Molecular Cloning and Phylogenetic Analysis of Two Plant-Parasitic Nematode 14-3-3 Genes

Dandan Liu, Lijie Chen & Yuxi Duan (Corresponding author) Nematology Institute of Northern China, Department of Plant Protection Shenyang Agricultural University, Shenyang 110161, Liaoning, China E-mail: liudandan.553@163.com,duanyx6407@163.com

Received: January 4, 2011	Accepted: January 21, 2011	Published: December 1, 2011
doi:10.5539/jas.v3n4p86	URL: http://dx.doi.org	/10.5539/jas.v3n4p86

This work is supported by Special Fund for Agroscientific Research in the Public Interest (200903030) and the earmarked fund for Modern Agro-industry Technology Research System, China.

Abstract

Full-length cDNA sequences of highly conserved ubiquitous 14-3-3 proteins were cloned from plant parasitic *Heterodera glycines* and *Meloidogyne incognita* using RT-PCR and RACE methods. The two genes were named as *Hgly2* and *Minc3*, respectively. *Hgly2* consisted of nucleotide sequence of 1027bp and *Minc3* of 1525 bp. And the open reading frames (ORF) encode peptide of 251 and 261 amino acids separately. Homology analysis showed that the deduced amino acid sequences shared the high homology with different nematode species. The phylogenetic analysis indicated that the proteins from plant parasitic nematode were more similar to insect proteins than plant and other animal proteins reported by previous research.

Keywords: Heterodera glycines, Meloidogyne incognita, 14-3-3 proteins gene, Race, Phylogenetic analysis

1. Introduction

A highly conserved family of regulatory proteins formed by 14-3-3 proteins is seemed to be specific to eukaryotic organisms (Fu et al., 2000; Jaubert et al., 2004). The 14-3-3 monomers have a molecular weight of approximately 30 kDa and an isoelectric point of about 5, but functional 14-3-3 exists as a dimmer (Wang and Shakes, 1996). First identified in a survey of mammalian brain proteins, 14-3-3 proteins were named on the basis of their separation properties in two-dimensional DEAE-cellulose chromatography and starch gel electrophoresis (Moore and Perez, 1967). 14-3-3 proteins putatively participate in many vital movements. For example, they may be central to integrating the regulation of biosynthetic metabolism, cell proliferation, survival, and other processes in human cells (Rubio et al., 2004). Drosophila 14-3-3 proteins have been shown to function in RAS/MAP kinase pathways that influence the differentiation of the adult eye and the embryo even regulation the entry into mitosis in the undisturbed cell cycle. These proteins also function in normal cell cycle progression, in addition to checkpoint regulation (Su et al., 2001). Moreover in C. elegans, 14-3-3 proteins were reported as interacting proteins of a major life span regulator. They could regulate life span and possibly provide the missing link to connect two well known signaling pathways that control longevity: insulin/IGF-1 and caloric restriction (Wang et al., 2006; Araiz and Château, 2008). Then another research indicated that 14-3-3 proteins binds to and regulates DAF-16 by sequestering it in the cytoplasm (DAF-16 was another important life span regulator in the insulin/IGF-1 signaling pathway). And the mechanism was similar to the regulation has been reported in mammalian cells (Li et al., 2007). 14-3-3 gene even plays a crucial role in the early events leading to polarization of the C. elegans zygote (Morton et al., 2002).

Study in the plant-nematode interaction, 14-3-3 proteins are thought to be pathogenicity factors involved in the invasion of the root tissue and in the induction and maintenance of feeding cells (Klink *et al.*, 2009). A 14-3-3 protein was isolated through direct qualitative analysis of proteins secreted from *M. incognita* J2 (Jaubert *et al.*, 2002). Next year, 14-3-3 protein was found in the oesophageal glands of second stage juveniles (Abad *et al.*, 2003). In 2008, 486 proteins were identified from *M. incognita* secretome include 14-3-3 (Bellafiore *et al.*, 2008). In addition 14-3-3 proteins can bind to and affect a wide variety of plant proteins, such as chaperones that

prevent proteolysis; adaptors for mediating interactions between proteins; regulators of intracellular protein distribution and transcriptional regulators (Davis *et al.*, 2009). Hassan *et al.* revealed that 14-3-3 proteins may have a key role in co-ordination of mitosis, metabolism, stress response and organelle trafficking as the feeding site develops (Hassan *et al.*, 2010).

The interaction between the nematode and its host plant has been concerned for several decades, especially in damage severely plant-parasite nematode. Here we researched two plant parasite nematode 14-3-3 genes, would lead to a better understanding of the molecular events and regulatory mechanisms involved in plant parasitism and allow the development of target-specific strategies to limit crop damage by these pathogens.

2. Materials and Methods

2.1 Collection of nematode

The nematodes were reared by their host plants in sunlight greenhouse. Cysts of *H. glycines* and oocysts of *M. incognita* incubated at 25 °C in the laboratory as described by Nitao *et al.* (1999). Suspension (including J2 hatched in 24 h) was collected into Eppendorf tubes, and then centrifuged at 12000 rpm, 15 min. Repetition until the weight up to 100mg, immersed in liquid nitrogen immediately. J2 were stored at -75°C until further use.

2.2 RNA extraction and cDNA synthesis

Total RNA was extracted from the frozen materials by RNAiso Plus (TaKaRa, China) following the manufacturer's instructions. The RNA was treated by an RNase-free DNase I for eliminating the residual genomic DNA present in our preparation. The quality of RNA was tested by 1% (w/v) agarose gel electrophoresis. The first-strand cDNA for reverse transcriptional PCR (RT-PCR) was synthesized by following 3'-Full RACE Core Set Ver.2.0 (TaKaRa, China) with 3.5 µL of total RNA as the template.

2.3 Internal amplification

2 pairs of Gene-specific primer (GSP) for amplification *H. glycines* and *M. incognita* 14-3-3 proteins gene were designed by primer 5.0.

Hgly2-1: 5'-GCGTTCGATGATGCGATTGCTG-3',

Hgly2-2: 5'-ATTTACCCAATCAAAAGTGCC-3'.

Minc3-1: 5'-TCTTGGCGTGTTCTTTCGTCTAT-3',

Minc3-2: 5'-AAAAGACTGCTTAGCCAACTGAC-3'.

Both reactions were performed with 50 μ L reaction mixture containing 2 μ L single-stranded cDNA, 8 μ L 1× cDNA Dilution Buffer II, 2 μ L of each primer (10 uM), 25 μ L 2× GC Buffer, 0.5 μ L Tag polymerase (5U/ μ L), 10.5 μ L dH₂O. The condition for amplification of cDNA segments were 94°C for 3 min, 30 cycles at 94°C for 30 s, 55°C for 30 s , 72°C for 30 s then 72°C for 10 min.

2.4 RACE

In order to obtain the full-length transcript, a rapid amplification of cDNA ends (RACE) procedure was employed to amplify the 5' and 3' end of the coding region according to the instructions (5'-Full RACE Kit and 3'-Full RACE Core Set Ver.2.0, TaKaRa, China). The full-length cDNA sequences from H. glycines and M. incognita were named as Hgly2 and Minc3. In H. glycines, 5'RACE GSP primers Hgly2-3: 5'-TCGGATGTCCAAAGCGTCAAG-3'was applied in outer PCR and Hglv2-4: 5'-GTCCAGCTCAGCAATCGCATC-3' in inner PCR. 3'RACE GSP primers were Hgly2-1 (outer PCR): 5'-GCGTTCGATGATGCGATTGCTG-3' and Hgly2-5 (inner PCR): 5'-CTGGCGATGAGCAGGAGG-3'. In M. incognita, the GSP primers of 5'RACE were Minc3- 3 (outer PCR): 5'-AACACGCCAAGAAGAACGAC-3' 5'-TCAGCCTGTTCGGCGAGTTTGG-3'. and *Minc3*-4(inner PCR): Minc3-5: 5'-ATCGTTATTTGGCTGAGGTTTC-3'used with primer *Minc3-6*: outer and 5'-CACAACAGAGTTACCAAGAGGC-3' used with inner primer in 3'RACE. The PCR products were electrophoresed on 1% (w/v) agarose gel.

A blast search was completed in NCBIBLAST network server (http://blast.ncbi.nlm.nih.gov/ BLAST.cgi). Deduced amino acid sequences were aligned using DNAstar software. Subcellular localization by SignalP 3.0 Servere (www.cbs.etu.dk/services/signalp) and proteins analysis in ExPASy: ScanProsite tool (http://www.expasy.ch/tools/scanprosite). Alignment and phylogenetic analysis were performed using the software MEGA 4.1 and Clustal X.

3. Results

3.1 Sequence analysis

The cDNA fragments of 338 bp from *H. glycines* and 411 bp from *M. incognita* were attained by RT-PCR approach. The RACE procedure was further employed to obtain full-length sequences of the two genes. And results showed that cDNA clone encoding *Hgly2* was 1027 bp with an open reading frame for a polypeptide of 251 amino acids (Fig.1) and a molecular mass of 28.47 kD. The cDNA clone encoding *Minc3* was 1525 bp with 261 amino (Fig.2) acids and a molecular mass of 29.41 kD. The isoelectric point (*p*I) of *Hgly2* was 4.48 and *Minc3* was 4.36. Both *Hgly2* and *Minc3* have 14-3-3 gene family conserved regions (Fig.3). In addition no signal peptide and transmembrane regions were found.

Further, Subcellular localization and ScanProsite revealed that *Hgly2* and *Minc3* possibility be found in cytoplasmic, nuclear, cytoskeletal, mitochondrial, golgi, endoplasmic and plasma membrane. *Hgly2* was predicted possession 4 protein kinase C phosphrylation sites, 2 cAMP-and cGMP-dependent protein kinase phosphorylation sites, 5 N-myristoylation sites, 7 casein kinase II phosporylation sites, 1 Tyrosine kinase phosphorylation site and 2 N-glycosylation sites. *Minc3* potentially hold 9 casein kinase II phosporylation sites, 3 protein kinase C phosphrylation sites, 2 cAMP-and cGMP-dependent protein kinase , 4 N-myristoylation sites, 1 Amidation site, 1 Tyrosine kinase phosphorylation sites, 1 Amidation site, 1 Tyrosine kinase phosphorylation site and 1N-glycosylation site.

3.2 Homology analysis

The full amino acid sequences we got were aligned with other species (Fig.4). We found that *Hgly2* share 82.46% identity with *Minc3*; 94.76% with *Bursaphelenchus xylophilus* (GU130158.1); 93.59% with *Caenorhabditis brenneri* (EU726795.1); 93.59% with *Caenorhabditis remanei* (XM_003109679.1); 87.45% with *Culex pipiens* (GU227357.1); 88.09% with *Drosophila melanogaster* (NM_165740.2); 70.69% with *Rattus norvegicus* (BC089860.1) and 81.97% with *Homo sapiens* (NM_003404.3).

While *Minc3* identity to *B. xylophilus* was 82.74%; *C. brenneri*, 82.89%; *C. remanei*, 82.89%; *C. pipiens*, 87.45%; *D. melanogaster*, 88.09%; *R. norvegicus*, 70.69% and *Homo sapiens*, 81.97%.

Comparison of protein sequences was also revealed that the N terminal 10 amino acids and the C terminal 20 amino acids showed more varariations than the other parts, indicating that these amino acids may be responsible for the isoform specificities.

3.3 Phylogenetic analysis

Based on the deduced amino acid sequences, a phylogenetic tree was constructed (Fig.5). All the sequences used in our analysis got from NCBI but 14-3-3 proteins from *Entamoeba histolytic* were approved distant related (Wang and Shakes, 1996) and other protozoa not employed. 14-3-3 proteins from 24 species could be divided into 4 groups through the comparison. Nematode proteins except *Trichinella spiralis* were clustered together and appeared to be more closely to insect, distantly to animal. *T. spiralis* was a human parasite more similar to insect than plant parasite nematode. The plant lineage formed a distinct grouping in N-J trees, suggested an early divergence from the other species. Invertebrate proteins group including nematode and insect with the nonepsil on mammalian and the result basically consisted with former research (Wang and Shakes, 1996).

4. Discussion

Protein 14-3-3 was also named tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein. Since first reported about 14-3-3 proteins, the researchers have done a lot of work in animal and human parasite (Siles-Lucas *et al.*, 2003; Joshua *et al.*, 2009) but on the contrary for plant parasite nematodes. We know *H. glycines* and *M. incognita* were two important pathogens for crops and vegetables in the world. As early as 1987, *Meloidogyne* spp. was reported responsible for a large part of the annual 100 billion \$ losses attributed to nematode damage in US (Sasser *et al.*, 1987). Soybean cyst nematode suppressed US soybean yield more than any other disease during 2003 to 2005, soybean yield suppression was 2.9 million ton in 2003 and 1.9 million ton in 2005 (Wrather and Koenning, 2006). Unfortunately we hadn't high efficiency and environmental friendly control methods presented due to nematodes body was extremely small, physiology and metabolism almost incomprehension for us.

Protein 14-3-3 was speculated to participate in the process nematode infect host plant. And two14-3-3 isoforms isolated from *M. incognita* infective larvae (Jaubert *et al.*, 2004; Curtis, 2007; Dubreuil *et al.*, 2007) maybe involve in infection. Expression 14-3-3 gene in *H. schachtii* has also been localized within genital primordia of infective J2 (De *et al.*, 2001). And we could obtain the partial sequences of *H. glycines* 14-3-3 gene from NCBI (article unpublished) and the full long still not reported. In our study we cloned the full cDNA sequence of

14-3-3 gene from *H. glycines* and *M. incognita* further alignment amino acid sequences, the results showed that the sequence of *H. glycines* 14-3-3 gene was 100% homology with the fragment in GenBank (GenBank: AF402309.1) and *M. incognita* 14-3-3 gene was 97% similar to that previously reported (GenBank: AF070225.1).

The ubiquity of 14-3-3 gene was validated again by our subcellular localization analysis. Multiple sequence alignment and phylogenetic analysis showed 14-3-3 genes were the highly conserved this result was consistent with former research. We supposed the functions of these proteins be conserved between plants and nematodes. The important function was phosphatases. The 14-3-3 proteins bound to a wide array of target proteins and then modulation many proteins involved in phosphatases and protein kinases (Yaffe *et al.*, 1997; Masters *et al.*, 1999; Sehnke *et al.*, 2002). Other functions of 14-3-3 proteins also reported. For example, cell regulatory pathways, including signal transduction, apoptosis, stress response and transformation, could be targeted by one or several 14-3-3 gene isoform products in organisms ranging from yeast to human (Finnie *et al.*, 1999; Van Hemert *et al.*, 2001).

Therefore studies on these highly conserved proteins may allow novel strategies of plant-parasite nematode control. Maybe a potential strategy by interfering with the expression of 14-3-3 genes would be used to control the two nematodes.

References

Abad, P., Favery, B., Rosso, M-N., & Castagnone-Sereno, P. (2003). Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. *Molecular Plant Pathology*, 4, 217-224. http://dx.doi.org/10.1046/j.1364-3703.2003.00170.x

Araiz, C., Château, M-T., & Galas, S. (2008). 14-3-3 regulates life span by both DAF-16-dependent and -independent mechanisms in *Caenorhabditis elegans*. *Experimental Gerontology*, 43, 505-519. http://dx.doi.org/10.1016/j.exger.2008.03.001

Bellafiore, S., Shen, Z., Rosso, M-N., Abad, P., Shih, P., & Briggs, S. P. (2008). Direct identification of the *Meloidogyne incognita* secretome reveals proteins with host cell reprogramming potential. *PLoS Pathogens*, 4, 1-12. http://dx.doi.org/10.1371/journal.ppat.1000192

Curtis, R. H. C. (2007). Plant parasitic nematode proteins and the host-parasite interaction. *Briefings in Functional Genomics and Proteomics*, 6, 50-58. http://dx.doi.org/10.1093/bfgp/elm006

Davis, E. L., Hussey, R. S., & Baum, T. J. (2009). Parasitism genes: what they reveal about parasitism. *Plant Cell Monographs*, 15, 15-44. http://dx.doi.org/10.1007/978-3-540-85215-5_2

De, M. J., Vanholme, B., & Bauw, G. (2001). Preparation and sequencing of secreted proteins from the pharyngeal glands of the plant parasitic nematode *Heterodera schachtii*. *Molecular Plant Pathology*, 2, 297-301. http://dx.doi.org/10.1046/j.1464-6722.2001.00078.x

Dubreuil, G., Magliano, M., Deleury, E., Abad, P., & Rosso, M. N. (2007). Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. *New Phytologist*, 176, 426-436. http://dx.doi.org/10.1111/j.1469-8137.2007.02181.x

Finnie, C., Borch, J., & Collinge, D. B. (1999). 14-3-3 proteins: eukaryotic regulatory proteins with many functions. *Plant Molecular Biology*, 40, 545-554. http://dx.doi.org/10.1023/A:1006211014713

Fu, H., Subramanian, R. R., & Masters, S. C. (2000). 14-3-3 Proteins Structure, Function, and Regulation. *Annual Review of Pharmacology and Toxicology*, 40, 617-647. http://dx.doi.org/10.1146/annurev.pharmtox.40.1.617

Hassan, S., Behm, C. A., & Mathesius, U. (2010). Effectors of plant parasitic nematodes that re-program root cell development. *Functional Plant Biology*, 37, 933-942. http://dx.doi.org/10.1071/FP10112

Jaubert, S., Laffaire, J-B., Ledger, T. N., Escoubas, P., Amri, E-Z., Abad, P., & Rosso, M. N. (2004). Comparative analysis of two 14-3-3 homologues and their expression pattern in the root-knot nematode *Meloidogyne incognita. International Journal for Parasitology*, 34, 873-880. http://dx.doi.org/10.1016/j.ijpara.2004.02.008

Jaubert, S., Ledger, T. N., Laffaire, J. B., Piotte, C., Abad, P., & Rosso, M. N. (2002). Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach. *Molecular & Biochemical Parasitology*, 121, 205-211. http://dx.doi.org/10.1016/S0166-6851(02)00034-8

Joshua, E. K., Gao, X., Krepp, J. M. & Hawdon, J. M. (2009). Interaction of hookworm 14-3-3 with the forkhead

transcription factor DAF-16 requires intact Akt phosphorylation sites. *Parasites & Vectors*, 2, 21-34. http://dx.doi.org/10.1186/1756-3305-2-21

Klink, V. P., Kim, K-H., Martins, V., MacDonald, M. H., Beard, H. S., Alkharouf, N. W., Lee, S-K., Park, S-C., & Matthews, B. F. (2009). A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female *Heterodera glycines* cyst formation during infection of *Glycine max*. *Planta*, 230, 53-71. http://dx.doi.org/10.1007/s00425-009-0926-2

Li, J., Tewari, M., Vidal, M., & Lee, S. S. (2007). The 14-3-3 protein FTT-2 regulates DAF-16 in *Caenorhabditis elegans. Developmental Biology*, 301, 82-91. http://dx.doi.org/10.1016/j.ydbio.2006.10.013

Masters, S. C., Pederson, K. J., Zhang, L., Barbieri, J. T., & Fu, H. (1999). Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of *Pseudomonas aeruginosa*. *Biochemistry*, *38*, 5216-5221. http://dx.doi.org/10.1021/bi982492m

Moore, B.W., & Perez, V. J. (1967). Specific acidic proteins of the nervous system. In F. D. Carlson (Ed.), *Physiological and biochemical aspects of nervous integration* (pp. 343-359). Woods Hole: Prentice Hall Inc.

Morton, D. G., Shakes, D. C., Nugent, S., Dichoso, D., Wang, W., Golden, A., & Kemphues, K. J. (2002). The *Caenorhabditis elegans par-5* gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. *Developmental Biology*, 241, 47-58. http://dx.doi.org/10.1006/dbio.2001.0489

Nitao, J. K., Meyer, S. L. F., & Chitwood, D. J. (1999). In-vitro assays of *Meloidogyne incognita* and *Heterodera glycines* for detection of nematode-antagonistic fungal compounds. *Journal of Nematology*, 31, 172-183.

Rubio, P. M., Geraghty, K. M., Wong, B. H. C., Wood, N. T., Campbell, D. G., Morrice, N. & Mackintosh, C. (2004). 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. *Journal of Biochemistry*, 379, 395-408. http://dx.doi.org/10.1042/BJ20031797

Sasser, J. N., Hartman, K. M., & Carter, C. C. (1987). Summary of preliminary crop germplasm evaluation for resistance to root- knot nematodes. *Raleigh, NC: North Carolina State University and US Agency for International Development*, 1-88.

Sehnke, P. C., DeLille, J. M., & Ferl, R. J. (2002). Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. *The Plant Cell*, 14, 339-354.

Siles-Lucas, M. M., & Gottstein, B. (2003). The 14-3-3 protein: a key molecule in parasites as in other organisms. *Trends in Parasitology*, 19, 575-581. http://dx.doi.org/10.1016/j.pt.2003.10.003

Su, T. T., Parry, D. H., Donahoe, B., Chien, C-T., O'Farrell, P. H., & Purdy, A. (2001). Cell cycle roles for two 14-3-3 proteins during *Drosophila* development. *Journal of Cell Science*, 114, 3445-3454.

Van Hemert, M. J., Steensma, H. Y., & Van Heusden, G. P. (2001). 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. *Bioessays*, 23, 936-946. http://dx.doi.org/10.1002/bies.1134

Wang, W., & Shakes, D. C. (1996). Molecular evolution of the 14-3-3 protein family. *Journal of Molecular Evolution*, 43, 384-398. http://dx.doi.org/10.1007/BF02339012

Wang, Y., Oh, S. W., Deplancke, B., Luo, J., Walhout, A. J. M., & Tissenbaum, H. A. (2006). *C. elegans* 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. *Mechanisms of Ageing and Development*, 127, 741-747. http://dx.doi.org/10.1016/j.mad.2006.05.005

Wrather, J. A., & Koenning, S. R. (2006). Estimates of disease effects on soybean yields in the United States 2003 to 2005. *Journal of Nematology*, 38, 173-180.

Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Leffers, H., Gamblin, S. J., Smerdon, S. J., & Cantley, L. C. (1997). The structural basis for 14-3-3: phosphopeptide binding specificity. *Cell*, 91, 961-971. http://dx.doi.org/10.1016/S0092-8674(00)80487-0

1	$1 \qquad {\tt ggtttaattacccaagtttgaggagaattgaaattttatcttttgaaaatcgtctagacctatttaatttttcgaaaa}$																			
79	ATG	TCT	GAC	AAC	AAA	GAA	GAA	CTC	GTT	CAG	CGG	GCT	AAG	TTG	GCT	GAG	CAA	GCT	GAG	CGC
	M	S	D	Ν	Κ	Е	Е	L	۷	Q	R	A	К	L	A	Е	Q	A	Е	R
139	TAC	GAT	GAC	ATG	GCT	CAG	TCG	ATG	AAA	AAG	GTG	ACG	GAA	TTG	GGT	GCG	GAG	TTG	AGT	AAT
	Y	D	D	М	Α	Q	S	М	К	Κ	۷	Т	Е	L	G	A	Е	L	S	Ν
199	GAG	GAG	CGC	AAC	CTG	TTG	TCG	GTT	GCA	TAC	AAA	AAT	GTG	GTC	GGT	GCG	CGT	CGT	TCC	TCG
	Е	Ε	R	N	L	L	S	۷	A	Y	K	N	۷	۷	G	A	R	R	S	S
259	TGG	CGC	GTT	ATC	TCG	TCC	ATT	GAA	CAG	AAG	ACT	GAG	GGC	TCG	GAG	AAG	AAG	CAG	CAG	ATG
	W	R	۷	I	S	S	I	Е	Q	K	T	Е	G	S	Е	K	К	Q	Q	М
319	GCC	AAG	GAG	TAT	CGG	GAG	AAG	GTG	GAG	CAG	GAG	TTG	CGA	GAG	ATC	TGT	CAC	GAC	GTG	CTG
	A	К	Е	Y	R	Е	К	۷	Е	Q	Е	L	R	Е	I	C	Н	D	۷	L
379	GAT	TTG	CTC	GAC	AAA	TAT	CTG	ATC	CCG	AAG	GCT	GGC	AAC	CCG	GAA	TCA	AAG	GTG	TTC	TAC
	D	L	L	D	K	Y	L	I	Ρ	K	A	G	N	Ρ	Е	S	К	۷	F	Y
439	CTG	AAG	ATG	AAG	GGT	GAC	TAC	TAC	CGC	TAC	CTG	GCT	GAG	GTT	GCC	ACC	GGT	GAC	GAC	CGA
	L	K	М	K	G	D	Y	Y	R	Y	L	A	Е	۷	A	Т	G	D	D	R
499	AAC	GCT	GTT	GTC	GAG	AAG	TCG	CAG	CAG	TCG	TAC	CAG	GAA	GCG	TTT	GAC	ATT	GCC	AAG	GAC
	N	A	۷	۷	Е	K	S	Q	Q	S	Y	Q	Е	A	F	D	I	A	K	D
559	AAA	ATG	CAG	CCC	ACC	CAT	CCC	ATT	CGT	CTT	GGT	CTG	GCG	CTG	AAC	TTC	TCT	GTG	TTC	TAC
	K	М	Q	Ρ	Т	Η	Ρ	I	R	L	G	L	A	L	Ν	F	S	۷	F	Y
619	TAT	GAA	ATT	CTG	AAC	TCA	CCG	GAC	AAG	GCG	TGC	CAA	CTC	GCC	AAA	CAG	GCG	TTC	GAT	GAT
	Y	Е	I	L	Ν	S	Ρ	D	К	A	С	Q	L	A	К	Q	A	F	D	D
679	GCG	ATT	GCT	GAG	CTG	GAC	ACG	CTC	AAC	GAG	GAC	TCG	TAC	AAG	GAC	TCC	ACT	CTG	ATC	ATG
	A	I	Α	Е	L	D	Т	L	Ν	Е	D	s _	Y	K	D	S	T	L	1	М
739	CAA	CTG	TTG	CGT	GAC	AAC	TTG	ACG	CTT	TGG	ACA	TCC	GAC	ACG	GCT	GGC	GAT	GAG	CAG	GAG
	Q	L	L	R	D	Ν	L	T	L	W	T	<u>s</u>	D	Т	A	G	D	Е	Q	E
799	GCT	GGT	GGT	GAG	GCG	GGC	GAA	GCT	GGT	GGC	AAC	TGA								
	A	G	G	Е	Α	G	Е	A	G	G	Ν	*								
836	tcgg	ggcgį	gaca	gacg	ttgaa	agaco	caaga	aaat	gcco	ccac	gaaat	tttt	tcca	accga	atca	attta	aatga	acaat	ttatg	gctt
914	ttct	tcaat	tatg	gcact	tttt	gatte	gggta	aatt	ttt	ttgaa	aaaat	tcgtt	caat	taaa	atte	gtcgi	tta	ccagi	tcact	ctg
992	aaca	attaa	aaaat	ttggo	cgtti	ctca	aaaaa	aaaaa	aaaa											

Figure 1. cDNA sequence and predicted amino acids sequence of Hgly2

The lower-case characters indicate noncoding regions; the stop codon is indicated with an asterisk; the shadow areas indicates poly (A); underline sequences were proteins motif.

1	aattttttgtcatttttagatcttacgattacatattat																			
40	ttttctccccatgtttttaatttttttaatttattgttagtatacaactgattatagtccgtagggtctagtgttattt																			
119	ttaaattgattttttttttgtatttaagcttgacgagaagtatataatcattatcattcttctttttgggtttgaactttg																			
198	tgattttatttgtgtccgaaatgtcccacatgtccgaaatgtcttccttc																			
277	ggaaaagacaccttagttgttcactagacattatagatcaagctttacctcatgtcgataagtacacagctttacgcat															gcat				
356	tagaacctattctacgcggcatgctcgtatatgccaaacatttgtggacgtgggccgataaacgcatagttccaacttc															cttc				
435																atca				
514	$a \verb+tccccttataattatcaatttcttttatttcagtattacatattatcttcttacgcttaattttctttc$																			
593	ATG	ACG	GAG	ACA	ATG	TTG	GAT	TGC	тст	GAC	AAG	GTG	ACT	GAG	TCC	AAG	GAA	GAA	CTT	GTT
	М	Т	Е	т	M	L	D	С	S	D	К	۷	т	E	S	К	Е	Е	L	٧
653	CAG	CTT	GCC	AAA	CTC	GCC	GAA	CAG	GCT	GAG	CGT	TAT	GAT	GAC	ATG	GCA	GAG	TCA	ATG	AAG
	Q	L	A	К	L	A	Е	Q	A	Е	R	Y	D	D	M	A	Е	S	M	К
713	AAG	GTT	ACC	GAA	TTT	GGA	GAC	GAA	CTG	тст	AAT	GAG	GAG	CGC	AAT	CTT	СТС	TCG	GTT	GCT
	K	۷	Т	Е	F	G	D	Е	L	S	N	Е	E	R	N	L	L	S	۷	A
773	TAT	AAG	AAT	GTT	GTT	GGG	GCT	CGT	CGT	тст	TCT	TGG	CGT	GTT	CTT	TCG	тст	ATT	GAG	CAA
	Y	Κ	N	۷	۷	G	A	R	R	S	S	W	R	۷	L	S	S	I	Е	Q
833	AAG	ACC	GAA	GGG	GGG	AAG	AAG	ACG	ATG	ACT	AAG	GAA	TAC	CGT	GAG	AAG	ATY	GAR	KGT	GAA
	Κ	Т	Е	G	G	Κ	Κ	Т	M	Т	Κ	Е	Y	R	Е	Κ	I	Е	Х	Е
893	TTG	CGT	GAC	ATT	TGC	AAA	GGK	GTT	ATG	AAT	CTT	CTG	GAC	AAA	TTT	CTT	ATT	CCG	AAA	GCT
	L	R	D	L	C	К	G	۷	М	Ν	L	L	D	К	F	L	L	Ρ	К	A
953	GGA	ACT	CCT	GAT	TCT	AAA	GTG	TTC	TAC	CTT	AAG	ATG	AAG	GGC	GAC	TAC	TAT	CGT	TAT	TTG
	G	Т	Ρ	D	S	K	۷	F	Y	L	K	М	K	G	D	Y	Y	R	Y	L
1013	GCT	GAG	GTT	TCT	TCT	GGT	GAT	GAG	TTG	ACT	GAT	GTT	ATC	GAC	AAA	TCA	CAA	CAG	AGT	TAC
	Α	Е	۷	S	S	G	D	Е	L	Т	D	۷	L	D	К	S	Q	Q	S	Y
1073	CAA	GAG	GCT	TTC	GAT	ATT	GCT	AAG	GAC	AAA	ATG	CCG	CCA	ACT	CAT	CCA	ATT	CGT	CTT	GGG
	Q	Е	Α	F	D	I	A	K	D	K	М	Ρ	Ρ	Т	Η	Ρ	I	R	L	G
1133	CTG	GCT	CTC	AAC	TTT	TCG	GTC	TTC	TAC	TTT	GAG	ATT	CTC	GAC	AAT	AAG	GAC	AAG	GCT	TGT
	L	Α	L	N	F	S	۷	F	Y	F	Е	I	L	D	N	K	D	K	A	C
1193	CAG	TTG	GCT	AAG	CAG	TCT	TTT	GAT	GAG	GCT	GTT	GCT	GAG	TTG	GAC	ACT	CTT	GAC	GAG	AAT
	Q	L	Α	K	Q	S	F	D	Е	Α	۷	A	Е	L	D	Т	L	D	Е	Ν
1253	TTG	TAC	AAG	GAC	TCG	ACT	CTC	ATT	ATG	CAA	CTT	CTT	CGC	GAC	AAT	TTG	ACT	CTG	TGG	ACT
	L.	Y	K	D	S	T	L	I	М	Q	L	L	R	D	N	L	T	L	W	T
1313	TCC	GAT	GGC	GGC	GCT	GAG	GAA	CCG	GAG	GCG	GCT	CCA	ATT	GCT	GCT	GAT	GCC	GAA	GGC	ACA
	<u>s</u>		G	G	A	Е	Е	Ρ	Е	Α	A	Ρ	I	A	A	D	Α	Е	G	Т
1373	AAT	TAA																		
	Ν	*																		
1379															_				attc	gagt
1458	att	tgtt	tgtt	tatga	attat	tatti	tttgi	tctt	tcga	ccato	ctata	aaaa	aaagt	ttggo	caaaa	aaaa	aaaaa	а		

Figure 2. cDNA sequence and predicted amino acids sequence of Minc3

The lower-case characters indicate noncoding regions; the stop codon is indicated with an asterisk; the shadow areas indicates poly (A); underline sequences were proteins motif.

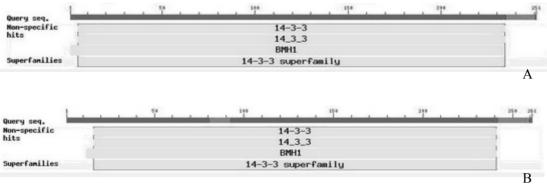


Figure 3. Conserved domains of amino acid sequences of Hgly2 (A) and Minc3 (B)

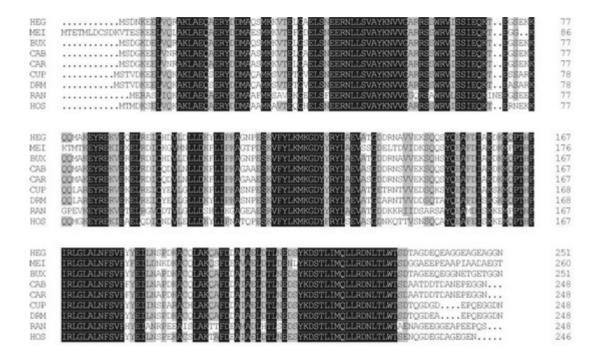


Figure 4. Alignment of deduced amino acid sequences of Hgly2 and Minc3 with other species

HEG, MEI, BUX, CAB, CAR, CUP, DRM, RAN, HOS denote14-3-3 protein from *H. glycines*, *M. incognita*, *B. xylophilus*, *C. brenneri*, *C. remanei*, *C. pipiens*, *D. melanogaster*, *R. norvegicus*, *Homo sapiens* respectively; Dots indicate gaps introducing to facilitate the alignment; Identical and similar amino acid residues are shaded in black and gray.

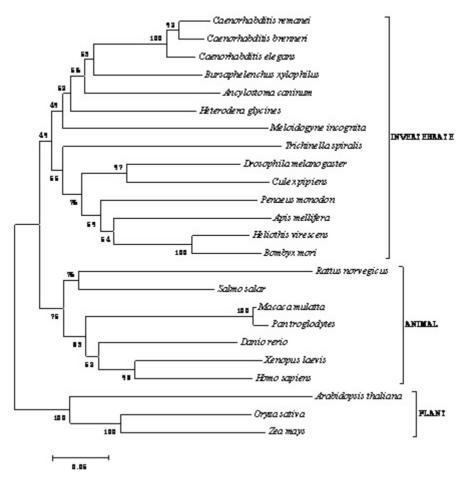


Figure 5. A phylogenetic tree analysis with *Hgly2*, *Minc3* and 22 species 14-3-3 proteins using Neighbor-Joining method