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Abstract

In ecology, understanding the species-area relationship (SARs) is extremely important to determine species diver-

sity. SARs are fundamental to evaluate the impact in this diversity due to destruction of natural habitats, to create

biodiversity maps and to determine the minimum area to preserve. In this study, the number of species is observed

in different area sizes. These studies are referred in the literature through nonlinear models without assuming any

distribution of the data. In this situation, it only makes sense to consider areas in which the number of species is

greater than zero. As the dependent variable is a count data, we assume that this variable comes from a known

distribution for discrete positive data. In this paper, we used the zero truncated poisson distribution (ZTP) to rep-

resent the probability distribution of the random variable “species diversity” and we considered some nonlinear

models to describe the relationship between species diversity and habitat area. Among the proposed models in

literature, we considered the Arrhenius power function, Persistence function (P1 e P2), Negative Exponential and

Chapman-Richards to describe the abundance of species. In this paper, we take a Bayesian approach to fit models.

With the purpose of obtaining conditional distributions, we propose the use of latent variables to implement the

Gibbs Sampler. In order to progress using the best possible models for data, a comparison of performance between

models referred in this paper will be verified through the criteria Extended Akaike Information Criterion (EAIC),

Extended Bayesian Information Criterion (EBIC), Deviance Information Criterion (DIC) and Conditional Predic-

tive Ordinate Criterion (CPO). In addition to selecting the best model, it will also assist to define the best selection

criterion.

Keywords: zero truncated poisson distribution, species-area relationship, nonlinear models, count data, latent

variables, gibbs sampling

1. Introduction

One of the fundamental aspects from ecology is the relationship between habitat area and species diversity (Lo-

molino, 2000). This relationship is essential to understand the biological distribution of species diversity and it is

determined by counting the number of distinct species in different sized areas. This studies, known as species -

area relationship (SAR), are one of the most important tools to create biodiversity maps, to establish relationships

between extinction and migration rates and to determinate minimum size areas for species preservation (Arrhe-

nius, 1921; Ulrich et al., 2003). Generally, only one type of organism is observed; the fish diversity in a lagoon, for

example. In order to describe SAR, several nonlinear models are suggested in literature (Tjorve, 2003). However,

few have been published about comparing different adjustment models. Among suggested models, we are going

to consider Arrhenius model, the Persistence models (P1 and P2), Negative Exponential and Chapman-Richards to

describe the species abundance (Dengler, 2009).

In these models, the parameter β0 corresponds to the maximum expected value of species in a specific region,

called asymptote. The parameter β1 is related to the average rate of growth in species diversity. The parameter β2

defines the shape of the curve and dislocates the inflection point of the function, reflecting the conditions of the

region favorable to the growth in species diversity.
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Table 1. Nonlinear models

Name Model Parameters Shape Asymptotes

Arrhenius β0xβ1 2 Convex No

Exponential β0

[
1 − exp (−β1x)

]
2 Convex Yes

Persistence 1 β0xβ1 exp(−β2x) 3 Sigmoid No

Persistence 2 β0xβ1 exp(−β2/x) 3 Sigmoid No

Chapman β0

[
1 − exp (−β1x)

]β2 3 Sigmoid Yes

Since the dependent variable is a count data, it is plausible to assume that it comes from some positive discrete

distribution. The most commonly used distribution in count data is Poisson. However, when we have a structural

absence of zeros in the data, the most commonly used form is to truncate at the point zero. The objective of this

paper is to consider the Zero Truncated Poisson distribution (ZTP) as an alternative to represent the probability

distribution of the number of species in determined area.

In this paper, we propose a bayesian approach using latent variables to obtain conditional distributions and Gibbs

algorythm implementation.

2. Method

2.1 Truncated Distributions

We will discuss some definitions of truncated distributions used in this paper. Initially we can redistribute the

probability distribution functions in a way that the sum keeps being unitary. This way, we can define another

variable W = Y in the values of interest, in a way that g(y) = k f (y), y = 1, 2, 3, ..., where f is the probability

function of W. As we want Y truncated in zero, we should have
∞∑

y=1
g(y) = 1, so

∞∑
y=1

k f (y) = 1⇒ k =
1

∞∑
y=1

f (y)

=
1

f (0)
=

1

P(W = 0)
. (1)

So we have the zero-truncated distribution function given by:

g(y) =

⎧⎪⎪⎨⎪⎪⎩
f (y)

1−P(W=0)
, y = 1, 2, 3, ...

0, otherwise
(2)

with the main moments

E(Y) =
E(W)

1 − P(W = 0)
(3)

V(Y) =
1

1 − P(W = 0)

[
V(W) − E2(W)

[P(W = 0)]−1 − 1

]
. (4)

So it is evident that the expected value of the truncated distribution is higher when compared to the non-truncated

distribution. This difference is also evident in the variance, however the variance is lower once we have a truncated

distribution.

2.1.1 Zero Truncated Poisson Distribution

Since the dependent variable is a count data, it is plausible to assume that it comes from some known positive

discrete distribution, such as Poisson distribution. Considering that the event yi = 0 is not observed, we can obtain

the zero truncated distributions conditioning the probability functions at the point zero (Van Der Heijden, 2003).

The probability function of the Zero-Truncated Poisson model (Tate, 1958) is defined by:

P (Y = yi|yi > 0) =
μ

yi
i e−μi

yi! (1 − e−μi )
, (5)

and the first and second moments are

E (Yi|yi > 0) =
μi

1 − e−μi
(6)

19



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 3; 2014

V (Yi|yi > 0) =
μi

1 − e−μi

[
1 − μi

eμi − 1

]
. (7)

This way, it is noticeable that the conditional variance is inferior to the conditional mean.

The fact that a distribution belongs to the exponential family provides great properties to the estimators and has

good emphasis in generalized linear models (McCullagh e Nelder, 1989). The probability density functions of

exponential family distributions can be expressed as:

p(β|y) ∝ exp {yiθi − b1(θi) − b2(θi)} p(β), (8)

in which θi = log( f (xi,β)), b1(θi) = f (xi,β) and b2(θi) = log(1 − exp(− f (xi,β))) for Truncated Poisson.

We will use the systematic component of the model with identity link function. In this case, μi is specified as a non-

linear function that represents the expected value of the species diversity due to the area. We consider μi = f (xi; β)
and to f (·) the following functions (Table 1).

2.1.2 Inference

Considering an independent sample (y1, ..., yn), the log-likelihood function of the model is:

log (lP) =

n∑
i=1

{
yi log (μi) − μi − log

(
1 − e−μi

) − log (yi!)
}
. (9)

The estimation of the parameters can be obtained by the maximization of the log-likelihood function. The score

function of the log-likelihood (9) is expressed by:

∂l
∂βi
=

n∑
i=1

[
yi

μi
− 1 − e−μi

1 − e−μi

] [
∂μi

∂βi

]
. (10)

The log-likelihood function of the model (5) considering the function μi = f (xi,β) is given by:

log (lP) =

n∑
i=1

yi log { f (xi;β)} −
n∑

i=1

f (xi;β) −
n∑

i=1

log
(
1 − e− f (xi;β)

)
−

n∑
i=1

log (yi!) . (11)

2.2 Bayesian Inference

We introduce a Bayesian approach using non-informative prior densities. The non-informative priors are used

when we expect that the information of the data is dominant.

For the estimation of β through bayesian model, we assume as prior a Multivariated Normal distribution N(β0,Σ0),

with β0 given by the estimation of maximum likelihood and Σ0 given by the inverse of the observed hessian matrix.

p(β) ∝ exp
{
−τ

2
(β − β0)

′
Σ−1(β − β0)

}
. (12)

By multiplying the expressions (5) and (12), the joint posterior distribution is given by:

p(β|y) ∝ exp
[
−τ

2
(β − β0)

′
Σ−1(β − β0)

] ⎡⎢⎢⎢⎢⎢⎣
n∏

i=1

[
f (xi;β)

]yi e− f (xi;β)

yi!
(
1 − e− f (xi;β)

)
⎤⎥⎥⎥⎥⎥⎦ . (13)

In this case, we may use as an approximation to β0, Σ0 the estimates based on the likelihood function (11), with Σ0

approximated by the inverse of the hessian matrix and τ being a known parameter that controls the prior uncertainty

about the parameters β.

Since the conditional distributions are unknown, we use the MCMC method through the Metropolis-Hastings

algorithm to obtain the estimates of the parameters. The Bayesian confidence interval (Highest Posterior Density)

(HPD), fixing the confidence (α) in 95% is given by:

(β′, β′′) = exp {β : p(β|y) ≥ k(α)} , (14)

in which k(α) is the highest constant that p(β′ < β < β′′) = 1 − α.
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Considering a flat Normal distribution as priori, the posterior density to the parameters is given by:

p(β|y) ∝
⎡⎢⎢⎢⎢⎢⎣

n∏
i=1

[
f (xi;β)

]yi e− f (xi;β)

yi!
(
1 − e− f (xi;β)

)
⎤⎥⎥⎥⎥⎥⎦ p(β). (15)

We have a situation where the posterior conditional distributions don’t have the form of any known distribution

and, in this case, the Metropolis-Hastings algorithm is necessary to the posterior calculation.

In order to simplify the conditional distribution for the Gibbs algorithm, we resort to the use of latent variables that

allow writing the posterior density as the product of model components.

2.2.1 Latent Variables

The idea of using latent variables is to obtain known forms of complete conditional distributions (Higdon, 1998).

Considering the variables u = (u1, ..., un), v = (v1, ...., vn) and w = (w1, ...,wn), the joint density to (β,u, v,w) is:

p(β,u, v,w|y) ∝
n∏

i=1

exp {−(vi + wi)} I {ui ≤ exp (yiθi) , vi > b1(θi),wi > b2(θi)
}

p(β). (16)

We can prove the above equation by verifying that

p(β|yi) ∝
∫

ui

∫
vi

∫
wi

p(β, ui, vi,wi|y)dwidvidui.

∝ p(β)

∫ exp(yiθi)

0

dui

∫ ∞

b1(θi)

exp {−vi} dvi

∫ ∞

b2(θi)

exp {−wi} dwi.

∝ p(β) exp (yiθi) exp (−b1(θi)) exp (−b2(θi)) .

In order to obtain the complete condicional distributions, we can evaluate the situations represented by the variable

indicated by the expression (16).

In the case of the latent variable ui, we have:

ui ≤ exp (yiθi)

with θi = log( f (xi, β)), we have

log ui ≤ yi log { f (xi; β)}
i.e.,

f (xi;β) ≥ exp

(
1

yi
log ui

)
.

As such, the vector of parameters β =
(
β0, ..., βq

)
must satisfy the restrictions above to every xi. In this case, we

define a subset of the parametric space for β given by:

S u
β =

{
β|min

i
( f (xi;β)) ≥ exp

(
1

yi
log ui

)}
i = 1, ..., n. (17)

In the case of the latent variable vi, we have:

vi > b1(θi)

f (xi;β) < vi.

This way, we have:

S v
β = {β|max

i
( f (xi;β)) < vi} i = 1, ..., n. (18)

Considering the latent variable wi, we have:

wi > b2(θi)

wi > log
{
1 − exp (− f (xi;β))

}
f (xi;β) < log

{
1 − exp {wi}} .

Hence, we define the set as:

S w
β = {β|min

i
( f (xi;β)) < log[1 − exp(wi)]} i = 1, ..n (19)
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In this case, the indicative variable in the equation (16) is equal to 1 if, and only if, β ∈ S u
β ∩ S v

β ∩ S w
β . The

conditional probability distribution can be expressed by:

To the variable ui,

f (ui|β) ∝ I
{
ui ≤ exp (yiθi)

}
i = 1, ..., n (20)

hence ui � Uniform
(
0, exp{yiθi}).

To the variable vi,

f (vi|β) ∝ exp (−vi) I {vi > b1(θi)} i = 1, ..., n (21)

hence vi � Truncated Exponential (1, b1(θi)).

To the variable wi,

f (wi|β) ∝ exp (−wi) I {wi > b2(θi)} i = 1, ..., n (22)

hence wi � Truncated Exponential (1, b2(θi)).

2.2.2 Algorithm to the Generation of Samples

Given β0 = (β0
1
, ..., β0

q), we use the estimates calculated by the maximum likelihood method as initial values. The

values will be updated following these steps:

1) ui|β, yi � U
(
0, exp (yiθi)

)
2) vi|β, yi � Truncated Exp (1, b1(θi))

3) wi|β, yi � Truncated Exp (1, b2(θi))

4) We generate a new candidate, βc, from the multivariate normal distribution, N(β̂,Σ), corresponding to the

estimates of the log-likelihood (9) and the hessian matrix. We submit the candidate to the acceptance according

the conditions (β ∈ S u
β ∩ S v

β ∩ S w
β ). Otherwise the vector is discarded and β1 = βc is used.

The process is repeated using β1 = (β1
1, ..., β

1
q) as initial values until the necessary sample is reached.

2.3 Model Selection

Several model selection method are proposed in literature. In the paper we will consider the criteria EAIC, EBIC

(Brooks, 2002), DIC (Spiegelhalter et al., 2002) and CPO (Pettit & Young, 1990). The first three criteria suggest

that the comparison among models are made based on the deviance calculation.

D(β,Mi) = −2 log(L(y|β,Mi)) +C,

where L(y|β,Mi) is the likelihood function associated to the model Mi and C is a constant that is canceled out. A

Monte Carlo estimate for the standard deviation is:

D(β,Mi) =
1

m

m∑
j=1

−2 log(L(y|β( j),Mi)),

i.e., the posterior average deviation.

2.3.1 Extended Akaike Information Criterion (EAIC)

The criterion proposed by Akaike (1974) is based on the likelihood function, AIC(β,Mi) = −2 log(L(y|β,Mi))+2p,

penalized by the numbers of parameters in the model. Whereas the bayesian information criterion (BIC) ponders

the sample size using BIC(β,Mi) = −2 log(L(y|β,Mi)) + p log(n). The selection criteria, within the Bayesian

context, are obtained through a natural extension considering the posterior density of the parameters of the model.

EAIC = −2E[log(L(y|β,Mi))] + 2p = D(β,Mi) + 2p,

EBIC = −2E[log(L(y|β,Mi))] + p log(n) = D(β,Mi) + p log(n),

where p is the number of parameters of the model, n is the sample size and D(β,Mi) = −2 log(L(y|β,Mi) with

β equal to the mean of the posterior density. Both criteria (EAIC e EBIC) indicate the best models the lower the

obtained value.
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2.3.2 Deviance Information Criterion (DIC)

The DIC is consisted by the posterior mean deviance (deviance) penalized by the number of parameters of the

model. This criterion is interesting since it can be incorporated during the Monte Carlo simulation. Just like the

other criteria, it is an asymptotic approximation to large samples and it is valid when the posterior distribution

follows an approximately multivariate normal distribution. Lower values of DIC indicate better adjustment. The

DIC is obtained by:

DIC = D(β,Mi) + pdi,

where pdi = D(β,Mi) − D(β,Mi) measures the complexity of the model i. The criterion suggests a comparison

between the mean deviance and the deviance applied in the posterior mean.

2.3.3 Conditional Predictive Ordinate Criterion (CPO)

The Conditional Predictive Ordinate (CPO) (Gelfand et al., 1994) is another criterion widely used in literature to

evaluate the model and it is based on cross-validation density. Considering Y = (y1, y2, ..., yn), the cross-validation

obtained through density p(yk |Y−k), with Y−k denoting the set of all elements except the k-the observation y−k. This

statistic represents the most likely values when the model is adjusted to every observation except yk. For the k-th

observation, the CPO is defined by:

CPOk = p(yk |Y−k) =

∫
p(yk |β,Y−k)p(β|Y−k)dβ. (23)

In this case, p(β|Y−k) represents the posterior density of β based on data of Y−k. Therefore, from the Equation (23)

the CPOk is defined as the posterior predictive marginal density of yk given Y−k. Larger values for the CPOk imply

better models and lower values indicate influential observations. For most models, there isn’t a closed form for the

CPOk. Thus, using the samples generated by the Monte Carlo method, we can approximate the calculation of the

CPO (Li et al., 2006) by:

CPOk ≈ 1

M

m∑
j=1

[L(yk |β( j))]−1.

Summing the information in a simple measure, we chose the model with larger value applied in the natural loga-

rithm of CPO’s, called log pseudo marginal likelihood LPML =
∑n

i=1 log(CPOi).

3. Results and Discussion

In this simulation, we fixed the arbitrary values for β of the Table 1 models, and areas units going from 1 to 40. This

areas were divided in sections of size 100, with values generated from the Zero Truncated Poisson distribution,

representing the number of different species observed in a specific area.

By calculating the statistics, 10, 40 and 100 replicas were generate Mean Square Error (MSE) and Mean Absolute
Percent Error (MAPE) to evaluate the quality adjustment of the model (Table 2, Table 3 and Table 4). The statistics

MSE and MAPE are given by:

MS E =
1

m

m∑
i=1

(
β̂i − βi

)2

MAPE =
1

m

m∑
i=1

∣∣∣∣∣∣
β̂i − βi

βi

∣∣∣∣∣∣ .
The adjustment of the models were evaluated by four bayesian criteria: DIC, EAIC, EBIC and CPO (Table 5, Table

6 and Table 7) (Spiegelhalter et al., 2002).
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Table 2. Bayesian estimation for Poisson distribution n = 10

Parameters Reals Mean CI (95 %) MSE MAPE Coverage

Arrh β0 15 15.141 (10.228;20.059) 0.945 0.051 91.6%

β1 0.5 0.502 (0.397;0.606) 0.056 0.032 93.5%

Expo β0 100 100.114 (91.132;109.098) 4.949 0.039 92.1%

β1 0.15 0.152 (0.103;0.201) 0.027 0.138 92.3%

β0 10 10.107 (5.347;14.826) 0.927 0.074 90.8%

Ps 1 β1 0.9 0.907 (0.664;1.159) 0.137 0.117 92.2%

β2 0.02 0.02 (0.007;0.035) 0.007 0.294 94.5%

β0 50 62.133 (46.467;85.196) 11.458 0.181 93.0%

Ps 2 β1 0.22 0.149 (0.036;0.233) 0.077 0.297 90.5%

β2 0.1 0.331 (0.021;0.843) 0.256 1.123 94.4%

β0 100 109.639 (92.993;126.552) 16.9 0.126 75.6%

Chap β1 0.1 0.073 (0.039;0.102) 0.033 0.288 53.0%

β2 3 1.978 (0.867;2.592) 1.090 0.341 22.9%

Table 3. Bayesian estimation for Poisson distribution n = 40

Parameters Reals Mean CI (95 %) MSE MAPE Coverage

Arrh β0 15 15.092 (12.429;17.764) 1.395 0.074 94.2%

β1 0.5 0.499 (0.442;0.556) 0.03 0.047 94.3%

Expo β0 100 100.086 (95.637;104.564) 2.355 0.019 94.2%

β1 0.15 0.15 (0.127;0.174) 0.013 0.068 95.6%

β0 10 9.964 (7.16;12.78) 1.511 0.119 91.3%

Ps 1 β1 0.9 0.908 (0.754;1.063) 0.084 0.074 92.5%

β2 0.02 0.02 (0.012;0.029) 0.005 0.192 93.2%

β0 50 56.091 (45.158;70.241) 6.836 0.104 91.4%

Ps 2 β1 0.22 0.158 (0.08;0.218) 0.052 0.2 90.5%

β2 0.1 0.376 (0.039;0.85) 0.212 1.626 93.5%

β0 100 100.029 (89.69;110.373) 5.532 0.044 93.4%

Chap β1 0.1 0.102 (0.077;0.128) 0.014 0.11 92.9%

β2 3 3.096 (2.269;3.932) 0.468 0.119 94.5%

Table 4. Bayesian estimation for Poisson distribution n = 100

Parameters Reals Mean CI (95 %) MSE MAPE Coverage

Arrh β0 15 15.01 (13.296;16.738) 0.945 0.051 91.6%

β1 0.5 0.5 (0.463;0.537) 0.02 0.032 92.5%

Expo β0 100 100.087 (97.266;102.888) 1.481 0.012 95.5%

β1 0.15 0.15 (0.135;0.165) 0.008 0.042 96.0%

β0 10 9.951 (8.104;11.797) 0.927 0.074 95.0%

Ps 1 β1 0.9 0.906 (0.804;1.008) 0.052 0.046 94.1%

β2 0.02 0.02 (0.015;0.026) 0.003 0.12 93.4%

β0 50 54.034 (46.467;63.279) 4.388 0.068 93.4%

Ps 2 β1 0.22 0.173 (0.117;0.215) 0.039 0.155 92.6%

β2 0.1 0.221 (0.026;0.496) 0.16 1.211 92.9%

β0 100 100.098 (93.556;106.663) 3.341 0.026 94.2%

Chap β1 0.1 0.101 (0.085;0.117) 0.008 0.066 93.3%

β2 3 3.034 (2.522;3.55) 0.266 0.069 94.3%
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Table 5. Criteria of selection of the models n = 10

Criteria Arrhenius Exponential Persistence 1 Persistence 2 Champan

DIC 52.1% 7.4% 2.1% 0.7% 37.7%

Arrh EAIC 78.9% 6.9% 4.4% 0.3% 9.5%

EBIC 94.8% 3.9% 0.2% 0% 1.1%

CPO 86.3% 7.5% 4.3% 1.9% 0%

DIC 0.6% 83.0% 10.9% 0.9% 4.6%

Expo EAIC 0.3% 81.1% 15.3% 0.6% 2.7%

EBIC 2.1% 77.2% 13.6% 1.2% 5.9%

CPO 0.3% 82.9% 15.5% 1.3% 0%

DIC 2.4% 64.1% 2.1% 0.2% 31.2%

Ps 1 EAIC 4.8% 64.4% 4.0% 0.2% 26.6%

EBIC 17.7% 59.1% 2.1% 0.6% 20.5%

CPO 13.5% 77.3% 6.7% 2.5% 0%

DIC 64.5% 0.7% 18.2% 8.9% 7.7%

Ps 2 EAIC 73.3% 0.7% 24.6% 1.2% 0.2%

EBIC 93.4% 0.5% 4.8% 0.7% 0.6%

CPO 66.4% 0.5% 20.4% 12.7% 0%

DIC 5.7% 29.5% 0% 10.6% 54.2%
Chap EAIC 8.6% 20.7% 0% 10.6% 60.1%

EBIC 14.9% 13.3% 0% 10.6% 61.2%
CPO 17.5% 71.7% 0% 10.8% 0%

Table 6. Criteria of selection of the models n = 40

Criteria Arrhenius Exponential Persistence 1 Persistence 2 Champan

DIC 65.5% 0.5% 3.1% 3.4% 27.5%

Arrh EAIC 80.2% 0.3% 5.4% 1.9% 12.2%

EBIC 98.1% 0.3% 0.8% 0.3% 0.5%

CPO 80.3% 0.3% 10.2% 9.2% 0%

DIC 0% 69.8% 11.4% 3.6% 15.2%

Expo EAIC 0% 72.6% 16.5% 3.5% 7.4%

EBIC 0% 60.5% 13.8% 4.8% 20.9%

CPO 0% 77.2% 17% 5.8% 0%

DIC 0.1% 72.6% 7.4% 0.8% 19.1%

Ps 1 EAIC 0.2% 68.4% 15.9% 1.1% 14.4%

EBIC 0.9% 64.1% 14% 1.6% 19.4%

CPO 0.1% 72.3% 24.9% 2.7% 0%

DIC 55% 0% 21.2% 14.6% 9.2%

Ps 2 EAIC 65.8% 0% 28.3% 5.9% 0%

EBIC 95.3% 0% 2.3% 2.3% 0.1%

CPO 58.3% 0% 22.8% 18.9% 0%

DIC 0% 0% 0% 3.3% 96.7%
Chap EAIC 0% 0% 0% 2.8% 97.2%

EBIC 0% 0% 0% 2.8% 97.2%
CPO 31.3% 4.6% 20% 44.1% 0%
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Table 7. Criteria of selection of the models n = 100

Criteria Arrhenius Exponential Persistence 1 Persistence 2 Champan

DIC 72.2% 0% 4.1% 7% 16.7%

Arrh EAIC 77.7% 0% 15.1% 3% 4.2%

EBIC 98.2% 0% 0.3% 0.3% 1.2%

CPO 72.7% 0% 16% 11.3% 0%

DIC 0% 71% 8.4% 1.6% 19%

Expo EAIC 0% 78.5% 10.5% 1.4% 9.6%

EBIC 0% 63.6% 9.4% 1.7% 25.3%

CPO 0% 86.1% 11.6% 2.3% 0%

DIC 0% 61.7% 28.5% 0.5% 9.3%

Ps 1 EAIC 0% 55.1% 40.5% 0.4% 4%

EBIC 0% 52.2% 36% 0.5% 11.3%

CPO 0% 55.2% 44.1% 0.7% 0%

DIC 44.5% 0% 19.3% 22.7% 13.5%

Ps 2 EAIC 58.6% 0% 30.4% 10.5% 0.5%

EBIC 94.4% 0% 2.3% 3.3% 0%

CPO 49% 0% 22.6% 28.4% 0%

DIC 0% 0% 0% 0.1% 99.9%
Chap EAIC 0% 0% 0% 0.1% 99.9%

EBIC 0% 0% 0% 0.1% 99.9%
CPO 0% 0% 0% 0.1% 99.9%

Using Table 2, we notice that every parameter of the model indicates good adjustment when we compare the actual

values to the mean. In these models, the coverage probabilities are close to the expected value of 95. The Table

5 shows the difference between the selection criteria. The Arrhenius, Exponential and Chapman models were

correctly selected.

However, a competition between Persistence models and the others is noticeable. It means that, despite the samples

being generated with distinct parameters, the models adjust to the data due to their flexibility (Figure 1), with curves

approximately superimposed for data generated from Persistence models, resulting in close values to the selection

criteria.

Figure 1. Comparison between models

3.1 Application to Real Data

The data refer to the species diversity from Hymenoptera order (wasps, bees and ants), observed in a beech forest.

The objective of the study is to relate the number of collected species with the area and estimate the extinction and

immigration rates (Ulrich, 2001). In order to estimate the posterior distribution parameters given by 8, 10,000 val-

ues were simulated for each parameter and Bayesian criteria of selections were calculated. The priori distributions

are given by the maximum likelihood estimates.
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Figure 2. Model Adjustment for Truncated Poisson for Hymenopteras species

Table 8. Bayesian selection for the study of Hymenoptera

Criteria Arrhenius Exponential Persistence 2 Persistence 1 Chapman

DIC 205.610 220.155 239.789 148.905 153.176

EAIC 413.167 383.007 285.438 274.101 237.871

EBIC 422.042 398.320 300.751 287.414 251.185

CPO -196.838 -181.956 -135.576 -130.122 -111.306

The Chapman and Persistence 1 models using Poisson distribution show better adjustment, due to lower values of

criteria EAIC, DIC and EBIC (Table 8). This fact may be verified by observing Figure 2, in which we notice the

two models adjustment adequate to the data.

4. Discussion

In the proposed approach, we obtained good estimates to the simulated data. For every parameters, the real values

are in between the credible intervals. The coverage percents obtained are close to 95% as the sample size is

increased. We can notice a depletion in the credible intervals amplitudes. The only exception was verified in the

Chapman model for a sized 10 sample, which presented different coverage probabilities from the other models.

We notice a depletion in the sampling errors, which means that the adjusted values are close to the real values, with

slightly increase in MSE and MAPE of Arrhenius and Persistence 1 models once we increase from 10 to the 40th

sample.

Through the Gibbs algorithm, we notice that the EAIC, EBIC, DIC and CPO models identify, with high probability,

the Exponencial, Chapman and Arrhenius models. However, it wasn’t possible to verify one single selection

criterion that correctly identifies every model. What we have is a high competitivity between the Persistence

models. It means that, despite the samples being generated with distinct parameters, the models adjust to the data

due to their flexibility.

For the approach using latent variables, the method showed adequate, viable and easy implementation.
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