrudate. 

3.2.2 Water Activity 

Water activity measures the free water that is unbound in a material and can be available for microorganisms such 
as bacteria, molds, and yeast. A critical aw exists for every microorganism, below which growth is inhibited. In 
contrast to bacteria, yeasts and molds can reproduce at lower aw. Generally, aw below 0.60 sufficiently restricts 
microbial growth and reduces the risk of deterioration (Chirife & Del Pilar Buera, 1994; Lowe & Kershaw, 1995).  

Regarding main effects, standard deviations for the raw blends were relatively low and significant differences 
occurred only due to higher moisture content levels. Water activity increased by 25.4% when raising the moisture 
content from 20 to 40%. Water activity of the extrudate did not exhibit any significant differences due to 
processing conditions or ingredient composition, except for different screw configuration. Significant differences 
for the extrudates occurred only due to screw configuration: aw decreased by 19.6% from 0.46 to 0.37 when 
increasing the compression ratio of the screw (Table 4). Water activity for the raw material ranged between 0.62 
and 0.80 (Table 3) and between 0.35 and 0.47 for the final product (Table 6). 

3.2.3 Bulk Density 

Bulk density is an important parameter for the design of storage vessels. It determines the required storage space 
for the processing plant or shipping (Guy, 2001). High values for BD imply a higher capacity of extrudates which 
can be stored in a container. Bulk density varied between 175.04 and 267.39 kg/m3 for the extrudates (Table 6). 
Concerning the main effects (Table 4), some significant differences were detected due to varying moisture content, 
screw speed, and die L/D ratio. A significant decrease for BD, by 13.5%, was detected when increasing MC from 
30 to 40%. Raising the screw speed from 100 to 150 rpm resulted first in a decrease in BD by 7.0%, and then in an 
increase by 11.0% when increasing the screw speed from 150 to 200 rpm. Bulk density decreased by 14.4% with a 
higher die L/D ratio; a significant difference was observed between the highest and lowest die L/D ratio (Table 6). 

3.2.4 Unit Density 

Unit density ranged from 925.42 to 1389.22 kg/m3 (Table 6). The main effects of each independent variable on the 
unit density of the extrudates are presented in Table 4. For some of the response variables, significant differences 
were detected. Increasing SBM content of the blend, screw speed and screw compression ratio had no significant 
impacts on the unit density values of the extrudates. Increasing DDGS from 20 to 30% and temperature profile 
from 120 to 140°C decreased the UD by 6.7% and 7.5%, respectively. As the L/D of the die was increased from 9 
to 13, unit density increased by 9.1%. With increases in moisture content from 20 to 40%, unit density of the 
extrudates increased by 16.0%, while expansion ratio decreased significantly. As reported by other studies, unit 
density is related to expansion ratio, which in turn is affected by the moisture content of the feed blend (Ding et al., 
2005; Fang & Hanna, 2000), which was supported by our results. 

Unit density quantifies the density of a single extrudate. In aquafeeds, unit density plays a key role in the 
floatability of the feeds. For many fish species, such as Nile tilapia, floatability is recommended since they tend to 
feed close to the water surface. Extrudates that sink to the bottom of the tank may not be eaten, and present 
potential feed loss and, overtime, contamination of the water. Additionally, floating feed can show how much feed 
is consumed by fish and indicate changes in feeding behavior.  

3.2.5 Expansion Ratio 

Generally, expansion ratio is inversely related to the unit density. In this study, expansion ratio only related to the 
radial expansion (neglecting longitudinal and volumetric expansion), whereas unit density includes expansion in 
all directions. Expansion ratio varied between 0.53 and 1.05 within the treatment effects (Table 6). Significant 
differences were detected for most of the response variables. Expansion ratio significantly decreased by 22.2% by 
increasing moisture content from 20 to 40%, and by 10.5% by increasing temperature from 100 to 140°C (Table 4). 
This conforms to the changes for the unit density, which increased with higher moisture content and higher 
temperature settings. Temperature impacts the rheological characteristics of the dough inside the extruder and thus, 
expansion ratio (Meng et al., 2010). Higher moisture reduces the viscosity of the melt and can act as a plasticizer, 
decreasing expansion ratio. With increasing screw speed (100 to 200 rpm), expansion ratio increased by 13.1%, 
and with higher die L/D ratio (5 to 13), ER increased significantly by 17.1%. Expansion ratio increased with lower 
die diameter. These results are in agreement with Sokhey et al. (1997), who determined that extrudate radial 
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expansion significantly decreased with increasing die diameter when extruding yellow corn grits and Meng et al. 
(2010) who observed that increased screw speed led to increased expansion ratio. 

3.2.6 Pellet Durability Index 

Extruded feed should be of high enough quality to survive transportation and storage without breaking or major 
crumbling. Pellet durability index is typically used to assess an extrudates’ ability to withstand destructive forces. 
Pellet durability index ranged from 86.49 to 98.99% (Table 6). Regarding the main effects, a significant difference 
was observed when increasing blend MC level from 30 to 40%; PDI increased by 3.3%. Increasing the moisture 
content from 20 to 40%, on the other hand, yielded an increase in PDI by 6.0% (Table 4). This behavior was 
affected by the composition of the blends, which were relatively low in starch and high in protein. Similar 
observations due to moisture were likewise made in previous studies (Chevanan et al., 2008, 2009). Protein 
plasticizes under heat and will act as a binder when exposed to shear forces, heat, and moisture. No significant 
changes occurred with increasing DDGS levels, however, as observed in previous studies (Ayadi et al., 2011a; 
2011b). Significantly reduced PDI was observed at the lowest die L/D ratio. This could be ascribed to nearly no 
expansion of the extrudate for this die geometry. 

3.2.7 Water Absorption Index 

Water absorption index (WAI) represents the hydrophilic aspect of blend formulation, while WSI is considered a 
measure of hydrophobic behavior (Ravindran et al., 2011). Starch-based materials have the ability to absorb water 
when the starch granules are damaged (Colonna et al., 1989). In this case, formulations were primarily 
protein-based; the blends used in these studies had low starch contents, which is reflected in the low WAI values, 
ranging between 2.77 and 3.90% (Table 6). The low starch content of the blends also prevented drastic changes in 
WAI due to the independent variables. Increasing the DDGS content from 20 to 40% and SBM from 30 to 50%, 
yielded a decrease in WAI by 9.5% and 7.9%, respectively, while an increase in temperature from 100 to 140°C 
yielded an increase of 8.5%. The increase in WAI by higher temperatures can be related to the destruction of the 
crystalline structure of the starch, which allows it to absorb more water. Other researchers made similar 
observations for WAI with increasing temperature and DDGS content, respectively, when extruding DDGS-based 
feeds (Chevanan et al., 2007a, 2007b; Kannadhason et al., 2009b; Shukla et al., 2005). Increases in DDGS and 
SBM reduced the WAI of the blends due to less available starch in the blend. The die geometry also had some 
effect on WAI: a higher L/D ratio (from 5 to 13) resulted in significant increase in WAI by 10.9%. This might be 
due to the increased expansion and thus destruction of starch granules. Increasing the screw compression from 2:1 
to 3:1 resulted in a significant increase in WAI by 7.2% (Table 4). This was related to a higher compression, which 
increased shear and frictional forces, and resulted in a greater starch granule destruction. 

3.2.8 Water Solubility Index  

Referring to Kirby et al. (1988), WSI is related to the macromolecular degradation of starch. It is a measure of 
soluble polysaccharides that are cleaved by degradation of the starch granules (Ding et al., 2005). Water solubility 
index ranged from 17.43 to 22.72% (Table 6). Regarding the main effects, only a few significant differences were 
detected (Table 4). Increasing the DDGS level from 20 to 40%, SBM level from 30 to 50%, and die L/D ratio from 
5 to 13, yielded a decrease in WSI by 5.2%, 2.8% and 5.0%, respectively. Similar results for WSI with increases in 
DDGS level were observed in previous studies (Chevanan et al., 2007a; Kannadhason et al., 2010). Extrusion 
cooking denatures proteins and releases hydrophobic amino acids that reduce solubility in water (Camire, 1991). 
With increasing moisture content (20 to 40%) and temperature settings (100 to 140°C), WSI showed a curvilinear 
behavior. It increased by 3.5% when raising MC from 20 to 30%, but it decreased significantly by 4.4% when MC 
increased from 30 to 30%; similar observations with increasing MC were made by Rosentrater et al. (2009b). 

3.2.9 Water Stability 

The length of time an extrudate will float without dissolving in water will dictate availability of feed for fish, loss 
of nutrients, and potential water pollution. Maintaining cohesive extrudates, once they are placed in water, is 
crucial. Water stability varied between 7.83 min and 30 min for all treatment combinations (Table 6). Only some 
significant differences were detected for the main effects (Table 4). This can be ascribed to the high standard 
deviations. An increase in MC from 20 to 40% yielded an increase in WS by 57.5%. As for PDI, this behavior can 
be related to better binding which was achieved with higher MC. Blends with lower MC were more expanded and 
absorbed water faster. With a higher die L/D ratio (from 5 to 13), WS decreased significantly, by 26.3%.  

3.2.10 Color 

The values for brightness (Hunter L) of the extrudates varied from 35.55 to 49.40 (Table 6), whereas the brightness 
of the raw materials varied from 51.57 to 62.43 (Table III). For the main effects, significant differences for the raw 
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