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Abstract

Let X = (X1, X2, . . . , XN) be a time series. That is a sequence random variable indexed by the time t = (1, 2, . . . ,N),

we suppose that the parameters of X are piecewise constant. In other words, it exists a subdivision τ = (τ1 < τ2 <
. . . < τK) such that Xi is a family of independent and identically distributed (i.i.d) random variables for i ∈ (τk, τk+1],

and k = 0, 1, . . . ,K where by convention τo = 0 and τK+1 = N. The preceding works such that (Bertrand, 2000)

control the probability of false alarms for minimizing the probability of type I error of change point analysis. The

novelty in this work is to control the number of false alarms. We give an bound of number of false alarms and

the necessary condition for number of no detection. In other hand, we know the filtered derivative (Basseville &

Nikirov, 1993) depends the parameters such that the threshold and the window, we give in order to choose the

optimal parameters. We compare the results of Filtered Derivative optimized parameters and the Penalized Square

Error methods in particulary the adaptive method of (Lavielle & Teyssière, 2006).

Keywords: times series, filtered derivative, change points, false alarms, no-detections

1. Introduction

The problem of change detection is much studied in the literature, it exists two types of change points detection:

The on-line detection or sequential points analysis and the off-line detection or change points analysis. For an

updated overview, we can see the textbooks (Basseville & Nikirov, 1993; Csorgo & Horváth, 1997), or (Huskovà

& Meintanis, 2006b; Gombay & Serban, 2009 ). Many applications use the change points analysis such as health,

medicine and civil engineering and the sequential analysis such as fault detection, finance, surveillance and security

system. Many methods exists but we often use: The penalized least square error (PLS) (Lavielle & Moulines, 2000)

and the filtered derivative (FD) (Basseville & Nikirov, 1993). The calculus of PLS need a matrix of size O(n2), and

that FD is of order O(n). To improve the FD-method, two methods are developed: The filtered derivative with p-

value (FDpV) (Bertrand, Fhima, & Guillin, 2011) and the filtered derivative and false discovery rate (FDqV) (Elmi,

2014). For the PLS-method, many authors are proposed (Lavielle & Moulines, 2000; Lavielle & Teyssière, 2006)

the choices of penalized parameter for performing the PLS-method. For FD-method, there were no papers which

mentioned this. Recall, the algorithm FD depends the window and the threshold and by consequent his performance

depends the optimization of these parameters. In this work, we give the reasonable choices these parameters. We

organised our paper in this way: section 1 is the introduction, section 2 describes the art of change points detection

and the criteria of measure. Section 3 recall the methods of change point analysis. In the section 4, we discuss how

to control the number of false alarms and numbers of no-detections. The section 5 contains numerical comparison

of FD and PLS adaptive methods. Finally the appendix contains all proofs, propositions and lemmas used in this

work.

2. The Art of Change Points Detection

The following subsection describes the problem of abrupt changes and different criteria used in the literature.

2.1 Problem of Change Points Detection: The Model

• X = (X1, X2, . . . , XN) is a family of independent random variables indexed by the time.

• There exists a subdivision τ = (τ1, . . . , τK) with τk ∈ {1, . . . ,N} and 0 < τ1 < τ2 . . . < τK < N.
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• A configuration a K change points τ = (τ1, . . . , τK) enlarged by convention by adding τ0 = 0 and τK+1 = N.

• Associated to the configuration of mean values (μ0, . . . , μK) with Xt ∼ N(μk, 1), for t ∈ (τk, τk+1] and for all

k = 0, . . . ,K.

• For notational convenience, we also define the configuration of shifts, for k = 1, . . . ,K, (δ1, . . . , δK) where

δk = μk+1 − μk.

• Let us define the minimal distance between to consecutive change points by L0 = inf{|τk+1 − τk | k = 0, . . . ,K},
and

• The minimal absolute value of the shifts by δ0 = inf{|δk |, k = 1, . . . ,K}.
Let us also recall the definition of the cumulative distribution function for standard Gaussian law

Φ(x) =
1√
2π

∫ x

−∞
exp

−u2

2 du and Ψ(x) = 1 − Φ(x). (1)

All this paper, we use a following simulation:

2.2 Simulation

For n=10000, we have done one realization of a sequence of Gaussian random variable (X1, . . . , Xn) with variance

σ2 = 1 constant and mean μ have different values. we consider seven change points at time τ = (2000, 2500, 3000,

4000, 7000, 8000, 9000) with means μ = (2.5, 2, 3, 4.5, 3, 3.5, 4, 5) and δ = (0.5, 1, 1.5, 1.5, 1.5, 0.5, 1). Below, we

give a drawing for change points analysis.

t

X
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Observed signal
 Right signal 

Figure 1. The observed signal and the right signal

We will use this model all this paper.

2.3 The Criteria of Measure

We suppose that the number K is unknown, and the goal of the off-line detection is to estimate the instants

τ = (τ1, . . . , τK) and the values of the mean (μ0, μ1, . . . , μK). we set τ̂ = (τ̂1, . . . , τ̂K̂) and (μ̂0, μ̂1, . . . , μ̂K̂) the

corresponding estimated.

2.4 Criterion

For measuring the quality of the estimation of parameters, we use the integrated square error (ISE). So we define

the ISE as:

IS E =
N∑

i=1

{[̂
l(t) − l(t)

]2
}
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with the signal

l(t) =
K∑

k=0

μk × 1(τk ,τk+1](t)

and the estimated signal

l̂(t) =
K̂∑

k=0

μ̂k × 1(̂τk ,̂τk+1](t)

As, a result for one replication is not significant, we make M = 1, 000 replications and thus we use the mean

integrated square error (MISE).

3. Methods of Off-Line Detection

The most popular methods used are: The Penalized Least Square Error (PLS) (Lavielle & Moulines, 2000), the

Filtered Derivative with p-value (FDpV) (Bertrand, Fhima, & Guillin, 2011) and the Filtered Derivative with False

Discovery Rate (FDqV) (Elmi, 2014). We make drawings with following methods using the simulation of the

subsection (1.2).

3.1 PLS-Method

For PLS-method, we have to search the instants of change points which minimize the contrast function defined as

Q(τ) =

K∑
k=0

τk+1∑
t=τk+1

|Xt − μ̂k |2 (2)

Two cases are studied:

• The case where K is know (Bai & Perron, 1998) use the dynamical program method for estimating the instants

of ruptures and the mean values corresponding.

• In the case where K is unknown, many authors (such that Lavielle & Moulines, 2000; Lavielle & Teyssière, 2006;

Birgé & Massart, 2007) are proposed different values of penalized parameter for the performance of this method.

In Lavielle and Moulines (2000), the proposed choice of penalized parameter is:

β1 =
2σ2(logn)

n
.

The inconvenient is to over-estimate the number of change points.

In Birgé and Massart (2007), we have

β2 =
σ2

n
×

[
2 + 5 × log(

n
K

)
]

We can only apply the times series with constant variance.

Lavielle and Teyssière (2006) give an adaptive-method for estimating the number in following manner

− For 1 < K < Kmax, we adjust the model f (K) = a × K + b × log(K) + eK with the contrast function and eK

a sequence independent of random variable following the gaussian law standard.

−We evaluate the probability that Q(K) follows this model.

− The estimated number of change points will be the highest value of K such the p-value corresponding is the

smaller value of a given threshold.

For more details see Lavielle and Teyssière (2006).

For an illustration, we draw the following figure.
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Figure 2. Blue with red crosses: The contrast function Q(̂τK); green: The penalized contrasted pen(K)

3.2 FDpV-Method

The FDpV-method has two steps:

1) The step 1 is based for detection of potential changes points. For this we use the Filtered Derivative (Basseville

& Nikirov, 1993) define as it follows:

FD(t, A) = μ̂(t + 1, t + A) − μ̂(t − A, t), f or A < t < N − A (3)

where

μ̂(t + 1, t + A) := A−1
t+A∑

j=t+1

Xj

is the classical empirical mean.

In this case Without noise, the function j → FD( j, A) presents a hat centered at τ = j that is the top of the hat

corresponding at the right change point. The hight of the hat is exactly the size of the change on the mean, and

the spread is 2A. When the signal is random, the true μ at the right (resp left) on (τ − A, τ + A) is replace by μ̂
on (τ − A, τ + A). The estimate mean μ̂ is fluctuating around μ. In order to reduce the noise due to the sampling

fluctuation, we filters the signal by replacing the true value mean at the right and the left at the point j by its

estimated at the right and the left at point j on (τ − A, τ + A), and we take the difference of these two quantities.

For detection change points, (Basseville & Nikirov, 1993; Benveniste & Basseville, 1984) choose a threshold C1

and keep only the instants τ̂k for k = 1, . . . , K̂, where K̂ is the length of potential change points and such that

max |FD(̂τk)| exceed the threshold C1. At the end of the calculus, we have the instant of potential change points τ̂k

for k = 1, . . . , K̂. We have K < K̂. We draw below a figure for illustration.

0 2000 4000 6000 8000 10000

−2
0

2
4

6
8

10

t

(F
D

)

Corrected Filtered Derivative
Filtered Derivative with A=250
Threshold for p−value with C_1=0.25
Right Signal

Figure 3. The right signal (red), the noisy signal (blue), and Filtered Derivative function (green)
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Remark 1 A natural question is coming on : Does it exist in order to choose the optimal parameters of filtered

derivative A and C1? The goal of this work is to give a response of this question.

2) Recently, Bertrand, Fhima, and Guillin (2011) remark it exist false alarms at the end of the step 1, so for keeping

only as possible the right change points, they have had an idea to add a second step. For this, they have compared

pairwisely the means estimated μ̂k−1 := mean(X, τ∗k−1
, τk∗) versus μ̂k := mean(X, τ∗k, τ

∗
k+1

). In other words they have

done a test hypothesis where:

(H0,k) : μ̂k = μ̂k+1 versus (H1,k) : μ̂k � μ̂k+1

In the sequel, they have calculated the p-value corresponding to each potential change points and they have chosen

an critical p-value p∗ for keeping only the p-value lesser than the critical p-value.

Remark 2 In (Bertrand, Fhima, & Guillin, 2011), the critical p-value chosen is arbitrary (p∗ = 10−6), so we can

say that the problem of optimal p-value is open and we will try to do in future work.

3.3 FDqV-Method

In (Elmi, 2014), we have proposed a method for change points detection, this method use also the filtered derivative

as step 1, but we have added a step 2, which allow us to detect as possible all change points right. The difference

between the FDpV and FDqV is: The first use a single hypothesis for keeping all change points right and the

second use a multiple test. The power of FDqV is established in (Elmi, 2014).

The algorithm of the step 2 of FDqV is:

•We put the p- values in this way p∗1 ≤ . . . ≤ p∗K∗ .

•We choose a critic value denote q∗.

•We eliminate all p-value such that p∗i >
i

K∗ q
∗.

At the end of the step 2, we obtain (p∗1, p
∗
2, . . . , pK∗) and the estimated instants (τ1

∗, τ2
∗, . . . , τK∗ ), with K < K∗.
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Signal estimation after Step1
Signal estimation after Step2

Signal estimation after Step2 by FDqV method with parameters A=250 and C_1=0.2

Figure 4. Signal reconstruction after step 2 by FDqV method

Now, we start the main part of this article.

4. The Choice of Parameters for Filtered Derivative Method

All change point method depends on extra-parameters, which have to be well chosen. The PLS method depends

only on the penalization parameter β, different choices are possible see Section 3 above. The filtered derivative

method depends on the parameters, namely the window size A and the threshold C1. Both FDpV and FDqV method

use filtered derivative as Step 1, so they depends on the same extra-parameters A and C1. Moreover, FDpV and

FDqV method add a Step 2, which depends on another extra-parameter, that is the critical p-value p∗ or the q-value

q∗. In Subsection, we discuss the different criterium. In Subsection, we give the bound of the type II error.
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4.1 Choice the Extra-Parameters of FD

As pointed out in Subsection, the quality of a change point method can be evaluated by two criteria: i) the

absolute value of the number of estimated change point minus the right number of change points |K̂ −K|; ii) ISE or

MISE. Both criterions lead to prefer detecting more potential change point than missing at least one. Indeed, the

no detection of one change point could greatly impact the mean values μ̂k’s and after the ISE, but also the p-value

p�k ’s. Stress that this phenomenon does not more exist when we restrict ourselves to FD method with the number

of change as criterion.

So, the type II error or probability of no detection (PND) should be controlled at a level close to zero. However,

the previous remark address to detect the right change point at the right times. As pointed out in (Bertrand, 2000),

when there is more no detection, we have: For each right change point τk, we define the local PND as

βloc(τk) = P (Bk) where Bk =
{
∀k ∈ [τk − A, τk + A], |D(A, k)| < C1

}
.

Then with these notations, we can write the global PND in this manner

PNDglobal = P
( K⋃

k=1

Bk

)
. (4)

On the other hand, we define the probability of false alarm or probability of type I error as following:

α(A,C1) = P(τ(C1, A) ≤ N − A)

Where τ(A,C1) is the first hitting time of C1 and

τ(A,C1) := inf{k ≥ A such that FD(A, k) ≥ C1} (5)

However, the type I error is the probability of at least one false alarm and thus appears as a rough criterion see

(Bertrand, 2000).

4.2 The Type I and II Errors at Step 1 (Filtered Derivative)

In the following proposition, we give an upper bound for PNDglobal.

Proposition 1 Assume there are K change points and a configuration of change points τ = (τ1, τ2, . . . , τK), with
means (μ0, . . . , μK) and shifts (δ1, . . . , δK) as described in Subsection 2.1. Then

PNDglobal ≤ K × β∗(C1, A).

where PNDglobal is defined by (4) and

β∗(C1, A) := Ψ

⎛⎜⎜⎜⎜⎜⎝δ −C1

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠ × Φ
⎛⎜⎜⎜⎜⎜⎝C1 − δ/3
σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠
2

. (6)

and Φ and Ψ are given by (1).

Proof. Following (Bertrand, 2000, p. 222, Prop. 3.2), we have for each change point τk,

P (Bk) ≤ Ψ

⎛⎜⎜⎜⎜⎜⎝δk −C1

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠ × Φ
⎛⎜⎜⎜⎜⎜⎝C1 − δk/3

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠
2

. (7)

Next, by remarking that the right side of (7) is a decreasing function of δk and setting δ = infk=1,...,K δk, we can

deduce that

P (Bk) ≤ β∗(C1, A) := Ψ

⎛⎜⎜⎜⎜⎜⎝δ −C1

σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠ × Φ
⎛⎜⎜⎜⎜⎜⎝C1 − δ/3
σ

√
A
2

⎞⎟⎟⎟⎟⎟⎠
2

. (8)

By consequent, we obviously obtain

PNDglobal ≤
K∑

k=1

P
(
Bk)
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which combined with 8) gives us the bound (6). This finishes the proof of Proposition 1. �
K is unknown, but is not variable. Thus, we will monitor the quantities β∗(C1, A), for instance we choose to

set β∗(C1, A) = 10−4 and we can write ln β∗(C1, A) = f
(

C1

δ
, δ
σ

√
A
2

)
. Thus after the variables change we have

f (x, y) = ln(10−4) with x = C1

δ
and y = δ

σ

√
A
2

and f (x, y) = lnΨ((1 − x) × y) + 2 lnΦ((x − 1/3) × y). This

equation can be numerically solved, and we find couples solution of this equation. Since the map C1 �−→ β∗(C1, A)

is decreasing, and we find an implicit function A �→ C1(A). After having controlled the PND, we can control the

PFA. We know (Bertrand, 2000, p. 221, Prop. 3.1) that for all ε > 0 there exists a constant Mε such that

α ≤ Mε × α∗(C1, A) := Mε ×
(n − A

A

)
× Ψ

⎛⎜⎜⎜⎜⎜⎝C1

σ

√
A

2 + ε

⎞⎟⎟⎟⎟⎟⎠ . (9)

For instance, we can set ε = 0.1, next we plug the implicit relationship between A and C1 inside (9) and we obtain

a function A �−→ α∗(C1(A), A
)
. The first idea is to make varying the parameter A in order to find the optimal

value corresponding to a minimum of the map A �−→ α∗(C1(A), A
)
. Unfortunately, the map A �−→ α∗(C1(A), A

)
is

decreasing and reaches no minimum value.

3 4 5 6 7

−1
2

−1
0

−8
−6

−4
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z

Figure 5. The graphic corresponding at the type I error, y =
√

A
2

and z = α∗
(
C1(A), A

)
4.3 Necessary Condition of No-Detection

In this subsection, we draw a three figures for choosing a “good” window A. According to the figure below, we

can choose A with the following condition:

2 × A < L0 := inf{|τk+1 − τk |, k = 1, . . . ,K}. (10)

With this drawings, we can say that A must verify A < L0/2, because in the first, we detect all change points and

others, we only detect two change points.
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Figure 6. Red: the filtered derivative with A=100, A=200, A=600, Yellow: the right signal, Green: the threshold

C1 = 0.1

4.4 Control of Number of False Alarms

In this subsection, we want to control the number of false alarms (NFA) and not only the PFA (probability of false

alarms). First, we can remark that the number of false alarm is always greater than the corresponding one when

there is no change. Indeed, let us denote by K̃ the number of change points select in step 1 (FD), then the number

of false alarms is (K̃ − K). By using (Bertrand, 2000), we have

FD(A, t) = Γ(A, t) +
K∑

k=1

δk × g
( t − τk

A

)
f or all t

where

Γ(A, t) = A−1[Ŝ t+A + Ŝ t−A − 2 × Ŝ t], and Ŝ t =

t∑
k=1

Xk

and

g(x) =

{
1 − |x|: when |x| ≤ 1

0: when |x| ≥ 1

Let us point that when there is no change, then FD(A, t) = Γ(A, t) for all t, this implies that (K̃−K) ≤ K̃0, where K̃0

denotes the number of change points detected by FD when there is no change. For example, using the simulation

the subsection (1.2), we can see that K̃0 = 3 (see drawings below and count the number τ∗).
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Figure 7. First drawing: The signal observed: blue, The right signal: red. Second drawing: The signal

reconstruction: green

Thus, we can restrict ourselves for estimation the number of false alarms to the case without change. In this case

there are only false detection, and we denote by RLk the real variable corresponding to the run length before the

kth false detection. For k ≥ 1, we have τ̃k =

k∑
j=1

RLj(ω). Next, we denote by M(ω) the number of potential change

points. With these notation, we can state the following theorem that allow us to give a bound of number of false

alarms:

Theorem 1 Assume there is no change, then

i) For all integer L ≤ N

P(M(ω) ≤ L − 1) ≤ ϕ(A,C1,N, L) (11)

where

ϕ(A,C1,N, L) :=
∑

(L1,...,LL),
∑

Lj>N

L∏
i=1

|Lj − 2A| × Ψ(
AC1

σ
√

L j
)

ii) Moreover

EM(ω) ≥ −ϕ(A,C1,N, 0) −
∑
L≥2

ϕ(A,C1,N, L) (12)

Proof. See Appendix. �
5. Discussion

5.1 For FD Method

5.1.1 The Choice of Parameter A

As stress above, the question of parameters which depends the FD method is important for its algorithm. In this

work, we give the criteria for the choice of reasonable parameters A and C1. In the preceding section, we have

established that for detecting of all right change points we must have 2 × A < L0 with L0 := inf{|τk+1 − τk |, k =
1, . . . ,K}, see also Figure 5.
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5.1.2 The Choice of C1

In (Bertrand, 2000), we have C1 < δo with δ0 = inf{|δk |, k = 1, . . . ,K} where δk are the size of the average. An

other hand in the Theorem 1, we have obtained a bound of number of false detection and its average using the

function ϕ. For N, L fixed and A supposed verified the condition above, we can choose C1 optimal. We remark

that if C1 is increasing, the function Ψ is decreasing and consequently the average of number of false alarms is

decreasing, so it should to choose C1 the greatest possible and C1 must verify the condition was given by Bertrand

(2000).

5.2 Simulation

We use the simulation of the subsection (1.2) and we make various drawings with different values C1 and A.
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Figure 8. The Filtered Derivative with different parameters A and C1

5.2.1 Comment

We notice through these drawings above that the number of false alarms and the number of no detections vary

according to parameters A and C1. Thus, a choice of A and C minimizing these two points (NND and NFA) is

imperative. It is what we are going to do after.

5.2.2 Numerical Estimation of NND and NFA

In this part, we want to have an estimation of NND and NFA. For this we make the calculation for Filtered

Derivative method with different A = 30 to 500 and C1 = 0.1 to 1 and we choose Kmax = 20 (we suppose that

the maximum number change points is equal 20). An each couple (A, C1), we make 1000 simulations for to have

an number exact of no detection of change points and number of false alarms. Then, we can deduce the NND and

NFA for each couple and we sum up the result in the followings arrays:
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Table 1. Table of no detections of change points

A/C1 0.1 0.2 0.25 0.3 0.4 0.5 0.7

30 0.176 0.307 0.50 0.65 1.05 1.53 2.46

40 0.098 0.243 0.411 0.5 1.02 1.49 2.50

60 0.045 0.132 0.231 0.395 0.874 1.47 2.616

100 0.008 0.053 0.0117 0.219 0.710 1.457 2.766

180 0.005 0.008 0.025 0.071 0.470 1.489 2.92

220 0.002 0.003 0.011 0.055 0.469 1.489 2.934

250 0 0 0.01 0.028 0.369 0.161 2.954

350 0 0 0 1.029 1.143 1.447 2.99

450 0 0 0 0.003 0.716 1.508 2.994

500 0 0 0 0 0.11 1.48 3

Table 2. Table of number of false alarms

A/C1 0.1 0.2 0.25 0.3 0.4 0.5 0.7

30 13.51 13.281 13.471 13.622 14.026 14.506 14.796

40 13.166 13.217 13.385 13.469 14.002 14.461 5.810

60 13.019 13.105 13.205 13.369 13.848 10.077 1.714

100 12.834 13.028 13.143 13.052 5.168 2.163 1.283

180 12.976 12.217 6.762 2.948 1.433 1.518 1.0833

220 12.974 8.3033 3.614 1.686 1.269 1.407 1.035

250 12.974 5.752 2.429 1.281 1.227 1.393 1.041

350 10.822 2.331 1.189 0.010 0.291 1.335 1.005

450 4.333 1.296 1.0339 1.001 1.079 1.289 1

500 4.663 1.165 1.0219 0.994 1.030 1.167 0.986

Table 3. Table of integer square error

A/C1 0.1 0.2 0.25 0.3 0.4 0.5 0.7

30 7947.31 7947.31 7945.21 7924.43 8078.99 7947.31 7807.86

40 7779.01 7779.01 7871.04 7779.01 7779.01 7779.01 4897.58

60 2475.03 7592.16 7651.39 7737.42 7737.42 7737.42 2419.67

100 7641.06 7565.51 7641.06 7758.73 4531.81 1860.44 1775.77

180 7748.16 7748.18 5540.20 3187.57 1567.89 888.73 2406.88

220 7880.80 6395.04 3818.09 2235.87 1404.52 788.74 2099.12

250 7992.98 5261.26 3094.07 1875.92 1579.60 916.71 2134.77

350 7712.28 3208.19 1983.91 1874.15 1600.91 515.51 2140.14

450 5908.22 2102.07 1837.95 2144.79 1584.63 810.66 2201.55

500 5079.89 2332.44 2223.88 1961.04 1654.26 861.96 2080.03

6. Comparison the Filtered Derivative With Parameters Optimized and Penalized Least Square Error (the
Adapative Method (Lavielle & Teyssière, 2006))

6.1 Monte Carlo Simulation

For comparing the both-methods (The filtered derivative with parameters optimized and adaptive method of (Lavielle

& Teyssière, 2006), we choose the simulation of the subsection (1.2). For FD-method, the optimal parameters cho-

sen are Aopt = 250 and C1,opt = 0.25.

The criteria of comparison are the number of false alarms, the number of no-detection, and the mean square error.

Firstly, for one replication, we obtain:

• For adaptive method, NFA = 1, NND = 4, ISE = 28670 (see figure below).
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Figure 9. The adaptive method

• For filtered derivative with optimized parameters, NFA = 3, NND = 1, ISE = 3998.8 (see figure below).
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Figure 10. The filtered derivative with parameters optimized

For M = 1, 000 replications, we obtain:

• For FD-method, we obtain MISE = 3094.07, the number of false alarms NFA = 2.429, the number of no detection

NND = 0.01.

• For adaptive-method, MISE = 29009, NFA = 0.600, NND = 2.250.

6.2 Numerical Conclusion

It is clearly that the FD-method with parameters optimized is better the PLS-method adaptive (Lavielle & Teyssière,

2006) for the criteria mean integrate square error. In other hand, the FD-method with parameters optimized has

less no detection of points that the PLS-method adaptive but the firstly has many false alarms that the secondly.

Stress that, for in forthcoming work, we will add in step 2 for FD-method with parameter optimized for having the

number of false alarms at a level close to zero. In other words, we will optimize the FDqV (Elmi, 2014) for the

q-value corresponds the false discovery rate.

7. Conclusion

In this work, we gave the reasonable parameters of filtered derivative method. We obtained these parameters by

doing the simulations but if we consider the Theorem 1 and fix L, N and choose A in order (10) we can calculate

C1 theoretically. To do directly a theoretical calculus of A and C1 is very difficult and not solution at this moment.

In other hand, we can say that is better then to monitor the number of false alarms and number of no-detections
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that to control the probability of false alarms and the probability of no-detection as done in the preceding works.

A natural sequel will have to make the same for FDqV-method for keeping as possible the right number of change

points. It will be interesting to search in manner to adapt these results for the times series weakly and strongly

dependent.
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Csorgo, M., & Horváth, L. (1997). Limit Theorem in Change-Point Analysis. New York: Wiley.

Elmi, M. (2014) Multiple change points detection by Filtered Derivative and False Discovery Rate. International
Journal of Statistics and Probability, 3(1), 12-23. http://dx.doi.org/10.5539/ijsp.v3n1p12

Gombay, E., & Serban, D. (2009). Monitoring parameter change in AR(p) time series models. Journal of
Multivariate Analysis, 100, 715-725. http://dx.doi.org/10.1016/j.jmva.2008.08.005
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Appendix

In this subsection, we give some technical lemmas and proposition useful for the proof of the main theorem.

Lemma 1 Let L ∈ N, then

P(M(ω) ≤ L − 1) = P(

L∑
j=1

RLj(ω) > N)

Proof. We have

{
L+1∑
j=1

RLj(ω) > N} ⇒ {M(ω) ≤ L}

and

{
L∑

j=1

RLj(ω) ≤ N} ⇒ {M(ω) ≥ L}

P(M(ω) < L) = 1 − P(M(ω) ≥ L) ≤ P(

L∑
j=1

RLj(ω) > N)

Finally, we have the result above. �

Lemma 2 We suppose thatσ is constant and know, then Γ(A, k) is a family Gaussian such that Γ(A, k) ∼ N(0, σ
√

2
A ).

Proof. See Bertrand (2000). �
Proposition 2 Let L j ∈ N,

P(RLj ≤ Lj) = 0 when Lj < 0

and
P(RLj ≤ Lj) ≤ |Lj − 2 × A|Ψ(

AC1

σ2
√

L j
) when Lj ≥ 0

with

Ψ(x) = 1 − Φ(x) and Φ(x) =
1√
2π

∫ x

−∞
e
−u2

2 du.

Proof. From

(RL(A,C1) > Lj) = {max(Γ(A, k),Γ(A, k + 1), . . . , Γ(A, Lj)) ≤ C1}
We can write

P(RLj ≤ Lj) = 1 − P(RLj > l)

and

P(RLj > Lj) = P( max
t∈[k,Lj]

Γ(A, t) ≤ C1)

By scaling, we obtain

max
t∈[k,Lj]

Γ(A, t) =L σA−1
√

L jρ(
A
Lj

)

where

ρ(u) = max[W(u +
1

A
) +W(u − 1

A
) − 2W(u)] f or u =

A
n
, . . . , 1 − A

n
ρ is the maximum of discrete Wiener Process, according to Lemma (3), we know

[W(u +
1

A
) +W(u − 1

A
) − 2W(u)] ∼ N(0, σ

√
2

A
)

Then

P( max
t∈[k,Lj]

Γ(A, t) ≤ C1) = P(σA−1
√

L jρ(
A
Lj

) ≤ C1)

According to the following remark from (Csorgo & Horváth, 1997).
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If |I| is finite and ∀ i ∈ I,Xi ∈ N(0, σi), then

P(sup
i∈I

Xi ≥ a) ≤ |I|Ψ(
a

supi∈I σi
)

Finally, we get

P(RLj ≤ Lj) ≤ |Lj − 2 × A|Ψ(
AC1

σ2
√

L j
)

�
Proof. [Proof of Theorem 1]

i) First, we prove the upper bound (11).

(

L∑
j=1

RLj(ω) > N) =
⋃

{(L1,...,LL),
∑

Lj>N}
{∀ j = 1, . . . , L, such that RLj = Lj}

P(

L∑
j=1

RLj(ω) > N) = P(
⋃

{(L1,...,LL),
∑

L j>N}
{∀ j = 1, . . . , L, such that RLj = Lj})

By independence of RLj, we can write

P(

L∑
j=1

RLj(ω) > N) =
∑

{(L1,...,LL),
∑

Lj>N}
P(∀ j = 1, . . . , L, such that RLj = Lj)

P(

L∑
j=1

RLj(ω) > N) =
∑

{(L1,...,LL),
∑

Lj>N}
P(

L⋂
j=1

{RLj = Lj})

Using again independence of RLj

P(

L∑
j=1

RLj(ω) > N) =
∑

{(L1,...,LL),
∑

Lj>N}

L∏
j=1

P({RLj = Lj})

According to the proposition 2, we have

P(

L∑
j=1

RLj(ω) > N) ≤
∑

(L1,...,LL),
∑

L j>N

L∏
i=1

|Lj − 2A|Ψ(
AC1

σ
√

L j
) := ϕ(A,C1,N, L)

Finally, using the lemma 1 we have the result (11).

ii) We turn now to the upper bound (12). By definition

E
[
M(ω)

]
=

∑
L≥1

L × P(M(ω) = L)

=
∑
L≥1

L ×
[
P(M(ω) ≤ L) − P(M(ω) ≤ L − 1)

]
=

∑
L≥1

[
L × P(M(ω) ≤ L)

]
−

∑
L′≥0

[
(L′ + 1) × P(M(ω) ≤ L′)

]
= −P(M(ω) ≤ 0) −

∑
L≥1

P(M(ω) ≤ L)

By using the bound (11), we straightforward deduce the bound (12). This finishes the proof of Theorem 1. �
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