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Abstract 
The thermal performance of a single slope (SS) solar still integrated with a condenser supplied with cooled water 
from an evaporative cooling system under hot and humid climatic conditions were studied and analyzed. Results of 
this study shows that the solar energy available inside the still with and without condenser resulted in an increase in 
the brackish water temperatures of 8.1 ºC. It also increased the temperature of the water vapor inside the still by 
12.7 ºC. Due to increase in the intensity of solar radiation and consequently the heat energy stored inside the single 
slope solar still, the productivity of distilled water was 5941.4 ml/m2 day. The thermal efficiency of the (SS) still 
without using condenser was on, an average, 54.4%. Connecting the solar still to a condenser led to an increase in 
the productivity and thermal efficiency to 55.41% and 30.1%, respectively. The obtained data also revealed that 
the pH (7.9), EC (43.4 μs/cm), and TDS (30.9 ppm) values were lower than those of the brackish water (8.1, 1,436 
μs/cm, and 1,370 ppm, respectively).  
Keywords: solar still, single slope, condenser, evaporative cooling system 
1. Introduction 
Water is one of the most abundant natural resources on earth, and it covers three-quarters of the earth’s surface. 
However, approximately 97% of the earth’s water is salt water in the seas and oceans, and a tiny 3% is freshwater. 
This small percentage of the earth’s water, which supplies the needs of humans, animals, and plants, mainly exists 
in groundwater, lakes, and rivers. Approximately 25% of the world does not have access to the necessary quality 
and quantity of freshwater, and more than 80 countries face severe water problems (Badran & Abu-Khader, 2007). 
The global freshwater shortage, particularly in remote areas, presents an international problem. The problem is 
more severe in desert countries, such as the Gulf Cooperation Council (GCC) countries and, in particular, the 
Kingdom of Saudi Arabia (KSA), where freshwater shortages are a serious problem (Radhwan, 2004). Many of 
these countries, however, enjoy abundant and free high-intensity solar energy, so solar desalination might be an 
ideal technology that could provide some freshwater for both domestic and agricultural use. Solar distillation is 
one of the many processes that can be used for water purification. Among all the alternative energy resources, solar 
energy is one of the most promising of all the sources because of its potential to provide for our future energy needs. 
Many developing countries that normally could not afford to use desalinated water are likely to have much greater 
water needs due to population growth. These countries, in general, also receive a greater amount of solar radiation. 
For example, the daily average solar radiation flux incident on Saudi Arabia is 5-8 kWh/m2 (Al-Ansari, 2013). 
Solar radiation can be used as a source of heat energy in a process in which brackish or seawater is evaporated and 
then condensed as pure water (Hepbasli & Alsuhaibani, 2011). The Kingdom of Saudi Arabia (KSA) lies between 
the latitude angles of 17.5°N and 31°N and the longitude angles of 36.6°E and 50°E. This means that KSA is 
located in the heart of one of the world’s most productive solar regions, which receives the most potent type of 
sunlight. The annual average solar radiation falling on the Arabian Peninsula is approximately 2.2 MWh/m2 
(Hepbasli & Alsuhaibani, 2011). KSA is an arid desert country, and there are no perennial rivers or streams or 
permanent freshwater lakes. The rainfall is both scarce and infrequent and is associated with high evaporation and 
sandy land dissipation rates. The available groundwater supplies are deeply buried and do not replenish themselves 
(Radhwan & Fath, 2005). The many practical uses of solar energy in Saudi Arabia include lighting, cooling, 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 6, No. 1; 2014 

49 

cooking, water heating, crop and fruit drying, water desalination, operating irrigation pumps and meteorological 
stations, road and tunnel lighting, traffic lights, and road instruction signals (Hepbasli & Alsuhaibani, 2011). 
A solar pond (SP) is a stable pool of salt water in which the water salinity increases in the middle layer from its top 
to the bottom with a gradient that prevents convective temperature mixing. Heat is passively collected and stored 
in the lower convective zone because the middle layer is a nonconvective zone (Arjunan et al., 2009). Most 
commercial multistage flash (MSF) units operate with a top brine temperature of 90-110°C, heated by steam, 
whereas the solar pond operates in the range of 30-95°C. Therefore, in solar pond–assisted multistage flash (MSF) 
systems, the first stage of MSF heat exchangers is changed to a liquid-liquid heat exchanger instead of a 
steam-liquid heat exchanger (Micale et al., 2009). Because a solar pond combines solar collection and storage, it 
overcomes the intermittent nature of solar energy. However, the solar pond has to be oversized for winter 
conditions, necessitating that some of the surplus summer heat be wasted. As an alternative, waste heat energy 
from other sources (gas turbine, for example) may be used during periods of insufficient sunshine (Agha, 2009). 
These types of hybrid solar pond systems could store extra waste heat energy, such as from gas turbine exhaust 
during peak times to lower the freshwater production cost and the solar pond size (Tiwari et al., 2003; Drawish & 
Alsairafi, 2004; Kalogirou, 2005; Li et al., 2013).  
The thermal performance of a single basin solar still with the entering brine flowing between double glazing was 
investigated by Abu-Arabi et al. (2002). The main purpose of their arrangement was to lower the glass temperature 
and thus increase the temperature difference between the brine water and glass cover. This arrangement resulting 
in improved performance because a faster rate of evaporation from the basin of brine water was achieved. 
Utilization of solar energy with two different types of solar stills and the factors that influence the productivity of 
solar stills was studied by Al-Hayek and Badran (2004). They found that the productivity and efficiency of an 
asymmetric greenhouse-type still (ASGHT) having mirrors on its inside walls were higher than those of the 
symmetric greenhouse type still (SGHT).  
Greenhouse technology is a breakthrough in agriculture production technology that integrates market-driven 
quality parameters with production system profits (Kumar et al., 2009). Protected cultivation in greenhouses has 
become the favored way to develop the agriculture sector due to the harsh climate and the scarcity and poor quality 
of water resources on the Arabian Peninsula (Hepbasli & Alsuhaibani, 2011). In 2006, there was 5150 ha of 
greenhouses in Saudi Arabia producing 487,614 metric tons of vegetables (Alhamdan & Al-Helal, 2009). Cooling 
is considered a basic necessity for greenhouse crop production in tropical and subtropical regions to overcome the 
problems of high temperatures during summer months (Kumar et al., 2009). Evaporative cooling involves no 
change in the enthalpy (heat content) of the air mixture. Rather, as water evaporates, it takes heat from the air, thus 
reducing its temperature. Evaporative cooling systems are based on the conversion of sensible heat into the latent 
heat of evaporated water, with the water supplied mechanically. Evaporative cooling has been used to improve 
human, plant, and animal comfort for many years in thermal environmental control applications. It remains one of 
the least expensive techniques that can be used to bring the air dry-bulb temperature into a more comfortable range. 
It is a reliable method and requires minimum power consumption (Ahmed et al., 2011). Greenhouses located in dry, 
desert environments benefit greatly from evaporative cooling systems because large amounts of water can be 
evaporated into the incoming air, resulting in significant temperature drops. The fan-pad system consists of a fan 
on one sidewall and a pad on the other sidewall of the greenhouse. The principle of evaporative cooling is applied 
by running a water stream over the pad, followed by drawing air through the pad using fans on the opposite side. 
The fan-pad cooling produces two changes in the condition of air exiting the pads. The air becomes cooler and its 
humidity is also raised (Sethi & Sharma, 2007). As a result, the water draining from the cooling pads will have a 
lower temperature. Abdel-Rehim and Lashine (2012) concluded that combining the solar still with the 
air-conditioning system could increase the condensate output from the solar still while meeting the cooling load 
needs. Fath and Hosny (2002) used shielded separate condenser to increase the productivity of solar still. 
The main objectives of the present work are to investigate and to evaluate the various parameters affecting both the 
thermal efficiency and the productivity of single slope solar still, and to study the effect of integration using 
condenser supplied with cooled water from an evaporative cooling system on the performance of the solar stills. 
2. Materials and Methods 
A single slope solar still was designed, constructed, and tested during May 2013 at the Agricultural and Veterinary 
training and Research Station of King Faisal University, Saudi Arabia (Latitude angle 25.3ºN, longitude angle 
49.5ºE, and mean altitude above sea level 172 m). The geometric characteristics of the single slope still are as 
follows: width, 1.0 m; length, 2.0 m; still rafter angle, 35º; rafter length, 1.22 m; gable height, 0.7 m; basin height, 
0.2 m; and basin surface area, 2.0 m2, as demonstrated in Figure 1. 



www.ccsen

Basin liner
cm. The g
absorbed s
insulation 
side walls 
maximum 
mm thick 
following 
energy, mi
thermal re
rubber, wh
the expans
with the so
constant he
level in the
the volume
In the ope
brackish w
the water, 
(water vap
the inside 
using air; t
convection
and water.
flowed via
sufficient s
back into t
Brackish w
the concen
feed was d
To enhanc
operation o
the ambien
situated be
system to p
of galvaniz
long, and 

net.org/jas 

F

r of the solar st
galvanize basin
solar radiation
5 cm thick, wi
of the solar s
effective trans
was 16.5% mo
specifications 
inimum amou
sistance for he

hich plays an im
sion and contra
outhern longit
ead tank, whic
e basin constan
e of brackish w

eration of the 
water and the bo

which transfer
por condenses i

moist air). An
the remaining h
n and radiation
 Some heat en

a gravity into t
slope (35º); the
the basin). Tw

water with pH, 
ntration was us
distilled off. 
ce and improve
of the condens
nt air) coming
eside the solar 
provide and m
zed stainless-s
covered with 

Figure 1. Singl

till is made of a
ns was painted
n. The bottom
ith a thermal co
still into the su
smissivity of 0
ore productive
are required f
nt of reflection
eat loss from th
mportant role i
action between
tudinal side fa
ch was used to 
nt over time us
water in the ba
solar still, sola
ottom of the ba
rred to the glas
in a film on the
nother part of 
heat was transf

n. Some heat en
nergy may be lo
the collection t
erefore, the sur

wo plastic cont
EC, and TDS 

sually allowed 

e the thermal p
ser is dependen
g from the wat
still, as shown

maintain the coo
steel sheet 1.5 

a glass wool 

Journal of A

le slope (SS) s

a galvanized st
d by red-lead 

m and sides of
onductivity of 
urroundings. T
0.90. Experime
e than the still 
for the glass co
n for solar rad
he basin to the
in promoting e

n dissimilar ma
acing the sun's 
control the lev
sing a floating

asins was main
ar radiation w
asin. The sensi
s as water vapo
e inside surface
the heat from 
ferred by radia
nergy accumul
ost due to leak
trough at the l
rface tension o
ainers were us
values (8.1, 1,
to double befo

performance o
nt upon the co
ter storage tan
n in Figure 2. T
oled water at a 
mm thick. The
insulation ma

Agricultural Sci

50 

olar still [Figu
 

tainless-steel sh
primer and th

f the solar stil
f 0.045 W/m·ºC
The solar still w
ental results sh
with a glass c

over used in the
diation, maxim
e surroundings
efficient conde
aterials. The sol

rays. A small
vel of brackish 
g ball 2.5 cm de
ntained at 50 lit
was transmitted
ible heat absorb
or, where it wa
e, that is, at a te
water was tra

ation. The glass
ated in the sola
age of water v
ower edges of

of the water cau
sed to collect t
,436 μs/cm, an
ore the brackish

of the solar stil
oled water (wa

nk of the green
The condenser w

lower tempera
e outer tube (c
aterial, wherea

ience

ures, not drawn

heet 1.5 mm th
hen by matte-ty
ll was insulate
C to minimize t
was covered b

howed that a so
over 6 mm thi
e solar still: m

mum transmitta
s. The glass co
nsation operat
lar still was ori
l feeding tank 
water inside th
eep. For the du
ters. 

d through the 
bed by the brac
as condensed o
emperature be
ansferred to th
s cover transfer
ar still in the fo
apor and water

f the tilted glas
used it to flow
the distilled w

nd 1,370 ppm, r
h water was re

lls, it was con
ater temperatu
nhouse evapor
was located 0.
ature. It consis
old-water cylin
as the inner tu

 
n to scale] 

hick with a max
ype black pain
ed from outsid
the heat loss fr
by 3 mm thick
olar still with a
ick (Murugave

minimum amou
ance for solar 
over has been s
tions because it
ientated in an E
was located b

he solar still to
uration of the e

glass cover an
ckish water wa
on the undersid
low the dew-p

he glass cover 
rred the heat to
orm of the sens
r from the still
ss cover (the g

w into the troug
ater coming ou
respectively) w

emoved, so half

nnected to a co
ure at the wet-b
ative cooling 
8 m from the e

sted of two cyli
nder) was 0.4 
ube (water va

Vol. 6, No. 1;

ximum height 
nt to maximiz
de with rock 
rom the bottom
k clear glass w
a glass cover pl
el et al., 2008)
unt of absorbed
radiation, and 

sealed with sili
t can accommo
East-West dire
beside the still
o maintain the w
experimental w

nd absorbed by
as used to evap
de of the glass c
point temperatu

by free conve
o the atmosphe
sible heat of the
l. Condensate w
glass cover was
gh without drop
ut of the solar

was used as the
f of the water i

ondenser. The b
bulb temperatu
system, which
evaporative co
indrical tubes m
m in diameter

apor) was 0.2 

2014 

of 20 
e the 
wool 

m and 
with a 
late 3 
. The 

d heat 
high 

icone 
odate 
ction, 
l as a 
water 
work, 

y the 
orate 
cover 
ure of 
ction 
re by 
e still 
water 
s at a 
pping 

still. 
e feed; 
in the 

basic 
ure of 
h was 
oling 
made 
, 1 m 
m in 



www.ccsen

diameter a
(inside sur
the conden
An experim
utilize the
characteris
31º; width
frame was 
μm thick. T
one extrac
0.16 m3 w
 

Fi
 

Figure 3. S

net.org/jas 

and 1 m long, a
rface of the inn
nsation process
mental gable-e
e evaporative c
stics of the gab

h, 1.30 m; leng
made of wood
The greenhous
ting fan with th
ater reservoirs

igure 2. Single

Schematic diag

as revealed in 
ner tube) lower
s and the phase

even-span gree
cooling system

ble-even-span f
gth, 1.25 m; flo
den plates (0.05
se was orientat
he following s

s, and 1/3 hp w

e slope type (S

Vapor 

Insulation 

gram of the con

Journal of A

Figure 3. The 
r than the dew
e-change wate
nhouse form w

m being used 
form were as fo
oor surface are
5 m × 0.05 m).
ted in the East

specifications: 
water pump. 

SS) solar still c

In

C

Cold Water O

ndenser using c
dra

Agricultural Sci

51 

function of the
w-point tempera
er vapor into fr
was designed, c

to provide co
follows: eaves h
ea, 1.625 m2; a
 It was covered

t-West directio
0.4 m diamete

onnected to a 

Condenser

Cold Wate

Out

Cold Water

Cold Water

cooled water fr
awn to scale]

 

ience

e condenser is
ature of water 
reshwater, as d
constructed, an
ooled water fo
height, 1.25 m
and volume, 2
d with a single 

on. The evapor
er and 900 m3/h

condenser [Fig

Vapor Out

r In

Distilled Water Out

rom the evapor

s to provide a s
vapor, conseq

demonstrated in
nd installed bes
or the condens

m; gable height,
2.1 m3. The gre
 polyethylene 

rative cooling s
h discharge, 1 m

gure, not draw

 
rative cooling 

Vol. 6, No. 1;

surface temper
quently speedin
n Figure 4. 
side the solar st
ser. The geom
 0.30 m; span a
eenhouse struc
sheet (PE, UV
system consist
m2 of cooling p

 
wn to scale] 

system [Figure

2014 

ature 
ng up 

till to 
metric 
angle, 
ctural 
) 200 
ed of 
pads, 

e, not 



www.ccsen

 
2.1 Therm
The therm
evaporatio
following 

This equa
performan
(by drippin
indicated 
measurem
computed 

where mp 
vaporizatio
in W/m2.  
2.2 Measu
Meteorolo
speed and
U30-NRC
Measurem
temperatur
solar still w
The hourly
(1000 ml)
electrical c
3. Results
The solar 
solar radia
the effect 
ambient a
temperatur
measured 
were also 
wind speed

net.org/jas 

F

al Efficiency o
mal efficiency 
on-condensatio
equation (ASH

ation is usuall
nce. However, i
ng from the gla
by the above 

ments (volumet
using the follo

is the rate at w
on in kJ/kg, Ab

urements and D
ogical data, inc
d direction, and

 Weather Stati
ments inside th

re, Tv; inside g
were carried ou
y produced di
. Moreover, th
conductivity (E
 and Discussi
still was opera

ation intensity, 
of each param

air temperature
re (Tw), inten
hourly. The to
measured. Dif
d was found to

igure 4. Single

of the Solar Sti
of a solar stil

on (W/m2) to 
HRAE, 2005; D

ly integrated o
in practice, bec
ass cover and l

equation. Th
tric thermal e
owing equation

which the distil
b is the surface 

Data Acquisitio
cluding the sol
d the relative 
ion, Onset Com

he solar stills (
glass temperatu
ut using extern
stilled water v
he quality para
EC), and total 
on 
ated from 7.00
various tempe

meter on the p
e (Ta), glass 
sity of solar r

otal productivit
fferent experim
o be approxima

Journal of A

e slope type (S

ill 
ll is defined a
the solar radi
Duffie & Beck

η

over some ex
cause there is s
leakage from th
herefore, the t
efficiency), w
n (ASHRAE, 2

voη

llate of freshw
area of the bas

on 
ar radiation flu
humidity of t

mputer, USA).
(ambient air t
ure, Tgi; and ou
nal temperatur
values were re
ameters of the
dissolved solid

0 am to 17.00 p
eratures, and th
productivity of
cover temper
radiation (R), 
ty of distilled w
mental tests w
ately 3.2-5.8 m

Agricultural Sci

52 

 
SS) solar still c

as the ratio of
iation (R) on 
kman, 2006):

R
q ev

vol =η

xtended period
some loss of pr
he collecting tr
thermal efficie

which represen
2005; Duffie &

A
hm

b

fp
ol 6.3

=

water is produc
sin in m2, and R

ux incident on
the air, were m
. 
temperature, T
utside glass tem

re sensors conn
ecorded for ea
e distilled wate
ds (TDS), wer

pm during the 
he production o
f the solar stil
rature (Tg), w

wind speed (
water and inten

were also execu
m/s. 

ience

connected to a 

f the rate of h
the still (W/m

           

d (e.g., day o
roduct freshwa
roughs), less p
ency of the so
nts the produc
& Beckman, 20

R
fg        

ed from the sti
R is the solar ra

n a horizontal s
measured by a

Ta; brackish w
mperature, Tgo
nected to the sa
ach hour using
er produced b

re measured. 

month of May
of distilled wa
l. In this study

water vapor tem
(V), and prod
nsity of solar r

uted at differen

condenser 

heat transfer (
m2). It can be

            

or month) to 
ater back into t
product would 
olar still from
ctivity of fres
006): 

            

ill in kg/s, hfg 
adiation flux in

surface, the air
a meteorologic

water temperatu
o) of the solar r
ame system.  

g a graduated m
by the solar dis

y 2013. The m
ater were taken
y, various var
mperature, (T

ductivity of di
radiation for e
nt ambient con

Vol. 6, No. 1;

(qev) in the sti
e calculated by

            

indicate long-
the basin of the
be available th

m the experim
shwater, is m

            

is the latent he
ncident on the b

r temperature, 
cal station (HO

ure, Tw; still v
radiation insid

measuring cyl
stiller, such as

measurements o
n each hour to s
riables, such a
Tv), brackish w
istilled water 
ach day (five d
nditions. The m

2014 

  

ill by 
y the 

 (1) 

-term 
e still 
han is 

mental 
mainly 

 (2) 

eat of 
basin 

wind 
OBO 

vapor 
de the 

inder 
s pH, 

of the 
study 

as the 
water 
were 
days) 
mean 



www.ccsen

3.1 Case 
Condenser
Figure 5 r
intensity o
gradually d
(five days)
The intens
The volum
can reveal 
early morn
Figure 5. F
still was 5
early in the
decreased 
radiation in
due to the 
and the bra
amount of
obtained d
afternoon, 
vaporize th
vapor and 
 

Figure 5. V

 
The exper
clearly see
(59.2ºC) in
After 14.0
which bec

net.org/jas 

1: Compariso
r)  
reveals the hou
of solar radiatio
decreased unti
), the hourly av
sity of solar rad
metric thermal 

the best solar 
ning (21.9%) u
For the duratio
54.4%. At the m
e afternoon. Th
over time in th
ncreased, the t
increase of the
ackish water. I

f solar energy 
data revealed th

the temperatu
he liquid and v
the glass cove

Volumetric ther

rimental result
en that an incre
n the afternoon
00 hr, the brack
ame larger tha

on of the Ther

urly average in
on gradually in
il reaching the
verage intensit
diation has an 
efficiency of t
still design. Th

until it reached 
on of the experi
maximum valu
hen, the heat e
he afternoon). 
temperature di
e water temper
In the early m
was needed to
hat the water te

ure of brackish 
vice versa in th
er for the solar 

rmal efficiency

s from the sol
ease in the bra
n (at 14.00 hr) b
kish water tem

an the absorbed

Journal of A

rmal Performa

ntensity of sol
ncreased from s
e minimum val
ties of solar rad
important effe
the solar still i
he volumetric 
the maximum
imental tests, t
ues, the intens
energy losses b
From the prev
fference betwe

rature through 
morning, the tem
o change the p
emperature and
water reached
he late afterno
still was 10.8 

y for the solar 
during the

lar still taken 
ackish water te
because the ab

mperature decr
d solar radiatio

Agricultural Sci

53 

ance and Pro

lar radiation on
sunrise until re
lue prior to sun
diation inside t
ect on the therm
s considered th
thermal efficie

m values (69.2%
the hourly aver
sity of solar ra
became greater
vious results, i
een the brackis
the conduction
mperatures of 
phase from satu
d heat energy r

d the maximum
oon. The hourl
ºC. 

still, the intens
e experimental 

from five succ
emperatures oc
bsorbed solar ra
reased because
on.  

 

ience

oductivity of th

n the brackish
eaching the ma
nset. For the d
the single slope
mal performan
he most impor
ency for the so

%) in the aftern
rage volumetri

adiation was hi
r than the inten
t can be conclu
sh water and am
n process betw
the brackish w
urated liquid t
required are in

m value (59.2), 
ly average tem

sity of solar rad
tests 

cessive days a
ccurred until th
adiation excee
e of the heat e

he Solar Still 

h water inside 
aximum value 
duration of the
e (SS) solar sti

nce of the solar
rtant factor to 
olar still gradua
noon (at 14.00 h
ic thermal effi
igher than the 
nsity of the sol
uded that as th
mbient air incr

ween the black s
water were low
to the saturated
nversely propo
so less heat en

mperature differ

 
diation versus 

are plotted in F
hey reached th
ded the losses 

energy losses f

Vol. 6, No. 1;

(Without Usi

the solar still.
at noon, and th

e experimental 
ill was 631.5 W
r still.  
evaluate becau
ally increased 
hr), as illustrat
ciency for the 
heat energy lo

lar radiation (w
he intensity of 
reased conside
surface of the b

w; therefore, a 
d vapor phase
rtional. In the 

nergy was need
rences betwee

local standard

Figure 6. It ca
he maximum v

to the surroun
from the solar 

2014 

ing a 

. The 
hen it 
tests 

W/m2. 

use it 
from 

ted in 
solar 
osses 

which 
solar 
rably 
basin 
large 
. The 
early 

ded to 
n the 

time 

an be 
alues 
ding. 
still, 



www.ccsen

Figur
 
Figure 6 r
temperatur
cover temp
the differe
vapor temp
hours (7-9
productivi
As the inte
the increa
freshwater
the produc
values (93
values (27
parameters
 

 
3.2 Case 2
For the du
condensati
surfaces) w

net.org/jas 

re 6. Various te

reveals that the
re, the particle
perature was u
ence between t
perature, it cau
9 am), the gl
ty due to the s

ensity of the so
ase in heat en
r varied as time
ctivity of freshw
3.5 ml/m2 hr) i

74.4 ml/m2 hr
s that has a dir

Figure 7

2: Comparison
ration of this e
ion on the inne
was filled with

emperatures in

e water vapor
s have enough

usually lower t
them was very
used condensa
ass temperatu
mall amount o

olar radiation in
ergy gained f
e passed from 
water gradually
in the afternoo
r) just prior to
rect effect on th

7. Productivity

n of the Therma
experimental te
er surface of th
h cooled water

Journal of A

n the solar still 

r temperature w
h heat energy to
than that of the
y small. Becau
ation of vapor 
ure was closes
of heat energy 
nside the solar 
for brackish w
early morning
y increased fro
n (at 13.00 hr)
o sunset. The 
he productivity

y of freshwater

al Performanc
est, a condense

he condenser. E
r from an evap

Agricultural Sci

54 

versus local st

was the larges
o evaporate. It 
e water vapor 

use the glass co
on the inside 

st to the wate
absorbed by th
still increased

water vaporiza
g until late afte
om early morni
. The productiv
brackish wat

y of freshwate

r for the solar s

ce and Product
er was connect
Each shell of th
porative coolin

ience

tandard time d

st temperature 
can also be no
temperature, e
over temperatu
surface area o

er and vapor 
he water at the
, the productiv

ation inside th
ernoon, as show
ing (77.4 ml/m
vity then decre

ter temperatur
er. 

still versus loc

tivity of the So
ted to the solar
he condenser (s
ng system atta

 
during the expe

in the solar s
oticed from Fig
except in the e
ure is much lo
of the glass. In

temperatures,
ese times. 
vity of freshwat
he still. The p
wn in Figure 7

m2 hr) until reac
eased until reac
e can be cons

 
cal standard tim

lar Still (With 
r still to increa
space between
ached to a sma

Vol. 6, No. 1;

erimental tests

still because at
gure 6 that the 
arly morning w

ower than the w
n the early mor
, resulting in 

ter increased d
productivity ra
. It can be seen
ching the maxi
ching the mini
sidered one o

me 

a Condenser) 
ase the rate of v
n the inner and 
all greenhouse

2014 

t this 
glass 
when 
water 
rning 
little 

due to 
te of 
n that 
mum 
mum 
f the 

 
vapor 
outer 
. The 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 6, No. 1; 2014 

55 

cooled water temperature from the evaporative cooling system reservoir going to the condenser ranged from 18 to 
25°C. The means of various parameters within the solar still and the ambient air temperature during another five 
successive days were measured and are listed in Table 1. The daily average intensity of solar radiation inside the 
solar still was 7.369 kW/m2, which gave hourly average solar radiation intensities of 669.9 W/m2. In spite of the 
fact that the maximum value of the solar radiation intensity during the experimental period occurred at and around 
noon, the brackish water and water vapor temperatures still increased until reaching the maximum values in the 
afternoon (14.00 hr) because some heat energy accumulated inside the solar stills in the form of sensible heat. The 
temperatures of the glass covers of the solar still also increased from early morning until they approached the 
maximum values in the afternoon because part of the heat from the water was transferred to the glass cover by free 
convection using air, and the remaining part was transferred by radiation. The glass covers transferred the heat into 
the atmosphere by convection and radiation. Lowering the glass cover temperatures below the water and outside 
air temperatures helped increase the rate of heat and mass transfer. The temperature difference between the glass 
covers of the still and the basin brackish water increased, which increased the natural circulation of the air mass 
inside the two stills. The natural circulation increased both the convective and evaporative heat transfer between 
the basin brackish water and glass cover.  
 
Table 1. Hourly average ambient air temperature (Ta), intensity of solar radiation (R), water temperature (Tw), 
water vapor temperature (Tv), condenser water temperature (TCond), and glass cover temperature (Tg) for the single 
slope solar still during the experimental tests days 

Local standard time Ta, °C R, W/m2 Tw, °C Tv, °C Tg, °C TCond, °C 

7.00 31.6 264.2 32.3 35.5 33.3 22.5 

8.00 34.9 401.1 36.3 40.0 36.7 24.5 

9.00 37.6 639.2 39.5 43.5 40.1 25.1 

10.00 40.4 821.6 46.1 50.7 42.4 26 

11.00 42.9 928.7 53.7 59.1 45.0 26.6 

12.00 44.2 971.4 62.8 69.2 46.4 27.4 

13.00 45.1 947.1 70.8 77.9 47.4 28.1 

14.00 46.3 816.7 71.9 79.1 48.6 28.5 

15.00 46.7 726.8 70.1 77.2 48.0 28.5 

16.00 45.4 542.6 66.6 73.3 46.6 28.1 

17.00 44.1 309.8 62.4 68.6 45.3 27.2 

Total - 7369.2 - - - - 

Mean 41.7 669.9 55.7 61.3 43.6 26.6 

 
Figure 8 illustrates the productivity of freshwater for the solar still with and without using a condenser. The 
productivity rate of freshwater varied as time passes from early morning until late afternoon for both systems. 
Using the condenser with the solar still resulting in an increase in the condensed freshwater rate because the cooler 
inner surface of the condenser increased the rate of condensation. The daily average productivity of freshwater for 
the single slope solar still connected to a condenser increased from 5.9414 to 9.2333 L/m2 day, which gave an 
increasing rate of 55.41%. Because the inner surface temperatures of the two condensers were much smaller than 
the water vapor temperature, they caused an increasing condensation rate on the inner surfaces. In the early hours 
of the morning (7-8 am), the temperature difference between the inside parameters (brackish water and water 
vapor temperatures) of the solar still and the inner surface of the condenser was lower than at other times, which 
resulted in low freshwater productivity.  
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Moreover, produced distilled water can be added to the evaporative cooling system reservoir that will help in 
reducing salts build up on the cooling pads (pads clogging) and enhance the pads life suggesting that this system 
can be integrated to the evaporative cooling system. 
 
Table 2. Quality parameters (pH, EC, and TDS) of the solar distilled water and brackish water during the 
experimental tests 

Parameter Brackish water Distilled water 

pH 8.1 7.9 
Electrical conductivity (EC), µs/cm 1436 43.4 
Total Dissolved Solids (TDS), ppm 1370 30.9 

 
4. Conclusions 
In the present research work, several conclusions can be drawn: 
1) The increase in either the intensity of solar radiation and/or the ambient air temperature can lead to an 

increase in the productivity of a single slope solar still. 
2) As the intensity of the solar radiation inside the solar still is increased, the productivity of freshwater 

increased due to the increase in heat energy gained from brackish water vaporization inside the still. 
3) The maximum productivity and efficiency for single slope solar still occurred in the early afternoon due to 

the high heat energy accumulated inside the solar still at this time. 
4) The proposed technique of using a condenser that provides cooled water to increase the productivity of 

potable water significantly increases the productivity and volumetric thermal efficiency of the solar still. 
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