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Abstract

Penalized regression splines are a commonly used method to estimate complex non-linear relationships between

two variables. The fit of a penalized regression spline to the data depends on the number of knots, knot placement,

and the value of the smoothing parameter. In this paper, we use a simulation study to compare knot selection

methods with equidistant knots in a penalized regression spline model. We found that one method generally

performed better than others. The results provide guidance in selecting the number of equidistant knots in a

penalized regression spline model.
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1. Introduction

Consider the general regression model with a single explanatory variable that takes the form

yi = g(xi) + εi, for i = 1, ..., n, (1)

where xi ∈ [a, b], yi is a response variable, xi is a covariate, g(x) is the regression function dependent on the

covariate, n is the number of observations, and εi
iid∼ N(0, σ2) for all i. The goal with model (1) is to estimate the

function g(x), which describes the relationship between x and y in the presence of uncertainty. There are various

approaches for estimating the true underlying curve, g(x) for all x ∈ [a, b], depending on what we know about g(x).

Non-parametric methods do not assume a parametric form for g(x) in model (1), but instead the estimation of g(x)

is driven by the data. For example, to obtain a cubic penalized regression spline estimate of g(x), one may find

ĝ(x) to minimize the following criterion

n∑
i=1

(yi − g(xi))
2 + λ

∫ b

a

(
g′′(x)

)2 dx (2)

where λ is called the smoothing parameter and a = x1 < · · · < xn = b. To minimize fitting criterion (2), a penalized

regression spline approximates g(x) by a linear combination of basis functions. The number of basis functions that

approximate g(x) depends on the number of knots K. The cubic penalized regression spline estimate obtained by

minimizing fitting criterion (2) is dependent on the value of λ, K, and the location of the knots. There are various

families of basis functions that may be used in a penalized regression spline. To confine the study to a reasonable

length, we only consider a truncated power basis for illustration in Section 2.

When a knot is placed at each data point, the penalized regression spline is referred to as a smoothing spline.

Using smoothing splines, Lee (2003) compares, among others, Akaike’s information criterion corrected, Cross-

Validation, Generalized Cross-Validation, and Mallow’s Cp criterion to select the smoothing parameter. The loca-

tion of the knots may also be chosen to control the shape of the curve estimate. Stone et al. (1997) and references

cited therein discuss various stepwise selection procedures to select the number of knots and their location in a

regression spline setting. In a penalized regression spline setting, Spiriti et al. (2013) proposes two random search

algorithms for selecting the knot locations.
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Using a penalized regression spline, Ruppert (2002) compares the performance of two different algorithms (Myopic

and Full Search) to select the number of knots when placing the knots at quantiles of the xi’s with generalized cross

validation for smoothing parameter selection and found that both algorithms perform well. Ruppert et al. (2003)

further expands on this discussion and provides a default choice for the number of knots when placing the knots at

quantiles of the xi’s. Wand and Ormerod (2008) also place the knots at quantile locations using a similar default

rule as Ruppert et al. (2003) to select the number of knots in a penalized regression spline. Using equidistant

knot locations, Eilers and Marx (2010) compare two types of penalized regression splines. They demonstrated that

a large number of equally spaced knots outperformed quantile spacing of the knots in their investigation, but an

algorithm for determining what is large was not discussed. See Wand (2000) for a discussion on some of these

procedures and others in a regression and penalized regression spline setting.

The term “mixed model spline” has been used by some to indicate a spline smooth estimated via the mixed model

methodology. Welham et al. (2007) provide an overview of smoothing splines and penalized regression splines in a

linear mixed model setting. For quantile knot placement, they suggest using the default choice, Myopic algorithm,

or Full Search algorithm proposed by Ruppert et al. (2003), but the performance of these methods in their setting

were not investigated. Kauermann and Opsomer (2011) provide a likelihood based approach to select the number

of knots using quantile knot spacing in a mixed model spline. Software implementation and other examples of

mixed model splines are discussed in Ngo and Wand (2004).

In this article, we build upon the analysis of Ruppert (2002) and Ruppert et al. (2003) in regards to selecting

the number of knots in a penalized regression spline; a notable difference is that we use equally spaced knots

and several smoothing parameter selection methods under various simulation settings. Our aim is to determine if

one method for choosing the number of equally spaced knots outperforms another, thereby providing a preferred

approach for selecting the number of equally spaced knots. To our knowledge, the performance of these knot

selection approaches when using equidistant knots have not been examined previously. In Section 2, we review

a penalized regression spline with a truncated power basis. We henceforth refer to a penalized regression spline

with a truncated power basis as a TSM. In Section 3, we present several commonly used criteria for selecting the

smoothing parameter λ in a penalized regression spline. In Section 4, we review three different methods presented

in Ruppert et al. (2003) to select the number of knots. In Section 5, we present a simulation study to examine the

performance of the knot selection methods with equally spaced knots. We conclude with discussion in Section 6.

2. A Regression Spline With a Truncated Power Basis

We use a cubic penalized regression spline with a truncated power basis to estimate g(x) in model (1). Key

references for regression splines with a truncated power basis include Hastie et al. (2001) and Ruppert et al.

(2003). Using a cubic penalized regression spline with a truncated power basis, we model g(x) as

g(x) = β0 + β1x + . . . + β3x3 +

K∑
j=1

β3 j(x − k j)
3
+.

where k j is the jth knot, and (x − k j)+ = (x − k j) if x ≥ k j or zero if x < k j. Assuming that the observation

points xi are unique, an estimate of g(x) can be found to minimize (2) if λ and K are held constant. To illustrate,

we follow a matrix-based approach as described in Ruppert et al. (2003), among others. Let y = [y1 · · · yn]ᵀ,

β = [β1 · · · β3 β31 · · · βpK]ᵀ, ε = [ε1 · · · εn]ᵀ, and

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 x1 · · · x3

1
(x1 − k1)3

+ · · · (x1 − kK)3
+

...
...

...
...

. . .
...

1 xn · · · x3
n (xn − k1)3

+ · · · (xn − kK)3
+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Using this notation, the TSM may be expressed as

y = Xβ + ε

where y is a column vector, X is a n × (4 + K) matrix. To estimate β, one may use the estimator

̂β = (XᵀX + λR)−1Xᵀy,

where

R =
[
04×4 04×K

0K×4 IK×K

]

97



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

and IK×K is a K × K identify matrix. To increase numerical stability when using a truncated power basis in our

simulation study in Section 5, we replace λR in (2) by 10−10R + λR (Ruppert, 2002). This results in a penalty

lower bound of 10−10 instead of 0. Using the estimate from (2), we obtain

ĝ(x) = β̂0 + β̂1x + . . . + β̂3x3 +

K∑
j=1

β̂3 j(x − k j)
3
+.

This estimate depends on the value of λ and K.

3. Selecting the Smoothing Parameter

In this section, we discuss various data driven criteria for selecting λ in fitting criterion (2) conditional on the value

of K: Akaike’s information criterion corrected (AICc), Bayesian information criterion (BIC), Cross-Validation

(CV) and Generalized Cross-Validation (GCV) criterion. Each of these data driven criteria provides an approach

to select the value of λ conditional on the number of knots, and each criterion is a function of λ. Selection of the

value of K is addressed in Section 4.

For the AICc, BIC, CV , and GCV criteria, the value of λ that gives the minimum value of the criteria is taken to

be a good value for the smoothing parameter conditional on the value of K. Each of these methods is dependent

on the sum of squares error,

S S E(λ) =

n∑
i=1

(yi − ĝ(xi))
2,

as well as the effective degrees of freedom of ĝ(x), d fλ = tr(Sλ) as defined in Buja et al. (1989), where

Sλ = X(XᵀX + λR)−1Xᵀ.

The matrix Sλ is known as the smoother matrix. The more complex or “wiggly” the estimate of g(x), the higher its

d fλ.

The method of CV recycles the data by using training and test samples. Specifically, for each i = 1, ..., n, we obtain

the estimate of g(x) that minimizes

n∑
l=1,l�i

(yl − g(xl))
2 + λ

∫ b

a

(
g′′(x)

)2 dx

conditional on the value of λ. Denote the minimizing solution based on all the data except the ith observation by

ĝ−i(xi). This process is repeated for each observation. There are n cases that one can delete; therefore, for each λ
the cross-validation score is defined as

CV(λ) =

n∑
i=1

{yi − ĝ−i(xi)}2.

Because of the implementation, the CV method is also known as the leave- one-out method. The value of λ that

gives the minimum CV score is taken to be a good choice for the smoothing parameter. If a smoother matrix exists,

then the CV formula (Silverman, 1985) may be expressed as

CV(λ) =

n∑
i=1

(
yi − ĝ(xi)

1 − S ii

)2
,

where S ii denotes the ith diagonal element of Sλ and ĝ(xi) is the estimate that minimizes (2). Using this formula

we only have to fit the data once for each λ.

Akaike’s information criterion corrected, AICc, was introduced by Hurvich et al. (1998) because the commonly

used Akaike’s information criterion (Eubank, 1999) may have a tendency to over-fit the curve estimate for small

samples. The AICc criterion may be expressed as

AICc(λ) = ln(n−1S S E(λ)) +
2(d fλ + 1)

n − d fλ − 2
.
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The BIC criterion (Schwarz, 1978) may be defined as,

BIC(λ) = ln(n−1S S E(λ)) +
log(n)

n
d fλ,

which is similar to AICc but penalizes a model fit with a larger d fλ more strongly than the AICc for large n.

Developed by Craven and Wahba (1979), GCV may be defined by

GCV(λ) = n−1 S S E(λ)

(1 − n−1d fλ)2
.

Each of these smoothing parameter selection methods consists of trading off the complexity of an estimate of g(x)

against how well the model fits the data. Using an adequate number of knots, the size of the smoothing parameter

controls the influence of the penalty in (2).

4. Knot Selection Methods

We discuss three methods given in Ruppert et al. (2003) to select the number of knots K. These methods were

presented using the quantiles of the xi’s as the knot locations with GCV for smoothing parameter selection. In

Section 6, we study these methods using equally spaced knots with several smoothing parameter selection methods.

The three methods to select the number knots K are the fixed selection method, Myopic algorithm, and Full Search

algorithm. When using fitting criterion (2) selecting too many knots or too few knots may lead to over-fitting or

under-fitting, respectively. The intent of these knot selection methods is to provide an adequate number of knots to

allow a flexible enough fit when controlling the smoothness of the curve estimate with a smoothing parameter.

4.1 Fixed Selection Method

The fixed selection approach sets the number of knots to

K = min
(

1

4
× number of unique xi’s, 35

)
.

This is referred to as the default choice by Ruppert et al. (2003).

4.2 Myopic Algorithm

The Myopic algorithm is an algorithm that uses a smoothing parameter selection method. For illustration, we will

use the AICc criterion. Begin with a set of candidate values for the number of knots K. In this study, we use

candidate values similar to those suggested in Ruppert et al. (2003). Specifically, we set {K1,K2,K3,K4,K5,K6} =
{5, 10, 20, 40, 80, 160}, assuming 160 ≤ n. If 160 > n, then reduce the maximum of the set of candidate knot values

to n. For w = 1, . . . , 6, proceed as follows:

1) Fit the model with AICc to select λ using Kw knots. Let λ1 denote the smoothing parameter chosen by AICc.

2) Fit the model with AICc to select λ using Kw+1 knots. Let λ2 denote the smoothing parameter chosen by

AICc.

3) If AICc(λ2) > 0.98AICc(λ1), then stop and use the number of knots that corresponds to min(AICc(λ1),

AICc(λ2)). If AICc(λ2) ≤ 0.98AICc(λ1), then repeat steps 1-3 for w = 2, 3, 4, 5, 6 until the inequality in step 3 is

satisfied or when w = 6. If w = 6, then K6 knots is assumed to be best.

4.3 Full Search Algorithm

The Full Search algorithm is similar to the Myopic algorithm, but it iterates through the list of possible knots.

Begin with a set of candidate values for the number of knots, {K1,K2,K3,K4,K5,K6} = {5, 10, 20, 40, 80, 160}. For

w = 1, . . . , 6, proceed as follows:

1) Fit the model with AICc to select λ using Kw knots for w = 1, . . . , 6. Let λw denote the smoothing parameter

chosen by AICc for w = 1, . . . , 6.

2) For w = 1, . . . , 6, select the value of AICc(λw) that is the smallest, and then use Kw knots.

Although we used AICc to illustrate the Myopic and Full Search algorithm, one may use any of the smoothing

parameter selection methods discussed in Section 3. More details regarding these knot selection methods may be

found in Ruppert (2002) and Ruppert et al. (2003).
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5. A Simulation Study

In this section, we perform a simulation study using 12 different combinations for selecting λ and K to compare

the knot selection methods when using equally spaced knots. Recall the data-driven smoothing parameter selec-

tion approaches discussed in Section 3: AICc, BIC, CV , and GCV . We use each of these smoothing parameter

selection methods combined with a knot selection method (fixed knot selection method (FM), Myopic algorithm

knot selection method (MA), or Full Search algorithm knot selection method (FA)) to select the number of equally

spaced knots K. For comparison, we also consider a smoothing spline estimate by placing a knot at each data point,

and we denote this approach as the SMS method. Note that any penalized regression or smoothing spline estimator

ĝ(x) will always depend on the chosen smoothing parameter λ and the number of knots K, but we suppress the

notation of this dependence for better readability.

To compare the performance of an estimator ĝ(x) to the true function g(x), we use the median of a measure used

by Lee (2003) to compare smoothing parameter selection methods for smoothing splines. The measure is defined

as

D(g, ĝ) =

∑n
l=1(̂g(xi) − g(xi))

2∑n
l=1(̂gλ′ (xi) − g(xi))2

, (3)

such that the estimate ĝλ′ (xi) depends on the smoothing parameter λ
′

chosen to minimize

n∑
i=1

(̂
gλ′ (xi) − g(xi)

)2 .
The closer the median of (3) is to 1, the better we consider the estimator ĝ(x) relative to the true function g(x).

To obtain an analytical expression of the median of (3), we require the sampling distribution of the estimator ĝ(x).

However, the sampling distribution will not be analytically derivable due to the smoothing parameter selection.

Therefore, for each method of choosing λ and K, we estimate the median of (3) via simulation using

S ED = Median
(
D(g, ĝl)

)
, (4)

where the subscript l in ĝl denotes the corresponding estimate of g(x) for the lth simulated data set.

Using different simulation settings, (4) is obtained with L = 1000 simulated data sets under model (1). For the

simulations, we use three different true functions g(x), each with three different sample sizes, as previously used

in a simulation study by Wang and Wahba (1995) to study the performance of confidence intervals for smoothing

splines. We denote the three forms of true function g(x) as g1(x), g2(x), and g3(x), and they are defined as

g1(x) =
1

3
Beta20,5(x) +

1

3
Beta12,12(x) +

1

3
Beta7,30(x),

g2(x) =
1

3
Beta10,5(x) +

1

3
Beta7,7(x) +

1

3
Beta5,10(x), and

g3(x) =
6

10
Beta30,17(x) +

4

10
Beta3,11(x)

where

Betac,d(x) =
Γ(c + d)

Γ(c)Γ(d)
xc−1(1 − x)d−1 for x ∈ [0, 1].

These curves are presented based on the ascending order of their signal to noise ratio (SNR), S D(g)/σ, as defined

in Luo and Wahba (1997).

We use R (R Core Team, 2012) to carry out the simulations and to write a function to fit the TSM with any

of the smoothing parameter selection methods described in Section 3, combined with a knot selection method

described in Section 4. For each of L = 1000 simulated datasets, (4) is computed for each combination of g(x) ∈
{g1(x), g2(x), g3(x)}, n ∈ {32, 64, 128}, and σ ∈ {.3, .5} under each combination of the smoothing parameter and

knot selection methods previously discussed when using equidistant knot locations. A set of observation locations,

{x1, . . . , xn}, for this simulation study are generated randomly from a uniform distribution on the (0, 1) interval. As

an illustration, Figure 1 shows a single simulated data set for each respective sample (n = 32, 64, or 128) along

with its corresponding true curve (g1(x), g2(x), or g3(x)) when σ = .3.
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Figure 1. Top row: g1(x) (left panel), g2(x) (center panel) and g3(x) (right panel) and a corresponding single

simulated data set (one of the l simulated datasets) of size n = 32 when using σ = .3. Second and third rows:

analogous for n = 64 and n = 128 for a single simulated dataset

The simulated median estimates given in (4) for each knot selection method under the various simulation settings

when the true curve is g1(x), g2(x), and g3(x) are provided in Tables 1, 2, and 3, respectively.

Table 1. The SED, when using each smoothing parameter selection criterion, under each knot selection method,

for true curve g1(x)

σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5

AICc BIC CV GCV
FM

n = 32 1.116 1.150 1.086 1.147 1.359 1.202 1.076 1.118

n=64 1.070 1.086 1.108 1.146 1.081 1.109 1.072 1.086

n = 128 1.063 1.065 1.142 1.146 1.074 1.081 1.076 1.082

MA

n = 32 1.218 1.224 1.226 1.235 1.667 1.258 1.171 1.222

n=64 1.128 1.118 1.153 1.170 1.127 1.138 1.130 1.121

n = 128 1.097 1.104 1.193 1.186 1.112 1.122 1.104 1.118

FA

n = 32 1.185 1.217 1.207 1.252 1.580 1.258 1.167 1.227

n=64 1.128 1.113 1.153 1.160 1.127 1.139 1.133 1.123

n = 128 1.098 1.107 1.191 1.18 1.113 1.122 1.109 1.118

SMS

n = 32 1.128 1.188 1.148 1.234 1.525 1.262 1.131 1.171

n=64 1.068 1.089 1.116 1.149 1.083 1.122 1.085 1.101

n = 128 1.077 1.074 1.157 1.148 1.090 1.091 1.092 1.095
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Table 2. The SED, when using each smoothing parameter selection criterion, under each knot selection method,

for true curve g2(x)

σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5

AICc BIC CV GCV
FM

n = 32 1.202 1.088 1.214 1.094 1.209 1.111 1.234 1.122

n = 64 1.210 1.240 1.428 1.291 1.208 1.237 1.224 1.250

n = 128 1.154 1.157 1.338 1.423 1.163 1.166 1.175 1.160

MA

n = 32 1.241 1.107 1.253 1.109 1.229 1.139 1.276 1.155

n = 64 1.227 1.256 1.347 1.323 1.239 1.254 1.241 1.262

n = 128 1.185 1.222 1.373 1.449 1.188 1.226 1.188 1.227

FA

n = 32 1.241 1.110 1.263 1.115 1.237 1.146 1.287 1.174

n=64 1.233 1.259 1.354 1.323 1.242 1.264 1.254 1.271

n = 128 1.196 1.232 1.375 1.449 1.207 1.243 1.204 1.241

SMS

n = 32 1.193 1.091 1.216 1.095 1.194 1.112 1.244 1.123

n = 64 1.164 1.222 1.339 1.291 1.166 1.226 1.185 1.238

n = 128 1.143 1.161 1.344 1.406 1.148 1.164 1.157 1.161

Table 3. The SED, when using each smoothing parameter selection criterion, under each knot selection method,

for true curve g3(x)

σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5

AICc BIC CV GCV
FM

n = 32 1.078 1.127 1.057 1.081 1.098 1.118 1.045 1.067

n = 64 1.067 1.078 1.114 1.117 1.119 1.123 1.066 1.086

n = 128 1.057 1.062 1.153 1.198 1.063 1.073 1.063 1.067

MA

n = 32 1.129 1.141 1.134 1.173 1.239 1.221 1.123 1.135

n = 64 1.133 1.111 1.18 1.134 1.195 1.145 1.132 1.112

n = 128 1.096 1.111 1.279 1.219 1.11 1.122 1.093 1.112

FA

n = 32 1.129 1.140 1.141 1.177 1.240 1.228 1.124 1.137

n = 64 1.132 1.110 1.179 1.134 1.196 1.145 1.133 1.113

n = 128 1.097 1.112 1.274 1.218 1.103 1.127 1.094 1.117

SMS

n = 32 1.133 1.152 1.105 1.161 1.309 1.265 1.095 1.122

n = 64 1.071 1.079 1.125 1.118 1.125 1.127 1.078 1.093

n = 128 1.060 1.072 1.176 1.200 1.070 1.088 1.066 1.080

When the true curve is g1(x), the FM provides the lowest SED when compared to the MA and FA across all

simulation settings. In addition, the FM provides a lower SED than the SMS for all but one simulation setting.

Under g2(x), the FM provides the lowest SED when compared to the MA and FA for all but one simulation setting.

When comparing the FM to the S MS , the FM tended to outperform the S MS for n = 32 and n = 128, but not for

n = 64. When the true curve is g3(x), the FM provides the lowest SED for all cases when compared to the MA
and FA. The FM also provides a lower SED than the S MS for all cases. The FM clearly outperforms both the

MA and FA for almost all circumstances in our study in terms of (4). In addition, the FM provides a lower SED

than the SMS for most cases.

Boxplots of the replications of D(g, ĝl) for l = 1, ..., 1000 on the log scale for each simulation setting when σ = .3
and σ = .5 are shown in Figures 2 and 3, respectively. Note that the results under GCV with the FM tend to, more

often than not, exhibit less variability that the other smoothing parameter selection methods with the FM in terms

of (4). While the differences among the SED’s for the each simulation setting may not seem large, we conduct
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all pairwise comparisons of the medians using a Kruskal-Wallis test as described in Siegel and Castellan (1988)

at significance level .05 to compare the FM, MA, and FA. This approach performs Wilcox rank-sum tests on all

possible pairwise comparisons of the FM, MA, and FA under a given smoothing parameter selection method, true

curve, sample size, and noise level. Furthermore, we compare the FM with the S MS using a Wilcox rank-sum

test. The result of all comparisons when σ = .3 and σ = .5 are summarized in Figures 2 and 3, respectively.

Figure 2. Replications of D(̂gl, g) on the log scale, for l = 1, . . . , 1000 when σ = .3 under different simulation

settings. Top left corner panel: Under each sample size, the four box plots contain the replications when the true

curve is g1(x) when AICC is used for smoothing parameter section for the FM, MA, FA, and S MS , respectively.

An FM∗∗ denotes that the median for the FM was significantly lower than the median of the MA and FA. An

FM∗ denotes that the median for the FM was significantly lower than the MA or FA. An FM without a ∗ or ∗∗
indicates that the median for FM was not significantly different from median of the MA or FA. An +FM denotes

that the median for the FM was significantly lower than the median of the S MS . An FM without a + preceding it

indicates that the median for FM was not significantly different from median of the S MS . An +S MS denotes

that the median for the S MS was significantly lower than the median of the FM. Remaining panels: Analogous

top left corner panel for the true curve and smoothing parameter selection method shown in the title of the panel

103



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

Figure 3. Analogous to Figure 2 when σ = .5

Under σ = .3, the tests indicate that the FM has a lower SED than the MA and FM under the true curves g1(x)

and g3(x) for a given sample size and smoothing parameter selection method. Under g2(x), we find the FM has

an SED that is lower or no different than the SED under the MA and FA. When comparing the FM and S MS ,

the results indicate that the FM performed just as well or better for most cases. For σ = .5, the results show the

FM performs better or not significantly different than the MA and FA across all settings. Furthermore, the results

indicate that the FM performed just as well or better than the S MS for all cases.

Tables 4, 5, and 6 show the median number of knots selected, when using each smoothing parameter selection

criterion, under each knot selection method, for true curve g1(x), g2(x), and g3(x), respectively. In addition to

the FM providing favorable results based on (4), the FM also uses less knots than the S MS . This shows that

the FM is more computationally attractive in terms of model fitting. Tables 4, 5, and 6 also provide the median

computational time, in terms of elapsed time in seconds with our computing resources, when using each smoothing

parameter selection criterion, under each knot selection method, for true curve g1(x), g2(x), and g3(x), respectively.

The results show that the FM has a lower computational time than the MA, FA, and S MS . The difference in time

between the methods increases as the sample size increases. Boxplots of the smoothing parameter selected on the

log scale for each simulated data when σ = .3 and σ = .5 are shown in Figures 4 and 5, respectively. Under

a given true curve and smoothing parameter selection method, the selected smoothing parameters exhibit similar
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variability for a given sample size. We also note that the variation in the smoothing parameters selected tends to

be smaller for the larger sample sizes. This shows that when there is more information, the smoothing parameter

is less variable.

Table 4. The median number of knots selected, when using each smoothing parameter selection criterion, under

each knot selection method, for true curve g1(x). The corresponding median computing time is shown in parenthe-

ses below the median number of knots selected

σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5

AICc BIC CV GCV
n = 32 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.00

(0.009) (0.008) (0.009) (0.008) (0.008) (0.008) (0.009) (0.008)

FM n = 64 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

(0.025) (0.019) (0.04) (0.018) (0.018) (0.018) (0.046) (0.023)

n = 128 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000

(0.061) (0.062) (0.065) (0.063) (0.064) (0.064) (0.066) (0.063)

n = 32 11.251 7.539 13.093 8.742 9.920 8.057 15.624 11.400

(0.016) (0.016) (0.015) (0.015) (0.018) (0.017) (0.016) (0.015)

MA n = 64 18.800 15.504 17.990 13.675 20.078 17.183 21.828 18.892

(0.063) (0.054) (0.054) (0.047) (0.066) (0.056) (0.065) (0.054)

n = 128 21.260 17.590 19.610 16.840 26.028 20.800 26.210 21.140

(0.197) (0.184) (0.188) (0.179) (0.213) (0.206) (0.203) (0.191)

n = 32 14.756 9.853 17.09 12.155 13.874 10.640 18.149 14.148

(0.054) (0.05) (0.047) (0.041) (0.053) (0.049) (0.051) (0.049)

FA n = 64 27.388 27.253 27.622 26.264 27.528 26.199 28.492 28.277

(0.111) (0.093) (0.085) (0.075) (0.18) (0.088) (0.179) (0.088)

n = 128 42.650 39.374 42.350 38.742 41.960 39.220 43.344 39.768

(1.031) (0.932) (0.909) (0.807) (1.007) (0.943) (0.98) (0.934)

n = 32 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000

(0.028) (0.028) (0.031) (0.028) (0.031) (0.029) (0.031) (0.029)

SMS n = 64 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000

(0.107) (0.094) (0.099) (0.094) (0.116) (0.111) (0.108) (0.101)

n = 128 128.000 128.000 128.000 128.000 128.000 128.000 128.000 128.000

(0.699) (0.616) (0.607) (0.542) (0.662) (0.627) (0.647) (0.626)
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Table 5. Analogous to Table 4 for true curve g2(x)

σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5

AICc BIC CV GCV
n = 32 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.00

(0.01) (0.018) (0.01) (0.017) (0.009) (0.012) (0.009) (0.011)

FM n = 64 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

(0.02) (0.037) (0.021) (0.035) (0.02) (0.034) (0.019) (0.034)

n = 128 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000

(0.068) (0.136) (0.07) (0.131) (0.068) (0.107) (0.064) (0.079)

n = 32 6.64 6.055 6.798 6.185 6.883 6.427 7.571 7.041

(0.016) (0.016) (0.015) (0.016) (0.015) (0.015) (0.015) (0.015)

MA n = 64 7.36 7.155 7.400 6.905 7.900 7.450 8.228 7.670

(0.022) (0.021) (0.019) (0.02) (0.02) (0.02) (0.02) (0.02)

n = 128 7.080 7.235 6.750 7.56 7.750 7.685 7.705 7.645

(0.186) (0.186) (0.18) (0.188) (0.185) (0.185) (0.183) (0.199)

n = 32 9.452 7.884 9.798 7.815 9.271 8.452 10.684 9.473

(0.046) (0.046) (0.044) (0.042) (0.045) (0.044) (0.045) (0.044)

FA n = 64 13.189 12.862 13.789 11.545 14.124 13.459 14.822 13.976

(0.037) (0.035) (0.031) (0.028) (0.033) (0.03) (0.033) (0.031)

n = 128 15.96 16.175 12.564 17.908 16.364 16.889 16.873 16.984

(0.803) (0.798) (0.792) (0.74) (0.81) (0.788) (0.806) (0.792)

n = 32 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000

(0.033) (0.06) (0.032) (0.057) (0.031) (0.038) (0.029) (0.034)

SMS n = 64 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000

(0.097) (0.097) (0.095) (0.105) (0.097) (0.102) (0.097) (0.101)

n = 128 128.000 128.000 128.000 128.000 128.000 128.000 128.000 128.000

(0.522) (0.522) (0.515) (0.49) (0.53) (0.516) (0.528) (0.52)

Table 6. Analogous to Table 4 for true curve g3(x)

σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5 σ = .3 σ = .5

AICc BIC CV GCV
n = 32 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.00

(0.009) (0.009) (0.009) (0.008) (0.008) (0.008) (0.009) (0.009)

FM n = 64 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

(0.044) (0.043) (0.047) (0.044) (0.047) (0.046) (0.048) (0.045)

n = 128 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000

(0.061) (0.061) (0.066) (0.064) (0.066) (0.067) (0.066) (0.064)

n = 32 13.382 13.364 15.402 14.847 15.513 14.891 16.302 15.846

(0.016) (0.018) (0.015) (0.017) (0.018) (0.019) (0.017) (0.017)

MA n = 64 18.510 15.490 16.674 14.660 19.824 17.648 22.046 19.044

(0.062) (0.064) (0.056) (0.058) (0.066) (0.063) (0.111) (0.064)

n = 128 21.280 16.490 17.490 15.020 25.03 19.72 25.05 20.090

(0.198) (0.209) (0.192) (0.202) (0.217) (0.223) (0.204) (0.205]

n = 32 15.252 15.929 17.508 17.449 16.350 16.765 17.410 17.688

(0.051) (0.049) (0.047) (0.045) (0.05) (0.049) (0.05) (0.049)

FA n = 64 26.226 23.156 23.782 21.534 26.428 24.956 28.660 25.622

(0.104) (0.094) (0.086) (0.08) (0.174) (0.09) (0.176) (0.09)

n = 128 42.972 33.89 35.820 29.966 44.002 36.656 44.124 35.748

(0.961) (0.928) (0.89) (0.859) (0.971) (0.944) (0.969) (0.94)

n = 32 32.000 32.000 32.000 32.000 32.000 32.000 32.000 32.000

(0.027) (0.027) (0.029) (0.029) (0.03) (0.03) (0.029) (0.029)

SMS n = 64 64.000 64.000 64.000 64.000 64.000 64.000 64.000 64.000

(0.103) (0.106) (0.1) (0.105) (0.117) (0.117) (0.108) (0.11)

n = 128 128.000 128.000 128.000 128.000 128.000 128.000 128.000 128.000

(0.632) (0.621) (0.598) (0.569) (0.647) (0.632) (0.635) (0.623)
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Figure 4. The smoothing parameter λ selected on the log scale for each simulated data set, when σ = .3 under

different simulation settings. Top left corner panel: Under each sample size, the three box plots contain the

smoothing parameter selected when the true curve is g1(x) when AICC is used for smoothing parameter section

for the FM, MA, FA, and S MS , respectively. Remaining panels: Analogous top left corner panel for the true

curve and smoothing parameter selection method shown in the title of the panel
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Figure 5. Analogous to Figure 4 when σ = .5

6. Conclusions

We compared the performance of three knot selection methods using the median of (3) to provide guidance in

selecting the number of equidistant knots in a penalized regression spline model. In addition, for comparison, we

also considered a smoothing spline estimate by placing a knot at each data point. One should keep in mind that

our findings arise from a simulation study. However, under our simulation settings, the FM tended to perform

just as well or better than the MA, FA, and S MS across all smoothing parameter selection methods considered.

The boxplots given in Figures 2 and 3 show that GCV with the FM generally exhibits lower variability than

the other smoothing parameter selection methods with the FM in terms of (4). Since the smoothing parameter

selection methods considered have the same computational complexity, GCV should be preferred. Overall, our

results suggest that when using equidistant knots in a penalized regression spline, the default rule provided by the

FM with GCV should be used.
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