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Abstract

The Markov-Bernoulli geometric distribution is obtained when a generalization, as a Markov process, of the in-

dependent Bernoulli sequence of random variables, is introduced. In this paper, new characterizations of the

Markov-Bernoulli geometric distribution, as the distribution of the summation index of randomly truncated non-

negative integer valued random variables, are given in terms of moment relations of the sum and summands. The

achieved results generalize the corresponding characterizations concerning the usual geometric distribution.

Keywords: Markov-Bernoulli geometric distribution, random sum, characterization, random truncation, moments,

Euler differential equation

1. Introduction

Many basic counting distributions are defined on a se-quence of independent identically distributed (iid) Bernoulli

random variables (rv’s). Many other distributions are defined by compounding and mixing. Another way of obtain-

ing new discrete distributions is to define the counting distributions related to some Markov chain. Assuming some

dependency in the sequence of Bernoulli rv’s gives an additional parameter by which the Bernoulli model could

be a more realistic model in practice. Edwards (1960) proposed a generalization of the sequence of independent

Bernoulli trials by considering the success probability evolves over time according to a Markov chain. In other

words, let X1, X2, . . . be a sequence of Bernoulli rv’s with the following one step transition probabilities matrix

Xi+1

0 1

Xi
0

1

[
1 − (1 − ρ) p (1 − ρ) p

(1 − ρ) (1 − p) ρ + (1 − ρ) p

] (1.1)

and initial distribution:

P (X1 = 1) = p = 1 − P (X1 = 0) ,

where p ∈ [0, 1] and ρ ∈ [0, 1] . The additional parameter ρ is the correlation coefficient between Xi and Xi+1, and

is, also, called the persistent indicator of the initial state of the system (1.1) (Wang, 1981).

The sequence X1, X2, ... with the transition matrix (1.1) and the given initial distribution is called the Markov-

Bernoulli model(MBM) or the Markov modulated Bernoulli process (Özekici, 1997). Numerous researchers have

studied the MBM from the various aspects of probability, statistics and their applications, in particular the classical

problems related to the usual Bernoulli model (Anis & Gharib, 1982; Arvidsson & Francke, 2007; C̆ekanavic̆ius

& Vellaisamy, 2010; Gharib & Yehia, 1987; Inal, 1987; Maillart et al., 2008; Minkova & Omey, 2011; Omey

et al., 2008; Özekici, 1997; Özekici & Soyer, 2003; Pacheco et al., 2009; Pedler, 1980; Pires & Diniz, 2012;

Satheesh et al., 2002; Xekalaki & Panaretos, 2004 and others). Further, due to the fact that the MBM operates in

a random environment depicted by a Markov chain so that the probability of success at each trial depends on the

state of the environment, this model has a wide variety of applications include, but not limited, reliability modeling
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(where system and components function in a randomly changing environment), non-life insurance, matching DNA-

sequences, disease clustering, traffic modeling, the occupation and waiting times problems in two state Markov

chains, reconstructing patterns from sample data and statistical ecology (Arvidsson & Francke, 2007; Chang &

Zeiterman, 2002; John, 1971; Özekici, 1997; Özekici & Soyer, 2003; Pacheco et al., 2009; Pedler, 1980; Pires &

Diniz, 2012; Switzer, 1967, 1971; Wang, 1981; Xekalaki & Panaretos, 2004).

The Markov-Bernoulli geometric (MBG) distribution has been obtained by Anis and Gharib (1982) in an earlier

detailed study of MBM. If Ei; i = 0; 1 are the states of the system (1.1) and if N is a rv representing the number of

trials necessary for the system to be in state E1 for the first time, then the probability mass function (pmf) of the rv

N is given by:

P(N = n) =

⎧⎪⎪⎨⎪⎪⎩
p, n = 1

(1 − p)a−1(1 − a−1)n−2, n ≥ 2,
(1.2)

where, a = 1/[(1 − ρ)p] = E(N) + ρ/(1 − ρ).
The distribution (1.2) is the MBG distribution. It represents a generalization of the usual geometric distribution (ρ =
0). In the past works on the MBM some characterizations for the MBG distribution (1.2) are achieved (Minkova

& Omey, 2011; Yehia & Gharib, 1993). The random sum of independent identically distributed (iid) nonnegative

rv’s; where the summation index is a geometric rv; is called a geometric compounding of the underlying rv’s. Such

a compounding mechanism is closely related to the rarefaction (or the thinning version) of a renewal process and

has practical applications to the traffic theory, reliability and ecology problems involving rare events (Gnedenko &

Korolev, 1996). These applications motivated many researchers to characterize such random sums, see e.g. Gharib

et al. (2003), Khalil et al. (1991), Milne and Yeo (1989) and the references therein.

Let {Xn; n ≥ 1} be a sequence of iid integer-valued rv’s with pmf: pk = P(X1 = k) < 1, k = 0, 1, 2, ...; and let

{Yn; n ≥ 1} be another sequence of iid integer-valued rv’s with pmf: qk = P(Y1 = k) < 1, k = 0, 1, 2, ...,
∑∞

k=0 qk = 1.

The two sequences {Xn} and {Yn} are assumed independent. Define the integer-valued rv N = inf{n ≥ 1 : Xn < Yn}.
Clearly N−1 has a geometric distribution with pmf: P(N−1 = k) = pk(1− p), k = 0, 1, 2, ..., where p = P(X1 ≥ Y1)

and p ∈ (0, 1).

In this paper, we are interested in characterizing the random sum:

Z =
N−1∑
k=0

Yk + XN , Y0 = 0, (1.3)

introduced by Khalil et al. (1991).

The rv Z represents the truncated sum until the moment where for the first time the process {Yn; n ≥ 1} has

greater jump than the corresponding jump of the process {Xn; n ≥ 1}. The sequence {Yn} is called the truncating

process (Gharib et al., 2014). In queuing systems with unreliable server, Z can be interpreted as the total time

duration of the unreliable server until the successful finish of the service if the corresponding duration without

breakdowns is previously known (Dimitrov et al., 1991). The random sum (1.3) also arises in some models such

as unreliable computing systems, multiclients computer service, data transmissions, constructing data and so on,

where in a random environment some undesirable events (breakdowns, interruptions, etc.) arise and lead to process

interruption or to incorrect final results (Duda, 1983; Koren et al., 1986).

Throughout the paper, we write PU(s) = E(sU); |s| ≤ 1, to denote the probability generating function (pgf) of an

integer-valued rv U, W ∼ MBG(α, c) to denote a MBG distributed rv W with pmf:

P(W = k) =

⎧⎪⎪⎨⎪⎪⎩
1 − α, k = 0

αc−1(1 − c−1)k−1, k ≥ 1,

where, c = 1/[(1 − ρ)(1 − α)], α ∈ (0, 1), ρ ∈ [0, 1], and U d
=V to denote a rv U having the same distribution as a

rv V . Let I(A) be the indicator of a set A and put

P1(s)= E[sX1 I(X1 < Y1)]=

∞∑
k = 0

pk sk
∞∑

γ= k+1

qγ, (1.4)

Q1(s)= E[sY1 I(X1 ≥ Y1)]=

∞∑
k = 0

qk sk
∞∑
γ= k

pγ. (1.5)
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The pgf of Z in (1.3) is given by:

PZ(s)= P1(s)/[1 − Q1(s)] (1.6)

(cf. Khalil et al., 1991).

In the following, we list some results obtained by Gharib et al. (2014) which are of direct relevance to the devel-

opment of the results of the present paper. Consider the random sum Z defined by (1.3).

Lemma 1.1 Assume that Y1 ∼ MBG(α, ρ), for α ∈ (0, 1) and ρ ∈ [0, 1], Then the pgf of Z is given by

PZ(s) =
[(1 − ts)PX1

(ts)]

[1 − {1 − (1 − t)PX1
(ts)}s]

, |s| ≤ 1 (1.7)

and

E(Z)= P
′
Z(1) =

[1 − PX1
(t)]

[(1 − t)PX1
(t)]
, (1.8)

where t = ρ + (1 − ρ)α.

Lemma 1.2 Assume X1 ∼ MBG(β, ρ1); for some parameters β ∈ (0; 1) and ρ1 ∈ [0, 1], and Y1 is arbitrarily
non-negative integer-valued rv with q0 = P(Y1 = 0) < 1, then Z d

= X1.

Using the results of Lemma 1.1 and Lemma 1.2, Gharib et al. (2014) gave the following two characterizations of

the MBG distribution.

Theorem 1.1 Assume Y1 ∼ MBG(α, ρ), for some parameters α ∈ (0; 1) and ρ ∈ [0, 1], and X1 is an arbitrarily
non-negative integer- valued rv with p0 = P(X1 = 0) < 1, Then Z d

= X1 if and only if X1 ∼ MBG(β, ρ1), for some
β ∈ (0; 1) and ρ1 ∈ [0, 1].

Theorem 1.2 Assume Y1 ∼ MBG(α, ρ); for some α ∈ (0; 1) and ρ ∈ [0, 1] and X1 is an arbitrarily non-negative
integer-valued rv with p0 = P(X1 = 0) < 1: Then X1 ∼ MBG(β, ρ1), for some β ∈ (0;1) and ρ1 ∈ [0,1], if and only
if E(Z) = β/(1 − D) where D = ρ2 + (1 − ρ2)β, ρ2 = ρ1t and t = ρ + (1 − ρ)α.

The organization of this paper is as follows. In section 2, we derive certain differential equations associated with

the random sum (1.3). Also, the unique solutions of these differential equations are given under certain initial

conditions. In section 3, we provide three new characterizations of the MBG distribution related to the random

sum (1.3) based on certain relations between the moments of Z and/or X1. Finally some concluding remarks are

given.

2. Preliminaries

The following lemma derives the main differential equations that will be used in the proofs of the new characteri-

zations of the MBG distribution.

Lemma 2.1 Let φ(t) = −1/PX1
(t), t = ρ + (1 − ρ)α, ρ ∈ [0 , 1], α ∈ (0, 1), and μr = E(Zr), r = 1, 2, 3, 4. Then

(i) tφ′(t) + μ1φ(t) = − 1
2
(μ2 + μ1)(1 − t).

(ii) t2φ′′(t) + 2μ1tφ′(t) + (μ2 − μ1)φ(t) = − 1
3
(μ3 − μ1)(1 − t).

(iii) t3φ′′′(t) + 3μ1t2φ′′(t) + 3(μ2 − μ1)tφ′(t) + (μ3 − 3μ2 + 2μ1)φ(t) = − 1
4
(μ4 − 2μ3 − μ2 + 2μ1)(1 − t).

Proof. First, rewrite (1.7) as:

(1 − s[1 − (1 − t)PX1
(ts)])PZ(s) − (1 − ts)PX1

(ts) = 0, (2.1)

where t = ρ + (1 − ρ)α, α ∈ (0, 1), ρ ∈ [0, 1] and |s| ≤ 1.

(i) Differentiating (2.1) twice w.r.t. s, then setting s = 1, and using the relations PZ(1) = 1, P′Z(1) = μ1, P′′Z (1) =

μ2 − μ1, we obtain:

2t[1 + (1 − t)μ1]P
′
X1

(t) + (1 − t)(μ1 + μ2)PX1
(t) − 2μ1 = 0. (2.2)

Now, using (1.8), we have:

φ′(t) =
P
′
X1

(t)

P2
X1

(t)
= [1 + (1 − t)μ1]

P
′
X1

(t)

PX1
(t)
.
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Hence, using the last relation, Equation (2.2) reduces to

tφ′(t)+ μ1φ(t) = −1

2
(μ2 + μ1)(1 − t).

Proving (i).

(ii) Differentiating (2.1) three times w.r.t. s, then setting s = 1, and using the relations PZ(1) = 1,P′Z(1) = μ1P′′Z (1) =

μ2 − μ1, P
′′′
Z (1) = μ3 − 3μ2+2μ1, we obtain:

t2[1 + (1 − t)μ1]P′′X1
(t) + t(1 − t)(μ2 + μ1)P′X1

(t) − 1

3
(μ1 − μ3)(1 − t)PX1

(t) − (μ2 − μ1) = 0. (2.3)

Now, using (1.8), we have:

φ
′′
(t) =

P′′X1
(t)

P2
X1

(t)
− 2

[P′X1
(t)]2

P3
X1

(t)
=

[1 + (1 − t)μ1]P′′X1
(t) − 2φ

′
(t)P′X1

(t)

PX1
(t)

.

From which we get:

[1 + (1 − t)μ1]PX1

′′(t) = φ
′′
(t)PX1

(t) + 2φ
′
(t)P′

X1
(t). (2.4)

Also, using (i), we have:

(μ2 + μ1)(1 − t) = −2tφ
′
(t) − 2μ1φ(t). (2.5)

Now, using (2.4) and (2.5), Equation (2.3) reduces to

t2φ′′(t)PX1
(t) − 2μ1tφ(t) P′X1

(t) +
1

3
(μ3 − μ1)( 1 − t)PX1

(t) − (μ2 − μ1) = 0. (2.6)

Finally, since φ(t)P′X1
(t) = −φ′ (t)PX1

(t) and t = ρ + (1 − ρ)α, then Equation (2.6) can be written as

t2φ′′(t) + 2μ1tφ′(t) + (μ2 − μ1)φ(t) = −1

3
(μ3 − μ1)( 1 − t).

Proving (ii).

(iii) Proof of this part is similar to that of (i) and (ii). �
Remark 2.1 Lemma 2.1 reduces, for ρ = 0, to Lemma 3 of Ghitany and Gharib (2005).

Remark 2.2 The differential equations derived in Lemma 2.1 has the following general form:

aktkφ(k)(t) + ak−1tk−1φ(k−1)(t) + ... + a1tφ(1)(t) + a0φ(t) = g(t),

where ak, ak−1, ..., a0 are constants, φ(k)(t) denotes the kth derivative of φ(t), and g(t) is a non-zero function of t.
This differential equation is known as the kth order nonhomogeneous Euler differential equation (Zwillinger, 1992,

p. 235).

3. Characterization Results

The first characterization of the MBG distribution related to the random sum (1.3) is expressed in terms of the first

two moments of Z.

Theorem 3.1 Assume Y1 ∼ MBG(α, ρ), for some α ∈ (0; 1) and ρ ∈ [0,1], and X1 is arbitrary non-negative
integer-valued rv with p0 = P(X1 = 0) < 1. Then X1 ∼ MBG(β, ρ1), for some β ∈ (0; 1) and ρ1 ∈ [0, 1], if and
only if

μ2 − μ1(2μ1 + 1) =
2βρ1t

(1 − β)(1 − ρ1t)2
(3.1)

where, t = ρ + (1 − ρ)α, and E(Zi) = μi, i = 1, 2 with μ2 < ∞.

Proof. Necessity: Suppose X1 ∼ MBG(β, ρ1), for some β ∈ (0; 1) and ρ1 ∈ [0, 1]. Then, by using Lemma 1.2,

Z ∼ MBG(β, ρ2), for some β ∈ (0; 1) and ρ2 = ρ1t; t = ρ+ (1−ρ)α. Now, it is straight forward to see that condition

(3.1) is satisfied upon substituting

μ1 =
β

1 − D
, μ2 =

μ1(1 + D)

1 − D
,

141



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

where, D = ρ2 + (1 − ρ2)β.

Sufficiency: Suppose condition (3.1) is satisfied. This and (i) of Lemma 2.1 imply that

tφ
′
(t) +

β

(1 − β)(1 − ρ1t)
φ(t) = − β

(1 − β)2(1 − ρ1t)2
(1 − t), t ∈ (0; 1), and ρ1 ∈ [0, 1), (3.2)

subject to the initial condition φ(1) = −1.

Now, the general solution of (3.2) is:

φ(t) = C1t−
β

(1−β) (−1 + ρ1t)
β

(1−β) − (1 − �t)
(1 − β)(1 − ρ1t)

,

where C1 is an arbitrary constant and � = ρ1 + (1 − ρ1)β.

Now, using the initial condition φ(1) = −1, we obtain C1 = 0. Hence, the solution of (3.2) is given by:

φ(t) = − (1 − �t)
(1 − β)(1 − ρ1t)

, t ∈ (0; 1), β ∈ (0; 1), and ρ1 ∈ [0, 1).

(For the uniqueness of this solution, see Zwillinger, 1992, p. 51).

Consequently, we have uniquely (φ(s) = −1/PX1
(s)).

PX1
(s) =

(1 − β)(1 − ρ1s)

(1 − �s)
, |s| ≤ 1, β ∈ (0; 1), and ρ1 ∈ [0, 1).

Therefore, X1 ∼ MBG(β, ρ1). This completes the proof of Theorem 3.1. �
Remark 3.1 If ρ1 = 0, Theorem 3.1 reduces to Theorem 3 of Ghitany and Gharib (2005) concerning the case of

geometric distribution.

The second characterization of the MBG distribution related to the random sum (1.3) is given in terms of the first

three moments of Z and the first moment of X1.

Theorem 3.2 Assume Y1 ∼MBG(α, ρ), for some α ∈ (0; 1) and ρ ∈ [0,1], and X1 is arbitrary non-negative integer-
valued rv with p0 = P(X1 = 0) < 1: Then X1 ∼ MBG(β, ρ1), for some β ∈ (0; 1), and ρ1 ∈ [0, 1], if and only
if

(2μ3 + μ1)μ1 − 3μ2
2 = 0, (3.3)

and
μ2 − μ1 − 2μ1ν1 =

2βρ1(t − D)

(1 − ρ1)(1 − D)2
, (3.4)

where D = ρ1t + (1 − ρ1t)β, t = ρ + (1 − ρ)α, α ∈ (0;1), ρ ∈ [0, 1], E(X1) = ν1, and E(Zi) = μi, i = 1, 2, 3 with
μ3 < ∞.

Proof. Necessity: Suppose X1 ∼ MBG(β, ρ1) for some β ∈ (0; 1), and ρ1 ∈ [0,1]. Then according to Lemma 1.2,

Z ∼ MBG(β, ρ2), for some β ∈ (0; 1) and ρ2 = ρ1t, t = ρ + (1 − ρ)α. Now, it is straight forward to see that each of

conditions (3.3) and (3.4) is satisfied upon substituting

μ1 =
β

1 − D
, μ2 =

μ1(1 + D)

1 − D
, μ3 =

μ1(D2 + 4D + 1)

(1 − D)2
ν1 =

β

1 − � ,

where D = ρ1t + (1 − ρ1t )β, t = ρ + (1 − ρ )α and

� = ρ1 + (1 − ρ1)β.

Sufficiency: Suppose conditions (3.3) and (3.4) are satisfied. These and (ii) of Lemma 2.1, imply that

t2φ
′′
(t) +

2βt
(1 − D)

φ
′
(t) +

2βD
(1 − D)2

φ(t) = − 2βD
(1 − D)2

(1 − t), t ∈ (0; 1), β ∈ (0; 1), (3.5)

subject to the initial conditions φ(1) = −1, φ
′
(1) = ν1 =

β
1−� , where � = ρ1 + (1 − ρ1)β, and ρ1 ∈ [0, 1).
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Now, the general solution of Equation (3.5) is given by

φ(t) = tr1 ( − 1 + ρ1t)r4C1 +
(1 − β)( − 1 + ρ1t)r3 tr2√

β2 − 6β + 1
C2 − (1 − �t)

(1 − β)(1 − ρ1t)

where, C1 and C2 are arbitrary constants, t = ρ + (1 − ρ )α, � = ρ1 + (1 − ρ1)β, ρ1∈ [0, 1), r1,2 =
1−3β±

√
β2−6β+1

2(1−β)

and r3,4 =
1+β±
√
β2−6β+1

2(1−β) .

Now, using the initial conditions of Equation (3.5), we get the following two algebraic equations in C1 and C2

( − 1 + ρ1)r4C1 +
(1 − β)( − 1 + ρ1)r3√
β2 − 6β + 1

C2 = 0,

and

( − 1 + ρ1)r4−1(ρ1 − r1)C1 +
(1 − β)( − 1 + ρ1)r3−1(ρ1 − r2)√

β2 − 6β + 1
C2 = 0

Solving these two algebraic equations by the elimination method, for C1 and C2 , we get that C1 = C2 = 0.

Therefore, Equation (3.5) has the unique solution (for the uniqueness of the solution, see Zwillinger, 1992, p. 51):

φ(t) = − (1 − �t)
(1 − β)(1 − ρ1t)

, t ∈ (0; 1), β ∈ (0; 1), and ρ1 ∈ [0, 1).

Consequently, we have uniquely (φ(s) = −1/PX1
(s))

PX1
(s) =

(1 − β)(1 − ρ1s)

(1 − �s)
, |s| ≤ 1, β ∈ (0; 1), and ρ1 ∈ [0, 1).

Therefore, X1 ∼ MBG(β, ρ1). This completes the proof of Theorem 3.2. �
Remark 3.2 If ρ1 = 0; Theorem 3.2 reduces to Theorem 4 of Ghitany and Gharib (2005) concerning the case of

geometric distribution.

The third characterization of the Markov-Bernoulli geometric distribution related to the random sum (1.3) is ex-

pressed in terms of the first four moments of Z and the first two moments of X1.

Theorem 3.3 Let Y1 ∼ MBG(α, ρ); for some α ∈ (0; 1) and ρ ∈ [0,1], and let X1 be an arbitrary non-negative
integer-valued rv with p0 = P(X1 = 0) < 1. Then X1 ∼ MBG(β, ρ1), for some β ∈ (0; 1), and ρ1 ∈ [0, 1], if and
only if

3(μ4 − 2μ3 − μ2 + 2μ1)(μ2 − μ1) − 4(μ3 − 3μ2 + 2μ1)(μ3 − μ1) = 0, (3.6)

μ3 − 3μ2 + 2μ1 − 3(μ2 − μ1)ν1 =
6βDρ1(t − D)

(1 − �)(1 − ρ1t)(1 − D)2
, (3.7)

and
ν2 − ν1(2ν1 + 1) =

2βρ1

(1 − �)(1 − ρ1t)
, (3.8)

where μi = E(Zi), i = 1, 2, 3, 4, with μ4 < ∞, ν j = E(X j
1
), j = 1; 2, D = ρ1t + (1− ρ1t )β, t = ρ + (1 − ρ)α and

� = ρ1 + (1 − ρ1)β.

Proof. Necessity: Suppose X1˜MBG (β, ρ1) for some β∈ (0; 1), and ρ1∈[0, 1]. Then according to Lemma 1.2, Z
∼MBG (β, ρ2), for some β∈ (0; 1) and ρ2 = ρ1 t, t = ρ + (1 − ρ)α. Now, it is straight forward to see that each of

conditions (3.6)-(3.8) is satisfied upon substituting

μ1 =
β

1 − D
, μ2 =

μ1(1 + D)

1 − D
, μ3 =

μ1(D2 + 4D + 1)

(1 − D)2
, μ4 =

μ1(D3 + 11D2 + 11D + 1)

(1 − D)3
,

ν1 =
β

1 − � , ν2 =
ν1(1 + �)

1 − � ,
where, D = ρ1t + (1 − ρ1t )β, t = ρ + (1 − ρ )α and � = ρ1 + (1 − ρ1)β.
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Sufficiency: Suppose conditions (3.6)-(3.8) are satisfied. These and (iii) of Lemma 2.1, imply that

t3φ′′′(t) +3μ1t2φ′′(t)+3(μ2− μ1)tφ′(t)+ (μ3− 3μ2+2 μ1)φ(t) = −1

4
(μ4−2μ3− μ2+2 μ1)( 1− t), t ∈ (0; 1) (3.9)

subject to the initial conditions φ(1) = −1, φ
′
(1) = ν1 =

β
1−� ,

φ
′′
(1) = ν2 − ν1(2ν1 + 1) =

2βρ1

(1 − �)(1 − ρ1)
,

where � = ρ1 + (1 − ρ1)β, ρ1∈ [0, 1), μ3− 3μ2+ 2μ1 = E[Z(Z−1)(Z−2)] > 0, μ2− μ1 > 0 and μ1 > 0.

From conditions (3.3), (3.6) and (3.7), we obtain:

μ3 − μ1 =
3(μ2 − μ1)(μ2 + μ1)

2μ1

, μ3 − 3μ2 + 2μ1 =
6βD2

(1 − D)3
, μ4 − 2μ3 − μ2 + 2μ1 =

24βD2

(1 − D)4
.

Therefore, (3.9) can be rewritten as:

t3φ′′′(t) +
3βt2

(1 − D)
φ′′(t) +

6βDt
(1 − D)2

φ′(t) +
6βD2

(1 − D)3
φ(t) = − 6βD2

(1 − D)4
(1 − t), t ∈ (0; 1) (3.10)

with initial conditions φ(1) = −1, φ
′
(1) = ν1 =

β
1−� ,

φ
′′
(1) = ν2 − ν1(2ν1 + 1) =

2βρ1

(1 − �)(1 − ρ1)
.

Finally, Equation (3.10) with the above initial conditions has the unique solution (for the uniqueness of the solution,

see Zwillinger, 1992, p. 51):

φ(t) = − (1 − �t)
(1 − β)(1 − ρ1t)

, t ∈ (0; 1), β ∈ (0; 1), and ρ1 ∈ [0, 1).

Consequently, we have uniquely (φ(s) = −1/PX1
(s))

PX1
(s) =

(1 − β)(1 − ρ1s)

(1 − �s)
, |s| ≤ 1, β ∈ (0; 1), andρ1 ∈ [0, 1).

Therefore, X1 ∼ MBG(β, ρ1). This completes the proof of Theorem 3.3.

Remark 3.3 If ρ1 = 0; Theorem 3.3 reduces to Theorem 5 of Ghitany and Gharib (2005) concerning the case of

geometric distribution.

4. Concluding Remarks

1) From the “if” part of Theorems 3.1-3.3 and according to Theorem 1.1, It follows that when X1 has the MBG

distribution then the random sum Z and the summands have distributions of the same type and in this case the

summands are called N-sum stable (Satheesh et al., 2002). This result is valid, also, as a consequence of the fact

that geometric random sums are stable in the same sense.

2) Each of the three nonhomogeneous differential equations used in the characterizations of the Markov-Bernoulli

geometric distribution given in this paper has a linear nonhomogeneous term. The solution associated with each of

these differential equations under certain initial condition(s) is essentially its particular solution.

3) We may note that the condition of Theorem 3.1 involves only the moments of Z while the conditions of Theorem

3.2 and Theorem 3.3 involve both the moments of Z and X1: Indeed, this is due to the nature of the initial conditions

used in the sufficiency part of the proofs of these theorems.
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