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Abstract

In this paper, constant stress accelerated life tests are discussed based on Type I and Type II censored sampling

data from Kumaraswmay Weibull distribution. The maximum likelihood estimators are derived for the unknown

parameters. The log linear model is assumed as an accelerated model. In addition, confidence intervals for the

model parameters are constructed. Optimum test plans, are developed to minimize the generalized asymptotic

variance of the maximum likelihood estimators of the model parameters. Monte Carlo simulation is carried out to

illustrate the theoretical results of the maximum likelihood estimates, confidence intervals and optimum test plans.

Keywords: accelerated life tests, constant stress, Type I censoring, Type II censoring, Kumaraswmay Weibull
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1. Introduction

The customers expectations are having high quality reliable products on time and at competitive prices. Therefore,

experimenters use accelerated life testing (ALT) which enables them to quickly reduce the testing time and save a

lot of manpower, material sources and money.

Stress can be applied in different ways but the commonly used types are constant stress, step stress and progres-

sive stress. In ALT, units are subjected to a more severe environment (for instance, very high levels of voltage,

excessive vibrations, excessive force, ... etc.) than usual conditions to obtain failures more quickly. Constant stress

accelerated test allows each unit in the experiment to run at a prespecified constant stress level. A sample size n

is divided into n1, n2, ..., nk, where n =
k∑

j=1
n j. It is assumed that n1 units are all run under a constant stress x1, n2

under a constant stress x2, ..., and nk under a constant stress xk. It is assumed that x1 < x2 < ... < xk. Determining

a relationship between stress and one parameter of the lifetime distribution, extrapolation to the normal working

conditions will be carried out. This relationship is known as the acceleration model. It is assumed that changing the

stress from one level to another affects the value of the parameter only and not the functional form of the lifetime

distribution. This is a major assumption of accelerated life testing. Some references in the field of the ALT include

Lydersen and Rausand (1987), Nelson (1990), Drop et al. (1996), Bagdonavicius and Nikulin (2002), Mousa and

Jaheen (2002), Murthy et al. (2004), Wu and Yu (2005), Wang (2006, 2009, 2010), Abd-Elfattah et al. (2008),

Balakrishnan and Han (2008), Wu et al. (2008), Abdel-Hamid (2009), Abdel-Hamid and AL-Hussaini (2009), Li

and Fard (2009), Han and Balakrishnan (2010), Ismail (2011), Bakoban (2012), Hassan and AL-Thobety (2012),

and Mitra et al. (2013).

Kumaraswamy (Kum) distribution is applicable to many natural phenomena whose outcomes have lower and upper

bounds, such as heights of individuals, scores obtained in a test, atmospheric temperatures and hydrological data.

Also, Kum distribution could be appropriate in situations where scientists use probability distributions which have

infinite lower and or upper bounds to fit data, when in reality the bounds are finite. Cordeiro et al. (2010) indicated

that the Kumaraswamy Weibull (KumW) distribution provides significantly better fits than all of its important sub-

models (Weibull, exponentiated Weibull and exponentiated exponential) for at least two data sets. This distribution
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is a general case of some important distributions such as a new Kumaraswamy exponential, a new Kumaraswamy

Rayleigh, exponentiated exponential, exponentiated Weibull, exponentiated Rayleigh, Weibull, Rayleigh and ex-

ponential distributions. The KumW has three shape parameters. These parameters allow for a high degree of

flexibility. It attracts wider applications in reliability, engineering and in other areas of research. If there are

such models, four parameter models sharing all these features, or if such models are developed in the future then

their performance will have to be assessed in terms of hazard rates and the ability to model a variety of data sets.

Cordeiro et al. (2010) derive the explicit expressions for the moments and moment generating function, the mo-

ments of the order statistics, the asymptotic distributions of the extreme values, explicit expressions for the mean

deviations, Bonferroni and Lorenz curves, reliability and Renyi entropy.

This paper deals with KumW distribution as a composite distribution since generation of cumulative distribution

functions by composition with other cumulative distributions or functions of such distributions could add an extra

parameter to a distribution. Adding a parameter or more to a distribution makes it more flexible to fitting data, see

AL-Hussaini (2012). The KumW has not been applied under censoring and ALT in all the previous literature. The

objective of this paper is to obtain the maximum likelihood estimators for the unknown parameters for a constant

stress ALT based on Type I and Type II censored sample data from KumW distribution. Also, confidence intervals

for the parameters are constructed and optimum test plans are developed.

The rest of this paper is organized as follows. Section 2 presents a brief summary about the KumW distribution

as a composite distribution. The constant stress life testing based on Type I censoring inference is discussed in

Section 3, while in Section 4, the statistical inference for constant stress life testing based on Type II censoring is

obtained.

2. The Kumaraswamy Weibull Distribution

Kumaraswamy (1980) constructed a distribution with two shape parameters on (0, 1). The Kum cumulative distri-

bution function (CDF) is defined by

H(y) ≡ H(y; θ, β) = 1 −
(
1 − yθ

)β
, y ∈ (0, 1) , (1)

where θ, β > 0 are shape parameters.

A composition of H, given by (1) and a CDF G, with positive support, yields a new CDF, given by

F (t) = H [G (t)] = 1 −
[
1 − (G (t))θ

]β
. (2)

The composite function F is known as Kum-G distribution, see Jones (2009). On composition of distribution

functions, see AL-Hussaini (2012). In particular, if G is Weibull (λ, φ), with CDF, given by

G (t) ≡ G (t; λ, φ) = 1 − exp
(
− (λt)φ

)
, t > 0, (λ, φ > 0) , (3)

then, from (2) and (3), the CDF of KumW (λ, φ, β, θ) distribution is given by

F (t) ≡ F (t; λ, φ, β, θ) = 1 −
[

1 −
(
1 − exp

(
− (λt)φ

))θ
]β
. (4)

The probability distribution function (PDF) corresponding to (4) is given by

f (t; θ, β, φ, λ) = θβφλφtφ−1 exp(−(λt)φ)
[
1 − exp(−(λt)φ)

]θ−1
[

1 −
[
1 − exp(−(λt)φ)

]θ
]β−1

,

t > 0, β, θ, λ, φ > 0, (5)

where θ, β and φ are the shape parameters and λ is a scale parameter.

Figure 1, describes the PDF of KumW distribution for different values of parameters.
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Figure 1. Density functions of KumW distribution

In FIG 1.a, at θ = 0.5, 1.5, 2, 4, β = 0.8, 1, 2, 5, φ, λ = 1, 1, 1, 1, the KumW density is monotonically decreasing. In

FIG 1.b, θ = 0.5, 2, 10, 70, β = 0.5, 1.2, 3.5, 5, φ = 3, 2, 1.1, 1, λ = 0.4, 2, 1.3, 1, it has unimodel curve. FIG 1.c,

at θ = 40, 50, 100, 200, β = 3, 5, 10, 17, φ, λ = 1, 1, 1, 1, has curves approximately symmetric while in FIG 1.d,

θ = 5, 1, 1, 5, β = 1, 1, 5, 5, φ = 1, 1, 5, 3, λ = 1, 1, 1, 1, the curves are positive skewed.

The reliability function (rf) of KumW is

R(t; θ, β, φ, λ) =
[

1 −
[
1 − exp(−(λt)φ)

]θ
]β
, t > 0. (6)

The hazard rate function (hrf) of KumW is given as follows:

h(t; θ, β, φ, λ) =
θβφλφtφ−1 exp(−(λt)φ)

[
1 − exp(−(λt)φ)

]θ−1

1 − [1 − exp(−(λt)φ)
]θ , t > 0. (7)

The KumW distribution has three shape parameters θ, β and φ. The three shape parameters allow high degree

for flexibility of the KumW distribution. The KumW hrf does not involve any complicated function and it can be

easily computed numerically. Moreover, it is quite flexible for modeling survival data. Figure 2, shows the hazard

rate function of KumW distribution for different values of parameters.

82



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

Figure 2. The hrf’s of KumW distribution for different values of parameters

The hrf is bathtub at θ = 0.2, 0.1, 0.3, β = 2, 0.5, 0.5, φ = 1, 1, 0.2, λ = 1, 1, 3. The hrf is increasing at θ = 5, 4, 3,

β = 1.2, 3, 2, φ = 1, 1, 1, λ = 1, 2, 3. At θ = 10, 5, 7, β = 10, 12, 15, φ = 0.5, 0.6, 0.7, λ = 10, 8, 3, the hrf is

unimodel while at θ = 1.5, 2, 0.5, β = 1.9, 1.2, 2.1, φ = 0.5, 0.7, 0.9, λ = 0.2, 2, 2, the hrf is decreasing. The KumW

distribution represents most major hazard shapes: constant, increasing, decreasing, bathtub and unimodal failure

rates.

3. Inference Based on Type I Censoring

It is assumed that the stress x j affects only the shape parameter θ j of the KumW through a certain acceleration

function. The log linear function of stress which is just a simple re-parameterization of the original of the life

distribution presented by Abdel-Hamid and AL-Hussaini (2009). That is log(θ j) = a + bx j where a and b are

unknown parameters depending on the nature of the product and the test method. In the present section, the

estimation problem of the parameters of the KumW distribution in constant accelerated life testing based on Type

I censored data is discussed. In addition, confidence intervals for the model parameters are constructed. Optimum

test plans, that determine the best choice of the proportion of test unit allocated to each stress, are developed. Such

optimum test plans minimize the generalized asymptotic variance (GAV) of the maximum likelihood estimators

(MLEs) of the model parameters. Numerical study is presented to illustrate the theoretical results.

3.1 Maximum Likelihood Estimation Based on Type I Censoring

Let the lifetime experiment be assumed under k levels of high stress x j, j = 1, 2, ..., k and assume that xu is the

usual condition such that xu < x1 < ... < xk. Also, n j units are put on test at each x j, j = 1, 2, ..., k. When a Type

I censoring is applied at each stress level the lifetime at stress x j, ti j, i = 1, 2, ..., nj, j = 1, 2, ..., k is assumed to be

realized from KumW distribution with PDF

f (ti j; β, φ, λ, θ j) = θ jβφλ
φtφ−1

i j exp(−(λti j)
φ) ×
[
1 − exp(−(λti j)

φ)
]θ j−1

×
[

1 −
[
1 − exp(−(λti j)

φ)
]θ j
](β−1)

, (8)

where ti j > 0, β, θ, λ, φ > 0, j = 1, 2, ..., k and i = 1, 2, ..., n j. The stress x j affects only the shape parameter of

KumW distribution θ j through a certain acceleration model. Applying Type I censoring at each stress level, the

experiment terminates once all the items fail or when a fixed censoring time tc j is reached. The corresponding
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likelihood function is expressed as follows:

L1(β, φ, λ, θ; t) =
k
Π
j=1

n j

Π
i=1

[θ jβφλ
φtφ−1

i j exp(−(λti j)
φ)
[
gθ j−1

(
ti j; λ, φ

)]

∗
[
1 − gθ j

(
ti j; λ, φ

)]β−1
]δi j
[
1 − gθ j

(
ti j; λ, φ

)]β(1−δi j)
, (9)

where δi j is an indicator variable such that:

δi j =

⎧
⎪⎨
⎪⎩

1 for ti j ≤ tc j

0 for ti j > tc j
, (10)

and

θ j = exp
(
a + bx j

)
,

g
(
ti j; λ, φ

)
= 1 − exp(−(λti j)

φ),
(
1 − g

(
ti j; λ, φ

))
= exp(−(λti j)

φ),

gθ j
(
ti j; λ, φ

)
=
[
1 − exp(−(λti j)

φ)
]exp(a+bx j)

. (11)

The ML estimator of a, b, β, φ and λ are obtained by maximizing the logarithm of the likelihood function, denoted

by �1 which can be written in the form:

�1 = ln L(ti j; β, φ, λ, θ j) =
k
Σ
j=1

n j

Σ
i=1
δi jln
(
θ j

)
+

k
Σ
j=1

n j

Σ
i=1
δi j ln (β)

+
k
Σ
j=1

n j

Σ
i=1
δi j ln (φ) + φ

k
Σ
j=1

n j

Σ
i=1
δi j ln (λ) + (φ − 1)

k
Σ
j=1

n j

Σ
i=1
δi j ln

(
ti j

)

− k
Σ
j=1

n j

Σ
i=1
δi j

(
λti j

)φ
+

k
Σ
j=1

(
θ j − 1

) n j

Σ
i=1
δi j ln

(
g
(
ti j; λ, φ

))

+ (β − 1)
k
Σ
j=1

n j

Σ
i=1
δi j ln

[
1 − gθ j

(
ti j; λ, φ

)]
. (12)

The MLEs are found by setting the partial first derivatives of �1 with respect to a, b, β, φ and λ, respectively, to

zeros. A system of non-linear equations can be solved numerically using the Newton-Raphson method, to obtain

the MLEs â1, b̂1, β̂1, φ̂1 and λ̂1. The MLEs â1, b̂1, β̂1, φ̂1 and λ̂1 have an asymptotic variance-covariance matrix

defined by inverting the information matrix. Because of the invariance property of MLE, the value of the shape

parameter θu, under stress xu, and the MLEs of the rf and hrf under usual conditions at mission time t0 could

be estimated. The MLEs of the shape parameter of KumW distribution, θu, can be derived using the following

equation:

θ̂1u = exp
(
â1 + b̂1xu

)
. (13)

Also, the MLEs of the rf and the hrf under usual conditions at a mission time t0 are derived using the invariance of

MLEs based on (6) and (7), respectively.

The asymptotic variance-covariance matrix of the estimators â1, b̂1, β̂1, φ̂1 and λ̂1 are obtained depending on the

inverse asymptotic Fisher information matrix Ĩ1 using the second derivatives of the logarithm of the likelihood

function.

The asymptotic Fisher information matrix can be written as follows:

Ĩ1 = −
[
∂2�1
∂ψi∂ψ j

]

, i, j = 1, 2, ..., 5, (14)

where ψ1 = a, ψ2 = b, ψ3 = β, ψ4 = φ and ψ5 = λ.

3.2 The Asymptotic Confidence Intervals Based on Type I Censoring

For large sample size, the MLEs under appropriate regularity conditions are consistent and asymptotically unbiased

as well as asymptotically normally distributed. Therefore, the two sided approximate 100(1 − α)% confidence
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intervals for the MLE say, ŵ of a population value w can be obtained by P
(
−z ≤ ŵ−w

σŵ
≤ z
)
= (1 − α) where z is the

100
(
1 − α

2

)
th standard normal percentile. The two sided approximate 100(1−α)% confidence intervals for w, will

be given as follows:

Lw = ŵ − z α
2
σ̂ŵ and Uw = ŵ + z α

2
σ̂ŵ (15)

where σ̂ŵ is the standard deviation, in this study ŵ is â, b̂, β̂, φ̂ or λ̂, respectively, see Nelson (1982).

3.3 Optimum Test Plans Based on Type I Censoring

Planning optimal constant sress ALT using maximum likelihood method has been the subject of many studies.

Given a known sample size, the objective is usually to find the optimal stress changing time that minimizes the

GAV of the MLEs of the model parameters, which is the reciprocal of the determinant of the asymptotic Fisher

information matrix Ĩ1 (see Wu et al., 2008).

That is

GAV (â1, b̂1, β̂1, φ̂1, λ̂1) =
∣∣∣Ĩ1

∣∣∣
−1
. (16)

Thus, minimization of the GAV is equivalent to maximization of the determinant of Ĩ1. In case of Type I, the

Newton-Raphson method is applied to determine numerically the best choice of the censoring time at each level

of stress which minimizes the GAV. Accordingly, the corresponding optimal censoring time at each level of stress

can be obtained by getting the first partial derivatives of |Ĩ1| with respect to tc1 and tc2 and then equating to zero,

∂|Ĩ1|
∂tc j
, j = 1, 2, (17)

where tc j are the censoring times. The determinant can be obtained as follows

|Ĩ1| =
5∑

s=1

As, (18)

where the elements of determinant are shown in the appendix.

3.4 Numerical Results

This section aims to illustrate the theoretical results of both estimation and optimal design problems on the basis

of simulated data.

3.4.1 Simulation Algorithm

• Several data sets are generated from KumW distribution for a combination of the population parameter values

of a, b, β, φ and λ. Also, for samples of size (20, 60 and 100) using 1000 replications for each sample size.

• The transformation between uniform distribution and KumW distribution is given as follows

Ui, j = 1 −
[

1 −
[

1 − exp
(

−
(
λti, j
)φ
)]θ j
]β

(19)

• It is assumed that only two different levels of stress, (k = 2), x1 = 1 and x2 = 1.5, which are higher than the

stress at usual condition, xu = 0.5.

• The pre-specified censoring times are tc1 = 2 and tc2 = 3.65.

• The population parameter values of a, b, β, φ and λ used in this simulation study are (0.5, 1.5, 1.2, 2, 2).

• A computer program is derived depending on MathCad 14 using the iterative technique of Newton Raphson

method to solve the derived nonlinear logarithmic likelihood equation simultaneously.

• Once the values of â1, b̂1, β̂1, φ̂1 and λ̂1 are obtained, these estimates are used to estimate, depending on (13)

and the design stress, xu = 0.5, the shape parameter under this stress. θu, is estimated as θ̂1u = exp
(
â1 + b̂1xu

)
.

Also, the rf and the hrf are estimated for different values of mission times under usual condition.

• Evaluating the performance of the estimators of a, b, β, φ and λ has been considered through some measure-

ments of accuracy. In order to study the precision and variation of MLEs, it is convenient to use the relative absolute

bias (RAB1) =
|estimate–population parameter|

population parameter
, the mean square error (ER1) and the relative error (RE1) =

√
MSE(estimate)

population parameter
.

85



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

• The central asymptotic confidence intervals are obtained for the five parameters a, b, β, φ and λ, using (15).

The results are displayed in Tables 1-4.

Table 1. The E1, RAB1, ER1 and RE1of the estimates for 20, 60 and 100 sample sizes

n parameter E1 RAB1 ER1 RE1

20 a 0.4581 0.0838 0.2128 0.9226

b 1.2830 0.1447 0.3471 0.3928

β 1.7135 0.4279 0.4637 0.5675

φ 2.3289 0.16445 0.3584 0.2993

λ 2.2324 0.1162 0.2548 0.2524

60 a 0.4725 0.0550 0.1608 0.8019

b 1.4103 0.0598 0.1746 0.2786

β 1.3214 0.1012 0.1739 0.3475

φ 2.2490 0.1245 0.2120 0.2302

λ 2.1804 0.0902 0.1925 0.2194

100 a 0.4935 0.0130 .01604 0.2533

b 1.4170 0.0553 0.0249 0.1050

β 1.2609 0.0507 0.0197 0.1170

φ 2.1536 0.0768 0.0406 0.10075

λ 2.1388 0.0694 0.0363 0.0952

Table 2. The estimated shape parameter, reliability function and hazard rate function under usual condition at 20,

60 and 100 sample sizes

n θ̂1u t0 R̂1u (t0) RAB1R ĥ1u (t0) RAB1h

20 3.0030 0.3 0.9421 0.0403 1.1557 2.1915

0.5 0.4395 0.4240 7.2221 1.9315

0.7 0.0467 0.8644 15.1494 1.7528

1 0.0009 0.9973 25.860 1.7569

60 3.2467 0.3 0.9676 0.0142 0.6655 0.8378

0.5 0.6023 0.2107 4.6278 0.8785

0.7 0.1385 0.5977 10.0403 0.8244

1 0.0023 0.9360 170.095 0.8225

100 3.3268 0.3 0.9718 0.0099 0.5660 0.5631

0.5 0.6560 0.1403 3.8093 0.5462

0.7 0.1963 0.4301 8.2354 0.4965

1 0.0069 0.8076 13.8653 0.4782

Table 3. Asymptotic confidence bounds of the parameters at confidence level 95% for 20, 60 and 100 sample sizes

n parameter E1 SE1 U1 L1 length

20 a 0.4581 0.4613 0.7063 0.2937 0.4126

b 1.2830 0.5892 1.5465 1.0195 0.5270

β 1.7135 0.6810 2.0180 1.4090 0.6091

φ 2.3289 0.5948 2.5966 2.0612 0.5355

λ 2.2324 0.5048 2.4581 2.0067 0.4515

60 a 0.4725 0.4010 0.6189 0.3261 0.2928

b 1.4103 0.4179 1.5629 1.2577 0.3052

β 1.3214 0.4170 1.4737 1.1691 0.3045

φ 2.2490 0.4604 2.4171 2.0809 0.3363

λ 2.1804 0.4387 2.3406 2.0202 0.3204

100 a 0.4935 0.1266 0.5397 0.4473 0.0925

b 1.4170 0.1575 1.4746 1.3594 0.1152

β 1.2609 0.1404 1.3122 1.2096 0.1025

φ 2.1536 0.2015 2.2272 2.0800 0.1472

λ 2.1388 0.1904 2.2083 2.0693 0.1391
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Table 4. The results of optimal design of the life test for 20, 60 and 100 sample sizes

n r1 r1 t∗c1 t∗c2 GAV

20 7 7 1.243 2.745 0.0924

60 23 23 3.729 8.235 0.000728

100 37 37 6.215 13.725 0.0000982

3.4.2 Concluding Remarks

• It is clear from Table 1 that the MLEs (E1) improve by increasing the sample size. Also, as shown in the

numerical results the RAB1, ER1 and RE1 are decreasing when the sample size is increasing. In addition, the

experiment at ALT is rapidly finished more than at usual conditions.

• Table 2 indicates that the reliability decreases when the mission time t0 increases. The results get better in the

sense that the aim of an accelerated life testing experiments is to get large number of failures (reduce the reliability)

of the device with high reliability. In other words, when sample size increases, the rf increases. Also, the RAB1R

for the rf decreases when the sample size increases. The hrf increases when the mission time t0 increases.

• The two-sided 95% central asymptotic confidence intervals for the parameters of KumW are displayed in Table

3. This table contains the standard error (SE1), lower bound (L1), upper bound (U1) and the length of intervals.

The interval estimate of the parameter becomes narrower as the sample size increases.

• It can be observed from the numerical results presented in Table 4 that the optimum test plans do not specify

the same censoring time to each stress. Also, Table 4, includes the optimal censoring time at each level of stress for

the considered different sample sizes represented by t∗c1 and t∗c2 which minimizes the GAV of the MLE of the model

parameters. As indicated from the results. The optimal GAV of the MLE of the model parameters is decreasing as

the sample size n is increasing.

4. Inference Based on Type II Censoring

In this section, the estimation problem of the parameters of the KumW distribution in constant accelerated life test-

ing based on Type II censored data is discussed. In addition, central confidence intervals for the model parameters

are constructed. Optimum test plans are developed. For illustration, numerical study is presented.

4.1 Maximum Likelihood Estimation Based on Type II Censoring

Assuming that the life testing experiment is considered under k levels of high stress x j, j = 1, 2, ..., k and xu is the

usual condition such that xu < x1 < x2 < ... < xk, at each x j, j = 1, 2, ..., k, where n j are items put on test. When

a Type II censoring is adopted at each stress level, the experiment terminates once the number of failures r j out of

items n j are reached. The lifetime at stress x j, ti j, i = 1, 2, ..., r j, j = 1, 2, ..., k, is assumed to follow the KumW

distribution with the PDF defined in (5).

The likelihood function based on Type II censoring according to constant stress can be written as:

L2(β,φ,λ, θ; t) =
k
Π
j=1

n j!
(
n j − r j

)
!

r j

Π
i=1

f
(
ti j

) [
R
(
tr j

)]n j−r j
, (20)

where ti j > 0, β, θ, λ, φ > 0, j = 1, 2, ..., k and i = 1, 2, ..., r j. The stress x j affects only the shape parameter of

KumW distribution θ j through a certain acceleration model.

The likelihood function of the experiment takes the following form:

L2(β,φ,λ, θ; t) =
k
Π
j=1

n j!
(
n j − r j

)
!

r j

Π
i=1
θ jβφλ

φtφ−1

i j

(
1 − g

(
ti j; λ, φ

)) (
gθ j−1

(
ti j; λ, φ

))

[
1 − gθ j

(
ti j; λ, φ

)]β−1
[[

1 − gθ j
(
tr j; λ, φ

)]β(n j−r j)
]

, (21)

where θ j, g
(
ti j; λ, φ

)
and gθ j

(
ti j; λ, φ

)
are given in (11).

g
(
tr j; λ, φ

)
= 1 − exp(−(λtr j)

φ).

The MLEs of a, b, β, φ and λ are obtained by maximizing the logarithm of (21), denoted by �2 and can be written
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as follows:

�2 = ln L2(β,φ,λ, θ; t) ∝ k
Σ
j=1

r j ln
(
θ j

)
+

k
Σ
j=1

r j ln β+
k
Σ
j=1

r j ln φ

+φ
k
Σ
j=1

r j ln λ+ (φ − 1)
k
Σ
j=1

r j

Σ
i=1

ln
(
ti j

)

− k
Σ
j=1

r j

Σ
i=1

(
λti j

)φ
+

k
Σ
j=1

[
θ j − 1

] r j

Σ
i=1

ln
(
g
(
ti j; λ, φ

))

+ (β − 1)
k
Σ
j=1

r j

Σ
i=1

ln
(
1 − gθ j

(
ti j; λ, φ

))

+β
k
Σ
j=1

(
n j − r j

) r j

Σ
i=1

ln
(
1 − gθ j

(
tr j; λ, φ

))
. (22)

The MLEs can be found by setting the partial first derivatives of �2 to zero. A system of non-linear equations can be

solved numerically using the Newton-Raphson method, to obtain the MLEs â2, b̂2, β̂2, φ̂2 and λ̂2. The MLEs â2, b̂2,

β̂2, φ̂2 and λ̂2 have an asymptotic variance covariance matrix defined by inverting the information matrix. Because

of the invariance property of MLE, the value of the shape parameter θu, and the MLE of the rf and hrf under usual

conditions at mission time t0 could be estimated. The MLE of the shape parameter of KumW distribution, θu can

be derived using the following equation:

θ̂2u= exp
(
â2 + b̂2xu

)
. (23)

Also, the MLEs of the rf and the hrf under usual conditions at a mission time t0 are derived using the invariance of

MLEs based on (6) and (7), respectively.

The asymptotic variance-covariance matrix of the estimators â2, b̂2, β̂2, φ̂2 and λ̂2 are obtained depending on the

inverse asymptotic Fisher information matrix Ĩ2 using the second derivatives of the logarithm of the likelihood

function.

The asymptotic Fisher information matrix can be written as follows:

Ĩ2 = −
[
∂2�2
∂ωi∂ω j

]

, i, j = 1, 2, ..., 5, (24)

where ω1 = a, ω2 = b, ω3 = β, ω4 = φ and ω5 = λ.

4.2 Optimum Test Plans Based on Type II Censoring

Statistically, the larger the sample size is the better results-more accurate estimation can be achieved. on the other

side, from the producer’s point of view, coducting test with a large sample size will take up a long time and capital.

Therefore, it is significant to gain an appropriate sample size to balance these two sides. The GAV of the MLEs of

the model parameters is the reciprocal of the determinant of the asymptotic Fisher information matrix Ĩ2 (see Wu

et al., 2008).

That is

GAV (â2, b̂2, β̂2, φ̂2, λ̂2) =
∣∣∣Ĩ2

∣∣∣
−1
. (25)

Thus, minimization of the GAV is equivalent to maximization of the determinant of Ĩ2. Newton Raphson method is

applied to determine numerically the best choice of the sub sample proportion allocated to each level of stress which

minimizes the GAV as defined previously. Accordingly, the corresponding optimal numbers of items allocated to

each level of stress can be obtained by getting the first partial derivatives of |Ĩ2| with respect to p1 and p2 then

equating to zero,
∂|Ĩ2|
∂p j
, j = 1, 2. (26)

where p j are the sub sample proportion. The determinant can be obtained as follows

|Ĩ2| =
5∑

s=1

Bs, (27)

and the results are shown in the appendix.
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Remark 1 When r = n all the results obtained for Type II censoring reduce to the complete sample case.

4.3 Numerical Results

This section aims to illustrate the theoretical results of both estimation and optimal design problems on basis of

simulated and real data.

4.3.1 Simulation Algorithm

The same steps of the algorithm in Subsection (3.4.1), will be considered in this algorithm with the following data:

• Numbers of test units are allocated to each level of stress (nj, j = 1, 2) where p1 = 0.5, p2 = 0.5, r j = 0.90(n j).

• The population parameter values of a, b, β, φ and λ used in this simulation study are (0.5, 1.5, 1.2, 2, 2) to

generate ti j, j = 1, 2 and i = 1, 2, ..., r j.

• The nonlinear logarithmic likelihood equation is solved simultaneously.

• Once the values of â2, b̂2, β̂2, φ̂2 and λ̂2 are obtained, these estimates and the design stress, xu = 0.5 are used

to estimate the shape parameter under this stress. θu, is estimated as θ̂2u = exp
(
â2 + b̂2xu

)
. Also, the rf and the hrf

are estimated for different values of mission times under usual conditions.

• The performance of â2, b̂2, β̂2, φ̂2 and λ̂2 has been evaluated through some measurements of accuracy. In order

to study the precision and variation of MLEs, it is convenient to use the relative absolute bias (RAB2), the mean

square error (ER2) and the relative error (RE2).

• The two sided approximate 100(1−α)% central asymptotic confidence intervals for a, b, β, φ and λ are obtained

through using steps analogous to those used in (15) noting that ŵ denotes â2, b̂2, β̂2, φ̂2 and λ̂2 respectively. The

results are displayed in Tables 5-8.

Table 5. The E2, RAB2, ER2 and RE2 of the estimates for 20, 60 and 100 sample sizes

n parameter E2 RAB2 ER2 RE2

20 a 0.4563 0.0874 0.2129 0.9228

b 1.7829 0.1886 0.3470 0.3927

β 0.9503 0.2081 0.1724 0.3460

φ 2.3476 0.1738 0.2308 0.2402

λ 1.7195 0.1403 0.2897 0.2691

60 a 0.4862 0.0276 0.0612 0.4948

b 1.6395 0.0930 0.1195 0.2305

β 1.1624 0.0313 0.1114 0.2781

φ 2.1894 0.0947 0.1489 0.1929

λ 1.9361 0.0321 0.1150 0.1696

100 a 0.4937 0.0126 0.0130 0.2280

b 1.5392 0.0261 0.0369 0.1280

β 1.1874 0.0105 0.0158 0.1258

φ 2.1160 0.0580 0.0522 0.2285

λ 1.9553 0.02235 0.0158 0.0628
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Table 6. The estimated shape parameter and reliability function under usual condition at 20, 60 and 100 sample

sizes

n θ̂2u t0 R̂2u (t0) RAB2R ĥ2u (t0) RAB2h

20 3.8488 0.3 0.9984 0.0171 0.0436 0.8795

0.5 0.9318 0.2211 0.9140 0.6290

0.7 0.6181 0.7948 3.3862 0.3847

1 0.1165 2.2469 7.6426 0.1852

60 3.6912 0.3 0.9917 0.0103 0.1934 0.4659

0.5 0.8195 0.0738 2.1255 0.1372

0.7 0.3790 0.1005 5.6769 0.0316

1 0.0320 0.1086 10.6028 0.1304

100 3.5371 0.3 0.9875 0.0067 0.2682 0.2593

0.5 0.7916 0.0373 2.3121 0.0615

0.7 0.3583 0.0405 5.6659 0.0296

1 0.0324 0.0984 10.1708 0.0843

Table 7. Asymptotic confidence bounds of the parameters at confidence level 95% for 20, 60 and 100 sample sizes

n parameter E2 SE2 U2 L2 length

20 a 0.4563 0.4614 0.6626 0.2500 0.4127

b 1.7829 0.5891 2.0463 1.5195 0.5269

β 0.9503 0.4152 1.1360 0.7646 0.3714

φ 2.3476 0.4804 2.5624 2.1328 0.4297

λ 1.7195 0.5382 1.9602 1.4788 0.4814

60 a 0.4862 0.2474 0.5501 0.4223 0.1277

b 1.6395 0.3457 1.7288 1.5502 0.1785

β 1.1624 0.3338 1.2486 1.0762 0.1724

φ 2.1894 0.3859 2.2890 2.0898 0.1993

λ 1.9361 0.3391 2.0237 1.8485 0.1751

100 a 0.4937 0.1140 0.5165 0.4709 0.0456

b 1.5392 0.1921 1.5776 1.5008 0.0768

β 1.1874 0.1887 1.2251 1.1497 0.0755

φ 2.1160 0.1257 1.9804 1.9302 0.0503

λ 1.9553 0.2285 2.1617 2.0703 0.0914

Table 8. The results of optimal design of the life test for 20, 60 and 100 sample sizes

n n1 n2 p1 n∗1 n∗2 GAV

20 10 10 0.4218 8 12 0.00625

60 30 30 0.4319 26 34 0.000291

100 50 50 0.4515 45 55 0.0000147

4.3.2 Concluding Remarks

• It is clear from Table 5 that the MLEs (E2) improve by increasing the sample size. Also, as shown in the

numerical results the RAB2, ER2 and RE2 are decreasing when the sample size is increasing. The number of

failures at ALT is rapidly obtained more than at usual conditions.

• Table 6 indicates that the rf decreases when the mission time t0 increases. The results get better in the sense

that the aim of an accelerated life testing experiments is to get large number of failures (reduce the rf) of the device

with high reliability. In other words, when sample size increases, the rf increases. Also, the RAB2 for the rf

decreases when the sample size increases. The hrf increases when the mission time t0 increases.

• The two-sided 95% central asymptotic confidence intervals for the parameters of KumW are given in Table 7.

This table contains the standard error (SE2), lower bound (L2), upper bound (U2) and the length of intervals. The

interval estimate of the parameters becomes narrower as the sample size increases.
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• Optimum test plans are developed numerically. The expected number of items that must be allocated to each

level of stress represented by n

1
, n


2
which minimizes the GAV is displayed in Table 8. As indicated from the

results, the optimal GAV of the MLE of the model parameters decreases as the sample size n increases.

4.3.3 Application

This subsection aims to demonstrate how the proposed method can be used in practice. Cordeiro et al. (2010)

used Kolmogorov Smirnov goodness of fit test and data points representing failure time. The data were taken from

Murthy et al. (2004). The data were 30 items (n = 30) tested with test stopped after 20th failure (r = 20). It is

assumed that k = 2, i.e. there are only two different levels of stress x1 = 0.6 and x2 = 1, which are higher than the

stress at usual conditions, xu = 0.5. The failure times in the first level are [0.0014, 0.0623, 1.3826, 2.0130, 2.5274,

2.8221, 3.1544, 4.9835, 5.5462, 5.8196] and the failure times in the second level of stress are [ 5.8714, 7.4710,

7.5080, 7.6667, 8.6122, 9.0442, 9.1153, 9.6477, 10.1547, 10.7582]

The initial values of a, b, β, φ and λ used in this application are a = 0.5, b = 1.5, β = 2, φ = 2 and λ = 2. Once the

estimate value of a, b, β, φ and λ are obtained, the estimates are used to estimate and the design stress, xu = 0.5,

the shape parameter under this stress. θu is estimated, θ̂2u = exp
(
â2 + b̂2xu

)
. Also, the rf and the hrf are estimated

for different values of mission times under usual conditions.

The estimated shape parameter, rf and hrf under usual conditions are shown in Table 9. It shows that the rf decreases

when the mission time increases while the hrf increases when the mission time increases. The relationship between

the stress and the shape parameter is tested through testing the significance of the coefficient b. Hypothesis test

is obtained when α = 0.05 and with one degree of freedom, assuming the null hypothesis is b = 0. It is rejected

and the relationship between the level of the stress and the shape parameter exists. Table 10 indicates the central

asymptotic confidence intervals of the parameters at confidence level 95%. The optimal test plan which decreases

the GAV = 0.0849 is at n∗ = 7.

Table 9. The estimated shape parameter and reliability function under usual condition

θ̂2u = 4.6147

t0 0.3 0.5 0.7 1

R̂2u (t0) 0.9972 0.9333 0.7013 0.2648

RAB2R 0.0159 0.2230 1.0364 6.3799

ĥ2u (t0) 0.0655 0.7539 2.1650 4.2302

RAB2h 0.8191 0.6940 0.6066 0.5490

Table 10. Estimates and asymptotic confidence bounds of the parameters at confidence level 95%

parameter E2 RAB2 SE2 L2 U2 length

a 0.7293 0.4585 0.2293 0.2707 1.1879 0.9172

b 1.600 0.5440 0.2625 1.0750 2.1250 2.0500

β 0.9396 0.5302 0.2498 0.4400 1.4392 0.9992

φ 1.7751 0.1125 0.1600 1.4551 2.0951 0.6400

λ 1.7995 0.1003 0.3167 1.1661 2.4329 1.2668

Remark 2 The results obtained in this paper can be modified to obtain special cases results for sub–models of

KumW distribution under Type I and Type II censored samples as follows:

• The Kum exponential distribution, if φ = 1.

• The Kum Rayleigh distribution, if φ = 2.

• The exponentiated Weibull distribution, if β = 1.

• The exponentiated Rayleigh distribution, if β = 1 and φ = 2.

• The exponentiated exponential distribution, if β = φ = 1.

• The Weibull distribution, if β = θ = 1, see Khamis (1997).

• The Rayleigh distribution, if φ = 2, β = θ = 1.

• The exponential distribution, if φ = β = θ = 1.
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Appendix

The asymptotic Fisher information matrix in the case of Type I censoring can be rewritten as follows:

Ĩ1 = −Ai j, i, j = 1, 2, ..., 5. (A.1)

The elements of the determinant are given as follows:

A1 = −{A11A22A33

(
A44A55 − A2

45

)
− A11A22A43 (A43A55 − A53A45)

+A11A22A35 (A43A54 − A53A44) − A11A2
23

(
A44A55 − A2

45

)

+A11A23A34 (A42A55 − A45A52) − A11A23A35 (A42A54 − A44A52)

+A11A24A32 (A43A55 − A54A53) − A11A24A33 (A42A55 − A45A52)

+A11A24A35 (A42A53 − A43A52) − A11A25A32 (A43A54 − A44A53)

+A11A25A33 (A42A54 − A44A52) − A11A25A34 (A42A53 − A43A52)},

A2 = −{−A2
12A33

(
A44A55 − A2

45

)
+ A2

12A34 (A43A55 − A45A53)

−A2
12A35 (A43A54 − A44A53) + A12A23A31

(
A44A55 − A2

45

)

−A12A23A43 (A41A55 − A45A51) + A12A23A35 (A41A54 − A44A51)

−A12A24A31 (A43A55 − A53A45) + A12A24A33 (A41A55 − A45A51)

−A12A24A53 (A41A53 − A43A51) + A12A25A31 (A43A54 − A44A53)

−A12A25A33 (A41A54 − A44A51) + A12A25A34 (A41A53 − A43A51)},

A3 = −{A13A12A23

(
A44A55 − A2

45

)
− A13A21A34 (A42A55 − A45A52)

+A13A12A35 (A42A54 − A44A52) − A13A22A31

(
A44A55 − A2

45

)

+A13A22A34 (A41A55 − A45A51) − A13A22A35 (A41A54 − A51A44)

+A13A24A31 (A42A55 − A45A54) − A13A24A32 (A41A55 − A51A45)

+A13A24A35 (A41A52 − A42A51) − A13A25A31 (A42A54 − A44A52)

+A13A32A25 (A41A54 − A44A51) − A13A25A34 (A41A52 − A51A42)},

A4 = −{−A14A12A23 (A43A55 − A45A53) + A14A21A33 (A42A55 − A45A52)

−A14A12A35 (A42A53 − A43A52) + A14A22A31 (A43A55 − A45A53)

−A14A22A33 (A41A55 − A45A51) + A14A22A35 (A41A53 − A43A51)

−A14A23A31 (A42A55 − A45A52) + A14A2
32 (A41A55 − A51A45)

−A14A23A35 (A41A52 − A42A51) + A14A25A31 (A42A53 − A43A52)

−A14A32A25 (A41A53 − A43A51) + A14A25A33 (A41A52 − A51A42)},
and

A5 = −{A15A12A23 (A43A54 − A44A53) − A15A21A33 (A42A54 − A44A52)

+A15A12A34 (A42A53 − A43A52) − A15A22A31 (A43A54 − A44A53)

+A15A22A33 (A41A54 − A44A51) − A15A22A34 (A42A53 − A43A52)

+A15A23A31 (A42A54 − A44A52) − A15A2
32 (A41A54 − A51A44)

+A15A23A34 (A41A53 − A43A51) − A15A24A31 (A42A53 − A43A52)

+A15A24A32 (A41A53 − A43A51) − A15A24A33 (A41A52 − A51A42)}.
The asymptotic Fisher information matrix in the case of Type II censoring can be rewritten in short form as follows:

Ĩ2 = −Bi j, i, j = 1, 2, ..., 5, (A.2)
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where the elements of the asymptotic Fisher information matrix in (A.2) will be obtained using steps analogous to

those used for obtaining (A.1).
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