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Abstract 
Elevated UV-B radiation deleteriously affects rice yields. The impacts of plant growth regulator (PGRs; 
α-tocopherol, glycine betaine [GB] and salicylic acid [SA]) applications on higher plants have been the subject of 
many studies. However, little or no work has been carried out on rice responses to α-tocopherol, GB or SA under 
UV-B stress conditions. This study determined the effects of α-tocopherol (2.3 kg ha-1), GB (2.0 kg ha-1) or SA 
(12.9 g ha-1) application on rice leaf photosynthetic rate (PN), photochemistry and physiology under ambient and 
elevated UV-B conditions. Elevated UV-B decreased PN (17%), quantum yield (8%), electron transport rate (9%), 
total chlorophyll concentration (8%), plant height (12%), number of leaves (17%), pollen viability (6%), phenolic 
concentration (46%) and yield (21%). The applications of α-tocopherol, GB or SA increased yield by 23%, 18% 
and 29%, respectively, under elevated UV-B. Application of PGRs increased leaf phenolic content thus rendering 
protection against elevated UV-B. 
Keywords: α-Tocopherol, glycine betaine, phenolic content, rice, salicylic acid, UV-B 
1. Introduction 
Global stratospheric ozone depletion is elevating surface ultraviolet-B (UV-B) levels (Russell et al., 1996). 
Increase in UV-B levels can alter crop productivity as it affects photosystem II, the electron transport systems, 
enzymes, pigments, nucleic acids and growth regulators (Sullivan & Teramura, 1989; Caldwell & Flint, 1994). 
UV-B radiation can affect plants by inhibiting photosynthesis, damaging DNA, pollen and pollen tube 
development, and changing accumulation of biomass and partitioning (Caldwell et al., 1998; Feng et al., 2000). 
Elevated UV-B decreased leaf photosynthetic rate (PN), thereby decreasing rice yields (Dai et al., 1994; Kumagai 
et al., 2001; Mohammed & Tarpley, 2009a, 2010, 2011a). Elevated UV-B decreases leaf stomatal conductance 
(Dai et al., 1992), chlorophyll content (He et al., 1993; Huang et al., 1993), rubisco content (Ziska & Teramura, 
1992), nitrogen concentration, protein content (Hidema et al., 1996), chlorophyll fluorescence, and/or altered 
photosynthesis-related gene expression (Strid et al., 1996a,b), thereby decreasing PN. 
Apart from PN, enhanced UV-B radiation can negatively affect plant morphology and phenology (Mohammed & 
Tarpley, 2011a), pollen viability, pollen germination, pollen tube growth, fertilization and fruit set, thereby 
decreasing yield (Feng et al., 2000, Koti et al., 2005). Carotenoids can protect the photosynthetic apparatus against 
enhanced UV-B by quenching highly reactive singlet oxygen and dissipating excess excitation energy 
(Nonnengiesser et al., 1996; Rakhimberdieva et al., 2004). Phenolics in the epidermal layer also play an important 
role in protecting the photosynthetic apparatus against UV-B (Meijkamp et al., 1999). Hence, an increase in 
carotenoid and/or phenolic concentrations protects photosynthetic tissues from enhanced UV-B radiation. 
Alpha-tocopherol, GB or SA application enhances plant tolerance to abiotic stresses (DeLong & Steffen, 1998; 
Mohammed & Tarpley, 2011b, 2011c). The UV-B radiation has been shown to increase the peroxidation of lipids 
in plants (Predieri et al., 1995). The α-tocopherol present in the thylakoid membrane protects the structure and 
function of photosynthetic membranes by scavenging active O2 species and peroxyl radicals produced as a result of 
stress (Fryer, 1992; Hess, 1993). In addition, exogenous application of α-tocopherol increases membrane stability 
under elevated UV-B (Pelle et al., 1990). Glycine betaine enhances stress tolerance by protecting enzymes (Paleg 
et al., 1981), photosystem II (Allakhverdiev et al., 1996), membrane integrity and increasing the antioxidant status 
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of the plant (Mohammed & Tarpley, 2009b). Salicylic acid enhances resistance to biotic and abiotic stresses 
(Lopez-Delgado et al., 1998) by increasing antioxidant capacity and phenolic content in plants (Rao et al., 1997; 
Mohammed & Tarpley, 2009, 2011a; Ghasemzadeh & Jaafar, 2012). 
Genetic improvement and breeding for UV-B tolerant rice cultivars can be beneficial for rice adaptation to future 
climate conditions. However, genetic improvement and breeding for UV-B tolerance are long-term approaches. A 
short and easy way to negate the negative effects of enhanced UV-B is through the use of PGRs. The use of PGRs 
for the prevention and/or amelioration of various environmental stresses are a viable approach to make rice 
production more resilient to UV-B stress. Glycine betaine, SA, vitamin E, proline and choline are some of the 
PGRs which can induce stress-tolerance (thermotolerance, drought tolerance, cold tolerance and/or salinity 
tolerance) in various crop plants (Mohammed & Tarpley, 2011b). The research presented herein addresses the 
effects of α-tocopherol, GB or SA on rice leaf photosynthetic rate, photochemistry and physiology under UV-B 
conditions. 
2. Material and Methods 
2.1 Plant Material and Growing Conditions 
Three independent experiments were laid out in complete randomized design. In each experiment there were three 
replications per UV-B and PGR combination. Rice inbred cultivar ‘Cocodrie’, was used in all three experiments. 
Plants were grown in pots (15 cm diameter x 17.5 cm height) filled with a clay-rich soil and were placed in square 
boxes lined with 6.0 mm thickness black plastic (FILM-GARD, Minneapolis, Minnesota, USA). Four seeds per 
pot were sown at a 2.5-cm depth. After emergence, plants were thinned to one plant per pot, which were 
maintained until maturity. The boxes were filled with water to approximately 2 cm above the top of the soil in each 
pot, 20 days after emergence (DAE). Nitrogen was applied at planting, 20 DAE and at the panicle-differentiation 
stage as described by Mohammed et al., (2007). At planting, urea-N was applied at the rate of 113.5 kg ha-1 along 
with 45.4 kg ha-1 of phosphorus (P2O5). The remaining nitrogen fertilizations were applied at the rate of 79.5 kg 
ha-1 of nitrogen in the form of ammonium sulfate at 20 DAE and at the panicle-differentiation stage. Mean day 
temperature and humidity in the greenhouse were monitored using standalone sensor/loggers (HOBOs, Onset 
Computer Corporation, Bourne, Massachusetts, USA). The greenhouse temperature and absolute humidity ranged 
between 27-35 oC and 14-16 g/m3, respectively. The light intensity and CO2 in the greenhouse during the day were 
measured using a light quantum meter (Quantum Meter, Apogee Instruments, Logan, Utah, USA) and LI-6400 
(LI-6400, LI-COR Inc., Lincoln, Nebraska, USA), respectively. The light intensity in the greenhouse ranged 
between 600-800 μmol m-2 s-1. 
2.2 UV-B Radiation Treatments 
In all three experiments, UV-B radiation from fluorescent sun-lamps were delivered to plants for nine hours from 
0800 to 1700 h by UV-313 lamps (Q-Panel Company, Cleveland, Ohio, USA) driven by 40 W dimming ballasts in 
a square wave fashion. The lamps were wrapped with cellulose diacetate film (solarized 0.07 mm, JCS Industries 
Inc., La Mirada, California, USA) to filter out radiations below 280 nm. The cellulose diacetate on the lamps was 
changed at regular intervals to account for the degradation of the cellulose diacetate properties. The lamps were 
arranged on the aluminum frame to provide a uniform UV-B radiation over the canopy. Four UV-B lamps were 
used to supply the required dosage. The UV-B energy delivered at the top of the canopy was monitored daily with 
a UV meter (UVM, Apogee Instruments Inc. Utah, USA). Plants were exposed to UV-B dose of 5 (ambient) or 10 
(enhanced) kJ m-2 d-1, 20 DAE. 
2.3 Plant Growth Regulator (PGR) Treatments 
The PGRs, α-tocopherol (2.3 kg a.i. ha-1), GB (2.0 kg ha-1), and SA (12.9 g ha-1) were applied at the rate of 300 µL 
per plant at boot stage of rice plant using a pre-calibrated perfume-bottle sprayer. The PGRs were dissolved in 
de-ionized water with 0.5% (v/v) surfactant (Latron AG-98 spreader activator, Rohm and Haas Company, 
Philadelphia, Pennsylvania, USA). The α-tocopherol and SA were purchased from Sigma-Aldrich (St. Louis, 
Missouri, USA) and GB was supplied by Capstone Food Ingredients (Marion, Massachusetts, USA). 
2.4 Leaf Photosynthesis 
The net photosynthetic rate (PN) of the penultimate leaves was measured using a LI-6400 portable photosynthesis 
system (LI-COR Inc., Lincoln, Nebraska, USA), 10 days after PGR treatments (DAT). The PN was measured 
between 1000 h and 1200 h. When measuring PN, the light intensity, temperature and CO2 concentration in the leaf 
cuvette were set to 1500 µmol m-2 s-1, 25°C and 390 ppm (ambient CO2 concentration in the greenhouse), 
respectively.  
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2.5 Chlorophyll Fluorescence 
Chlorophyll fluorescence is often used to evaluate the functionality of the photosynthetic system in chloroplast 
membranes under various stresses (Chen et al., 2010). Chlorophyll a fluorescence parameters, maximum quantum 
efficiency of photosystem-II (Fv/Fm), thylakoid membrane stability (Fo/Fm), quantum yield of PSII (Y), electron 
transport rate (ETR) and non-photochemical quenching (NPQ) were assessed by measuring fluorescence with a 
pulse-modulated fluorometer (OS5p, Opti-Sciences, Hudson, NH, USA). The minimal fluorescence (Fo), 
maximum fluorescence (Fm) and Fv/Fm were measured in 30 min dark-adapted leaves. For Y and ETR, plants 
were under a steady state of photosynthesis (plants were exposed to ambient sunlight for more than 5 hours), a 
prerequisite for measuring Y and ETR. A photosynthetically active radiation (PAR) clip (OS5p PAR Clip, 
Opti-Sciences, Hudson, NH, USA) provides the PAR measurements while measuring Y and ETR. While 
measuring the Y and ETR the range of PAR was 600-700 μmol m-2 s-1. The coefficient of non-photochemical 
quenching of excitation energy (NPQ) was calculated using Klughammer and Schreiber’s equations, where NPQ 
is [(Fm-Fms)/Fms] (Klughammer & Schreiber, 2008). The leaf chlorophyll fluorescence was measured 10 DAT. 
2.6. Leaf Pigments 
Avoiding the mid-vein, three leaf discs (0.65 cm diameter) were obtained from mid-blade of the penultimate 
leaves for chlorophyll and carotenoid determination, 10 DAT. The three leaf discs were placed in a 10 mL vial with 
5 mL of dimethyl sulphoxide (DMSO) and incubated for 24 h in darkness. From the 10 mL vials, 200 μL of the 
extract was transferred to microtiter plates of polypropylene material. The absorbance of the extract was measured 
using a PowerWaveX microplate spectrophotometer (Bio-Tek Instruments, Inc., Winooski, Vermont, USA) at 480, 
648 and 664 nm (Chappelle et al., 1992) to calculate the carotenoid, chlorophyll a and chlorophyll b concentrations 
using equations described by Lichtenthaler (1987). Values for total chlorophyll were obtained by summing up the 
values of chlorophyll a and chlorophyll b. The pigment concentrations were expressed on a leaf area basis, μg cm-2. 
2.7 Morphology and Pollen Viability 
At harvest, plant height was measured, the numbers of productive tillers and viable leaves were recorded and dry 
weights were determined.  
Pollen viability was measured using the staining procedure from Virmani et al. (1997) with minor modifications. 
The 1% iodine potassium iodide (IKI) stain was prepared by dissolving 1 g iodine and 2 g potassium iodide in 100 
mL de-ionized water. Pollen was dusted from the plants on the Petri dish, 4-5 mL of 1% IKI stain was applied per 
Petri dish, followed by incubation for 12 hours. After incubation the pollen grains were observed under a 
microscope. The pollen grains were classified based on their shape and the extent of staining. The viable pollen 
grain is round and deep red stained (Virmani et al., 1997). The total numbers of pollen grains and sterile pollen 
grains were counted and pollen viability was expressed as percentage. 
2.8 Grain Characteristics 
Grain length, width, volume, surface area and chalkiness of brown (dehulled) rice were determined using a 
Winseedle (Regent Instruments, Inc. Quebec, Canada), which uses image analysis of scanned color images of the 
grain to calculate these parameters.  
2.9 Leaf Phenolic Concentration 
Avoiding the mid-vein, three leaf discs (0.65 cm diameter) were obtained from mid-blade of the penultimate 
leaves for chlorophyll and carotenoid determination, 10 DAT. The three leaf discs were placed in a 10 mL vial with 
5 mL phenolic extractant, which is a mixture of methanol, water and hydrochloric acid in 7:2:1 ratio by volume 
(Mirecki & Teramura, 1984) and incubated for 24 h in darkness. From the 10 mL vials, 200 μL of the extract was 
transferred to microtiter plates of polypropylene material. The absorbance of the extract was measured using a 
PowerWaveX microplate spectrophotometer (Bio-Tek Instruments, Inc., Winooski, Vermont, USA) at 300 nm 
(Kakani et al., 2004), and the phenolic concentration was calculated using the equation, C = 16.05×A, where A is 
absorbance at 300nm and C is the phenolic concentration (g/mL of extract). The phenolic concentrations were 
expressed on a leaf area basis, μg cm-2. 
2.10 Data Analysis 
Observations were analyzed using the Proc GLM procedure of SAS (SAS statistical analysis package version 9.2, 
SAS Institute, Cary, NC, USA) to test significant differences among the experiments (three repeats of an 
experiment), UV-B (two UV-B levels) and PGR treatments (4; untreated + 3 PGRs) for the parameters measured. 
Duncan’s Multiple-Range Test (alpha level of 0.05) was used to separate the means. For the parameters measured, 
there were no significant differences among the experiments. Hence, for a parameter measured, values from 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 5, No. 5; 2013 

118 

three experiments were used to obtain the mean and standard error (n = 9). The standard errors of the means are 
presented in the graphs as error bars. 
 

 
Figure 1. Effects of UV-B and plant growth regulators on rice leaf photosynthetic parameters. Bars with different 

letters for a particular parameter differed at P < 0.05 
 
3. Results 
3.1 Leaf Photosynthetic Parameters  
There was no difference among the experiments for leaf photosynthetic parameters. The untreated plants grown 
under 10 kJ UV-B showed decreased PN (17%) and increased leaf transpiration (33%), compared to untreated 
plants grown under 5 kJ UV-B (Figure 1a, d). The α-tocopherol-treated plants grown under 5 kJ UV-B showed 
12% increased PN, compared to untreated plants grown under ambient UV-B (Figure 1a). In addition, 
α-tocopherol-, GB- and SA-treated plants grown under 10 kJ UV-B showed 27%, 10% and 10% increases in PN, 
compared to untreated plants grown under 10 kJ UV-B (Figure 1a). The GB- and SA-treated plants grown under 
10 kJ UV-B showed 13% and 20% decreases in stomatal conductance, compared to untreated plants grown 
under 10 kJ UV-B (Figure 1b). The α-tocopherol-treated plants grown under 10 kJ UV-B showed 3% decrease 
in internal CO2 concentration, compared to untreated plants grown under 10 kJ UV-B (Figure 1c).  
3.2 Chlorophyll Fluorescence 
There was no difference among the experiments for chlorophyll fluorescence. In addition, there was no 
difference between the UV-B treatments or among the PGR treatments for Fv/Fm and Fo/Fm (Figure 2a, b). The 
untreated plants grown under 10 kJ UV-B showed decreased Y (8%) and ETR (9%) and increased NPQ (15%), 
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compared to untreated plants grown under 5 kJ UV-B (Figure 2c, d, e). The SA-treated plants showed 12% and 
10% increases in Y at 5 kJ and 10 kJ UV-B, compared to untreated plants (Figure 1c). In addition, SA-treated 
plants grown under 10 kJ UV-B showed 14% increase in ETR, compared to untreated plants grown under 10 kJ 
UV-B (Figure 2d).  

 

 
Figure 2. Effects of UV-B and plant growth regulators on rice leaf photochemistry. Bars with different letters for 

a particular parameter differed at P < 0.05 
 
3.3 Leaf Pigments 
There was no difference among the experiments for leaf chlorophyll or carotenoid concentration. In addition, the 
untreated plants showed no difference between the UV-B treatments for chlorophyll a, chlorophyll b, carotenoids 
concentrations or chlorophyll a/b ratio (Figure 3a, b, c, d). However, there was 8% decrease in total chlorophyll 
concentration at 10 kJ UV-B (Figure 3e). The α-tocopherol-treated plants showed 55%, 67% and 58% and 26%, 
17% and 24% increases in chlorophyll a, chlorophyll b and total chlorophyll concentrations under 5 kJ and 10 kJ 
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UV-B, respectively (Figure 3a, b, e). In contrast, GB-treated plants showed 28%, 13% and 25% and 30%, 22% 
and 29% decreases in chlorophyll a, chlorophyll b and total chlorophyll concentrations under 5 kJ and 10 kJ 
UV-B (Figure 3 a, b, e). The GB-treated plants grown under 5 kJ UV-B and SA-treated plants grown under 10 kJ 
UV-B showed 26% and 28% decreases in carotenoids, compared to untreated plants (Figure 3c).  
 

 
Figure 3. Effects of UV-B and plant growth regulators on rice leaf pigments. Bars with different letters for a 

particular parameter differed at P < 0.05 
 
3.4 Rice Morphology, Pollen Viability and Dry Weight 
There was no difference among the experiments for rice morphology or pollen viability. In addition there was no 
difference among the PGR treatments with respect to rice morphology or pollen viability (Figure 4a, b, c, d). 
However, untreated plants grown under 10 kJ UV-B showed 12%, 17% and 6% decreases in plant height, 
number of viable leaves per plant and pollen viability, compared to untreated plants grown under 5 kJ UV-B 
(Figure 4a, c, d). The untreated plants grown under 10 kJ UV-B showed 23% increase in shoot dry weight and 
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21% decrease in yield, compared to untreated plants grown under 5 kJ UV-B (Figure 5a, b). The SA-treated 
plants grown under 5 kJ UV-B showed 22% and 17% increases in shoot dry weight and yield, compared to 
untreated plants grown under 5 kJ UV-B (Figure 5a, b). The α-tocopherol-, GB- and SA-treated plants grown 
under 10 kJ UV-B showed 24%, 18% and 29% increases in yield, compared to untreated plants grown under 10 
kJ UV-B (Figure 5b). 
 

 

Figure 4. Effects of UV-B and plant growth regulators on rice morphology and pollen viability. Bars with 
different letters for a particular parameter differed at P < 0.05 
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Figure 5. Effects of UV-B and plant growth regulators on rice shoot dry weight and yield. Bars with different 

letters for a particular parameter differed at P < 0.05 
 
3.5 Grain Characteristics 
There was no difference among the experiments for grain parameters. In addition there was no difference 
between the UV-B treatments or among the PGR treatments for grain volume or grain surface area (Figure 6c, d). 
However, untreated plants grown under 10 kJ UV-B showed 3% and 37% increases in grain width and grain 
chalkiness, compared to untreated plants grown under 5 kJ UV-B (Figure 6b, e). The GB-treated plants showed 
2% and 3% decreases in grain length under 5 kJ and 10 kJ UV-B, compared to untreated plants (Figure 6a). The 
α-tocopherol- and GB-treated plants grown under 5 kJ UV-B showed 5% and 1% increases in grain width, 
compared to untreated plants grown under 5 kJ UV-B (Figure 6b). The α-tocopherol-, GB- and SA-treated plants 
grown under 10 kJ UV-B showed 2% increase and 3% and 1% decreases in grain width, respectively, compared 
to untreated plants grown under 10 kJ UV-B (Figure 6b). The SA-treated plants grown under 5 kJ UV-B showed 
41% decrease in grain chalkiness, compared to untreated plants grown under 5 kJ UV-B (Figure 6e). The 
α-tocopherol-, GB- and SA-treated plants grown under 10 kJ UV-B showed 23%, 22% and 22% decreases in 
grain chalkiness, compared to untreated plants grown under 10 kJ UV-B (Figure 6e). 
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Figure 6. Effects of UV-B and plant growth regulators on rice grain characteristics. Bars with different letters for 

a particular parameter differed at P < 0.05 
 
3.6 Leaf Phenolic Concentration 
There was no difference among the experiments for leaf phenolic concentration. However, untreated plants 
grown under 10 kJ UV-B showed 46% decrease in leaf phenolic concentration, compared to untreated plants 
grown under 5 kJ UV-B (Figure 7). The α-tocopherol-, GB- and SA-treated plants showed 213%, 57% and 29% 
and 476%, 157% and 352% increases in leaf phenolic concentration under 5 kJ and 10 kJ UV-B, respectively, 
compared to untreated plants (Figure 7). 
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Figure 7. Effects of UV-B and plant growth regulators on rice leaf phenolic concentration. Bars with different 

letters for a particular parameter differed at P < 0.05 
 
4. Discussion  
The present study was conducted to improve our understanding of rice responses to α-tocopherol, GB and SA 
applications under UV-B stress conditions. Our results indicated beneficial effects of α-tocopherol, GB and SA 
application under UV-B stress conditions. In the present study, UV-B inhibited PN. However, this decrease in PN 
under enhanced UV-B was not associated with stomatal conductance or internal CO2 concentration. In this study, 
PN decreased due to decreased photosynthetic quantum yield and total chlorophyll concentration. The decrease in 
photosynthetic quantum yield under enhanced (10 kJ) UV-B might be due to damaged D1 protein in PSII (Gao & 
Ma, 2008) and decrease in total chlorophyll concentration might be due to chlorophyll degradation (Kakani et al., 
2003). Previous studies have reported chlorophyll degradation as a result of enhanced UV-B (Huang et al., 1993; 
Kakani et al., 2003). The damage to chloroplasts and changes in photosynthetic pigments result in reduction of PN 
(Teramura et al., 1990; Sullivan & Rozema, 1999). 
In this study, enhanced UV-B decreased plant height and pollen viability. Decrease in plant height is one of the 
indicators of UV-B damage (Fiscus et al., 1999). Previous studies have shown decreased plant height as a result of 
enhanced UV-B in monocots and dicots (Tevini & Teramura, 1989; Dai et al., 1994). Decreased plant height under 
enhanced UV-B is due to decreased carbohydrate content (Zhao et al., 2003), damaged cell components, and 
interaction of growth regulators (Ensminger & Schafer, 1992). Enhanced UV-B also decreases pollen production, 
viability and germination (Feng et al., 2000, 2003; Koti et al., 2005), which are essential for seed/fruit set. 
Decreased seed/fruit production under enhance UV-B can occur due to decreased pollen production or viability 
(Koti et al., 2005). In this study, rice yield decreased under enhanced UV-B. Similar results were reported by 
previous studies with respect to yields under enhanced UV-B (Kumagai et al., 2001; Mohammed & Tarpley, 2009a, 
2010, 2011a). In this study, enhanced UV-B increased grain chalkiness. Tsukaguchi and Iida (2008) stated that 
decreased carbon supply to the grain due to stress can lead to chalky kernels. 
The epidermal layer is known to accumulate secondary metabolites, such as phenolics and flavonoids that 
absorb/screen UV-B and shield the underlying tissues against harmful UV-B radiation (Cen & Bornman, 1993; 
Olsson et al., 1998). In this study, leaf phenolic concentration decreased in plants grown under enhanced UV-B 
radiation. Previous studies have stated that leaf UV-B absorbing compounds, such as phenolic concentration, 
decreased when the plants are grown in relatively high PAR/UV-B (Wilson & Greenberg, 1993; Alexieva et al., 
2001). The reduction in secondary metabolites (phenolics) might be due to reduction in photo-assimilation. 
Decreased photo-assimilation lowers the efficacy of the biosynthetic system to produce secondary metabolites 
(phenolics). Zhao et al. (2003) stated that UV-B-induced reduction of assimilate production leads to lower 
production of secondary metabolites.  
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In this study, application of α-tocopherol, GB or SA increased rice yield. The application of α-tocopherol, GB or 
SA increased leaf photosynthetic rate and pollen viability, thereby resulting in higher yield. Most of the abiotic 
stresses, including UV-B, produce reactive oxygen species (ROS). The ROS can increase lipid peroxidation, 
protein degradation, and DNA fragmentation leading to cell death (Farooq et al., 2008). Application of 
α-tocopherol, GB or SA can alter antioxidant levels in plants and detoxify superoxide radicals, thus preventing 
oxidative damage and protecting the membranes and enzymes (Pelle et al., 1990; Farooq et al., 2008b; Mohammed 
& Tarpley, 2009b). Previous studies have shown that GB or SA can increase photosynthetic rate by increasing 
photosynthetic pigments and carboxylase activity of Rubisco (Singh & Usha, 2003; Farooq et al., 2008). In this 
study, application of α-tocopherol, GB or SA increased leaf phenolic content, thus rendering protection to 
photosynthetic apparatus.  
In conclusion, enhanced UV-B negatively affected leaf photosynthetic rate, photochemistry and physiology, 
thereby reducing rice yield; application of α-tocopherol, GB or SA increased rice yield under UV-B stress 
conditions. The application of α-tocopherol, GB or SA application increased leaf photosynthetic rate, pollen 
viability and leaf phenolic concentration, thus increasing rice yield under UV-B stress conditions.  
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