Compaction and Physical Attributes of the Soil After the Development of Cover Plants


  •  Romário Gomes    
  •  Anderson Bergamin    
  •  Laércio Silva    
  •  Milton Campos    
  •  Vínicius Filla    
  •  Mailson Nascimento    
  •  Edicarlos Souza    
  •  Jose Cunha    
  •  Reginaldo de Oliveira    
  •  Ivanildo Oliveira    

Abstract

Compaction problems in heavily tilled soils have been commonly mitigated with the use of cover plants. Aiming to evaluate the effects of compaction on the physical properties of a plyntic Haplic-Alitic Cambisol soil after development of different cover crops, a complete randomized blocks design experiment, with 3 × 3 factorial arrangement and four replications, was conducted. Treatments consisted of cultivation of two legume species, crotalaria (Crotalaria juncea L.) and stylosanthes cv. Campo Grande (Estilosantes capitata + Estilosantes macrocephala) and a grass species, brachiaria (Urochloa brizhantha cv. Marandu), subjected to soil compaction: CM–Conventional soil management (tillage) without additional compaction; CMc4 and CMc8–conventional soil management with additional compaction using a 6 Mg tractor in four and eight wheel passes. Conventional management with additional compaction does not affect significantly the physical attributes at a soil depth of 0.10-0.20 m, and only the soil moisture does not differ according to the soil management, irrespective of the depth and kind of cover plant. Traffic levels in four passes result in an increased soil bulk density and macroporosity in the 0.0-0.05 m, and in soil resistance to penetration and total porosity in the layer up to 0.10 m. Cover crops are important in maintaining soil physical quality to reduce the negative effects of compacting forces, especially to stylosanthes cv. Campo Grande that provided greater soil protection in systems with or without addition of compaction, conditioning the lowest values of bulk density and soil resistance to penetration.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9752
  • Issn(Onlne): 1916-9760
  • Started: 2009
  • Frequency: monthly

Journal Metrics

(The data was calculated based on Google Scholar Citations)

  • Google-based Impact Factor (2016): 2.28
  • h-index (December 2017): 31
  • i10-index (December 2017): 304
  • h5-index (December 2017): 22
  • h5-median (December 2017): 27

Contact