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Abstract

In the framework of Cramér’s probabilistic model of primes, we explore the exact and asymptotic distributions

of maximal prime gaps. We show that the Gumbel extreme value distribution exp(− exp(−x)) is the limit law

for maximal gaps between Cramér’s random “primes”. The result can be derived from a general theorem about

intervals between discrete random events occurring with slowly varying probability monotonically decreasing to

zero. A straightforward generalization extends the Gumbel limit law to maximal gaps between prime constellations

in Cramér’s model.
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1. Introduction

In this paper we apply extreme value theory to Cramér’s probabilistic model of primes. But first let us say a

few words about two mathematicians who pioneered these important topics. The Swedish mathematician Har-

ald Cramér (1893–1985) made long-lasting contributions in statistics and number theory. His model of primes

continues to serve as a heuristic tool leading to new insights in the distribution of primes. Cramér wrote:

In investigations concerning the asymptotic properties of arithmetic functions, it is often possible

to make an interesting heuristic use of probability arguments. If, e. g., we are interested in the distri-

bution of a given sequence S of integers, we then consider S as a member of an infinite class C of

sequences, which may be concretely interpreted as the possible realizations of some game of chance.

It is then in many cases possible to prove that, with a probability = 1, a certain relation R holds in C,

i. e., that in a definite mathematical sense “almost all” sequences of C satisfy R. Of course we cannot

in general conclude that R holds for the particular sequence S , but results suggested in this way may

sometimes afterwards be rigorously proved by other methods. (Cramér, 1936, p. 25)

It is difficult to ascertain whether Harald Cramér had ever met in person his contemporary, the German-American

mathematician Emil Julius Gumbel (1891–1966), one of the founders of extreme value theory. This branch of

statistics is used today for describing phenomena in vastly diverse areas, ranging from actuarial science to hydrol-

ogy to number theory. In Statistics of Extremes (1958) Gumbel observed:

. . . many engineers and practical statisticians . . . are inclined to believe that, after all, nearly ev-

erything should be normal, and whatever turns out not to be so can be made normal by a logarithmic

transformation. This is neither practical nor true. (Gumbel, 1958, p. 345)

In Les valeurs extrêmes des distributions statistiques (1935) Gumbel showed that extreme values taken from a

sequence of i.i.d. random variables with an exponential distribution obey the double exponential limit law (now

known as the Gumbel distribution). He reconfirmed the earlier result of Fisher and Tippett (1928) that the same

limit law also holds for extreme values of i. i. d. random variables with a normal distribution – and generalized it

to a much wider class of initial distributions, the so called exponential type. To wit:
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Pour les valeurs extrêmes . . . on arrive à la distribution doublement exponentielle pourvu que la

distribution initiale appartienne au type exponentiel . . . Cette theorie est susceptible de nombreuses

applications, puisque en particulier, la distribution de Gauss et la distribution exponentielle appartien-

nent au type exponentiel (Gumbel, 1935, p. 154-155).

We will draw upon the work of both Cramér and Gumbel: In Section 4.2 we show that the limiting distribution

of maximal prime gaps in Cramér’s probabilistic model is the Gumbel extreme value distribution. In hindsight,

the result is not very surprising: we know from computation and distribution fitting that the actual maximal prime

gaps are indeed nicely approximated by the Gumbel distribution (Kourbatov, 2013) (What is somewhat surprising

is that Cramér or Gumbel have not themselves published a similar result long ago, perhaps in the 1930s or 1940s.

Did they possibly deem it obvious? We might never know).

The existence of the Gumbel limit law for maxima of the (non-identically distributed) gaps between Cramér’s

random primes is interesting in view of Mejzler’s theorem (see, e. g., de Haan & Ferreira, 2006, p. 201). For

extremes of non-identically distributed independent random variables, Mejzler’s theorem states that the limiting

distribution (if it exists at all) can be any distribution with a log-concave cdf. Thus, prime gaps in Cramér’s model

give us an example of non-identically distributed random variables whose extremes nevertheless possess a limit

law that is allowed in i.i.d. situations as well.

2. Definitions • Notations • Abbreviations
a.s. almost sure, almost surely

i.i.d. independent and identically distributed

cdf cumulative distribution function

pdf probability density function

Ex the expected value (mathematical expectation) of the random variable x
Exp(x; a) the exponential distribution cdf: Exp(x; a) = 1 − e−x/a

Gumbel(x; a, μ) the Gumbel distribution cdf: Gumbel(x; a, μ) = e−e
− x−μ

a
= 2−e

− x−M
a

a the scale parameter of exponential/Gumbel distributions, as applicable

μ the location parameter (mode) of the Gumbel distribution

M the median of Gumbel(x; a, μ): M = μ − a log log 2 ≈ μ + 0.3665a
RP a random “prime” in the context of Cramér’s model (a white ball)

RC a random “composite” in the context of Cramér’s model (a black ball)

pk the k-th prime; {pk} = {2, 3, 5, 7, 11, . . .}
Pk the k-th random “prime” (RP) in Cramér’s model

Un the n-th urn producing RPs with probability 1
log n in Cramér’s model

Rn a random variable: the longest uninterrupted run of RCs ≤ n
Gn a random variable: the maximal gap between RPs ≤ n; Gn := Rn + 1

π(x) the prime counting function, the total number of primes pk ≤ x
Π(x) the RP counting function, the total number of RPs Pk ≤ x
log x the natural logarithm of x

li x the logarithmic integral of x: li x =
∫ x

0

dt
log t

=

∫ x

2

dt
log t

+ 1.04516 . . .

2.1 Definitions of Gaps and Runs

Prime gaps are distances between two consecutive primes, pk− pk−1 (OEIS A001223, Sloane, 2014). In the context

of Cramér’s model (see next section) “prime” gaps refer to distances between consecutive RPs, Pk − Pk−1.

Maximal gaps between primes are usually defined as gaps that are strictly greater than all preceding gaps (OEIS

A005250, Sloane, 2014). However, for Cramér’s model, we will use the term maximal gap in the statistical sense

defined below. Note that Cramér’s model does not guarantee that there are any “primes” Pk > 2 at all. To make

sure that maximal gaps are defined in all cases, we first define the longest run of random “composites” (RCs) ≤ n:

Rn = the longest run of consecutive RCs ≤ n (allowing runs of length 0).
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We now define the maximal gap between RPs ≤ n simply as

Gn = Rn + 1.

Compare our definition of Gn to the definition of maximal prime gaps for true primes:

maximal prime gap up to n = max
pk≤n

(pk − pk−1).

Clearly, the same gap/run relation holds (with very rare exceptions) for true primes as well:

maximal prime gap = 1 + the longest run of composites below n.

Examples: the largest prime gap below 100 is the gap of 8–between the primes 89 and 97; this corresponds to a

run of 7 consecutive composites: 90 to 96. Exceptional cases (gap � 1 + run) occur towards the end of record

prime gaps. Consider, e. g., the prime gap 113 . . . 127 and take n = 125. Then the largest prime gap below n is still

the gap of 8–between 89 and 97–while the longest run of 12 composites ≤ n occurs from 114 to 125.

Of course, in the probabilistic model, both Rn and Gn are random variables and, by definition, Gn = Rn + 1 without

exceptions. In Section 4 we will investigate the distribution of maximal gaps Gn.

2.2 Remark: Maxima vs. Records

Number theorists may use the terms maximal gaps and record gaps as synonyms (Caldwell, 2010; Nicely, 2013)

while statisticians make a distinction between maximal and record values (Arnold et al., 1998; Nevzorov, 2001).

Resnick (1973, Theorem 8) shows that the distinction is quite profound: in the i.i.d. case, the limit laws for records

and maxima cannot be the same. Nevertheless, for a wide class of sequences of non-identically distributed random

variables (the Fα model) the same extreme value distribution (e. g. Gumbel distribution) can be the limit law for

both records and maxima (Arnold et al., 1998, p. 193). Clearly, Cramér’s “prime” gaps near, say, urn U10 are

distributed not identically to those near urn U100. Theorem 1 (Sect. 4.2) establishes that the limiting distribution

of Cramér’s maximal “prime” gaps is indeed the Gumbel distribution. Computational evidence suggests that the

Gumbel distribution is also the a.s. limit law for record gaps in Cramér’s model; we will discuss the distribution of

records elsewhere.

3. Cramér’s Probabilistic Model of Primes

Cramér’s probabilistic model of primes is well known–and much criticized (Granville, 1995; Pintz, 2007).

3.1 Setting up the Model

Cramér (1936) sets up the model of primes as follows:

With respect to the ordinary prime numbers, it is well known that, roughly speaking, we may

say that the chance that a given integer n should be a prime is approximately 1
log n . This suggests

that by considering the following series of independent trials we should obtain sequences of integers

presenting a certain analogy with the sequence of ordinary prime numbers pn.

Let U1, U2, U3, . . . be an infinite series of urns containing black and white balls, the chance of

drawing a white ball from Un being 1
log n for n > 2, while the composition of U1 and U2 may be

arbitrarily chosen. We now assume that one ball is drawn from each urn, so that an infinite series

of alternately black and white balls is obtained. If Pn denotes the number of the urn from which the

n-th white ball in the series was drawn, the numbers P1, P2, . . . will form an increasing sequence of

integers, and we shall consider the class C of all possible sequences (Pn). Obviously the sequence S
of ordinary prime numbers (pn) belongs to this class.

We shall denote by Π(x) the number of those Pn which are ≤ x, thus forming an analogy to the

ordinary notation π(x) for the number of primes pn ≤ x. (Cramér, 1936, pp. 25-26)

Cramér’s model, as stated, is underdetermined: the content of urns U1 and U2 is arbitrary. To compute exact

distributions of maximal gaps, we will assume that

(i) urn U1 is empty–it produces neither “primes” nor “composites”;

(ii) urn U2 always produces white balls (i. e. the number 2 is certain to be “prime”).

20



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 2; 2014

3.2 Cramér’s Results

Using his probabilistic model of primes, Cramér obtained the following results for random primes Pk:

• The expected value of Π(x) (the number of RPs ≤ x) is asymptotic to li x: EΠ(x) ∼ li x as x→ ∞.

•With probability = 1, we have: lim sup
x→∞

|Π(x) − li x|√
2x log log x/ log x

= 1.

•With probability = 1, we have: lim sup
k→∞

Pk+1 − Pk

log2Pk
= 1.

The latter result, restated for true primes pk, constitutes the well-known Cramér’s conjecture. The conjecture

appears likely to be true. Indeed, computations of Oliveira e Silva, Herzog, and Pardi (2014) have verified that

pk+1 − pk < log2 pk for all primes pk � {2, 3, 7} up to 4 × 1018,

pk − pk−1 < log2 pk for all primes up to 4 × 1018.

At the same time, there exist large primes pk for which 0.8 <
pk+1 − pk

log2 pk
< 1 (Sloane, 2014, A111943).

4. Maximal Gaps Between Cramér’s Random Primes

4.1 The Exact Distribution of Maximal Gaps

We continue where Cramér left off. To obtain exact distributions of maximal gaps between Cramér’s random

primes, for now we will restrict ourselves to finite sets of n consecutive urns U1, U2, . . . ,Un. When our set of urns

is small, we can compute the exact distributions of maximal gaps by hand, even without a computer.

For example, for n = 3 we have only three urns: U1, U2, U3. Of these, only U3 produces random results:

• a white ball (RP) with probability
1

log 3
≈ 0.91 or

• a black ball (RC) with probability 1 − 1

log 3
≈ 0.09.

Thus, for the longest run of RCs, R3, we have R3 = 0 with probability 0.91, and R3 = 1 with probability 0.09. Con-

sequently, for the maximal gap between RPs, we have G3 = 1 with probability 0.91, and G3 = 2 with probability

0.09 (Recall that, by definition, Gn = Rn + 1).

One can visualize the exact distributions of maximal gaps in the form of histograms. With the help of a computer,

we can find the exact distributions up to, say, n = 250 urns. Figure 1 shows the respective computer-generated

distributions of maximal gaps (cf. Schilling, 1990, pp. 197-204).

4.2 The Limiting Distribution of Maximal Gaps

In Figure 1, the exact distributions (histograms) of maximal gaps between RPs appear to approach the pdf curves

of the Gumbel distribution with scale αn = n/ li n and mode μ = αn log li n. We can restate this observation in a

more precise form:

Theorem 1 In Cramér’s model with n urns, the Gumbel distribution exp(−e−z) is the limiting distribution of
maximal gaps Gn between RPs: there exist an > 0 and bn such that

lim
n→∞ P(Gn ≤ x ≡ anz + bn) = exp(−e−z), where an ∼ αn =

n
li n
, bn ∼ αn log li n.

Equivalently, for Rn (the longest runs of RCs) we have lim
n→∞ P(Rn ≤ anz + bn) = exp(−e−z).

We will sketch two proofs of Theorem 1. The first proof will use the following lemmas.

Lemma of Common Median Suppose two Gumbel distributions have a common median and different scales a±ε,
where 0 < ε < a

2
. Then the cdfs of these Gumbel distributions differ by no more than εa .

Lemma of Common Scale Suppose two Gumbel distributions have a common scale a > 0 and medians M ± δ.
Then these Gumbel cdfs differ by no more than δa .

Denote by Fn(x) the cdf of the exact distribution of maximal gaps in Cramér’s model with n urns U1, . . . ,Un.

Denote by In (n ≥ 10) the largest interval of the x axis such that Fn(x) ∈ [(log n)−1, 1− (log n)−1] for all x ∈ In (One

can show that In ⊂ [log n, log2n]).
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Squeeze Lemma Let Mn be the median of Fn(x). Then Fn(x) is squeezed in the area bounded by the Gumbel
distribution cdfs with medians M = Mn ± δ and scales a = n/ li n ± ε:

min
M =Mn±δ

a= n/ li n± ε
2−e

− x−M
a ≤ Fn(x) ≤ max

M =Mn±δ
a= n/ li n± ε

2−e
− x−M

a for n ≥ 10, x ∈ In,

where one can take ε = 3/2, δ = 1 (See Figure 2. The sequence {Mn} is OEIS A235492, Sloane, 2014).

Hereafter we often use these formulas expressing the Gumbel distribution cdf in terms of its scale a, mode μ and

median M:

Gumbel(x; a, μ) = e−e
− x−μ

a
= 2−e

− x−M
a
, where M = μ − a log log 2 ≈ μ + 0.3665a.

n = 80

n = 60

n = 40

n = 30

n = 20

0               2               4                6               8               10             12             14             16              18             20              22

0               2               4                6               8               10             12             14             16              18             20              22

0               2               4                6               8               10             12             14             16              18             20              22

0               2               4                6               8               10             12             14             16              18             20              22

0               2               4                6               8               10             12             14             16              18             20              22

Figure 1. Histograms of the exact distributions of maximal prime gaps in Cramer’s model with n urns, computed

for n = 20, 30, 40, 60, 80. The smooth curves represent Gumbel distributions (pdf) with the scale a = n/ li n and

mode μ = n log(li n)/ li n. Interested readers can compute and plot the exact distributions of maximal gaps online

at http://www.javascripter.net/math/statistics/maximalprimegapsincramermodel.htm
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4.2.1 First Proof of Theorem 1

Suppose the number of urns n is large. We will examine two cases: (a) x ∈ In; (b) x � In.

Case (a) First, we consider Fn(x) for x ∈ In, i. e., (log n)−1 ≤ Fn(x) ≤ 1 − (log n)−1.

Let us estimate Mn, the median of Fn(x). As before, let αn = n/ li n and ε = 3/2. We can approximate Cramér’s

proportions of white balls in urns using two different procedures:

(i) set the white-to-black-balls ratio in all urns to
1

αn + ε
, then increase the percentages of white balls in all urns or,

alternatively,

(ii) set the white-to-black-balls ratio in all urns to
1

αn − ε , then reduce the percentages of white balls in all but a

small subset of urns.

0              2              4              6              8             10            12            14            16            18            20            22                

Figure 2. Bottom: the histogram of maximal prime gaps in Cramér’s model with 35 urns. Top: the black

“staircase” is the exact cdf of the distribution of maximal prime gaps in Cramér’s model with 35 urns. The dark

curve shows the corresponding Gumbel distribution with scale a = n/ li n and mode μ = n log(li n)/ li n. Light

gray curves illustrate the Gumbel cdfs with scales a = n/ li n ± ε and medians M = Mn ± 1 used in Squeeze

Lemma; n = 35

Note that the white-to-black balls ratio 1/a can be approximated by the exponential distribution of gaps Exp(x; a).

Observe also that increasing the percentage of white balls pushes the median of maximal gaps to the left, while

reducing this percentage pushes the median to the right. Therefore, Mn must be somewhere between the medians

of (Exp(x;αn − ε))li n and (Exp(x;αn + ε))
li n:

median (Exp(x;αn − ε))li n � Mn � median (Exp(x;αn + ε))
li n.

Since αn ∼ log n while ε = O(1), the above lower and upper bounds are asymptotic to each other and to the median

of (Exp(x;αn))li n, so we must have

Mn ∼ median (Exp(x;αn))li n as n→ ∞.
That is to say, as n→ ∞, the median Mn of Fn(x) must be asymptotic to the median of the limiting distribution of

maxima of �li n� i.i.d. random variables with the exponential distribution Exp(x;αn). But this limiting distribution

is precisely the Gumbel distribution Gumbel(x;αn, αn log li n) (Gumbel, 1935; Gnedenko, 1943; Hall & Wellner,

1979); therefore

Mn ∼ median
(

Gumbel(x;αn, αn log li n)
) ≈ αn log li n + 0.3665αn.

On the other hand, it follows from Lemmas that Fn(x) is squeezed in the Δn-neighborhood of the Gumbel cdf

2−e−
x−Mn
αn , where ε and δ are defined as in Squeeze Lemma,

Δn =
ε + δ

αn
, and αn =

n
li n
∼ log n→ ∞ as n→ ∞.

It is easy to see that Δn → 0 as n→ ∞.
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To sum it up: the median Mn is asymptotic to the median of Gumbel(x;αn, αn log li n), while the limiting shape of

Fn(x) is dictated by the fact that Fn(x) is in the Δn-neighborhood of the Gumbel cdf 2−e−
x−Mn
αn , with lim

n→∞Δn = 0.

This completes the proof for case (a).

Case (b) Now consider x � In: either Fn(x) < (log n)−1 or Fn(x) > 1 − (log n)−1. Taking into account the

monotonicity of cdfs, we can conclude from Lemmas that, for large n,

2−e
− x−Mn
αn

<
ε + δ

αn
+ (log n)−1 if Fn(x) < (log n)−1,

1 − 2−e
− x−Mn
αn

<
ε + δ

αn
+ (log n)−1 if 1 − Fn(x) < (log n)−1,

where αn =
n

li n
∼ log n. Therefore,

∣∣∣Fn(x) − 2−e
− x−Mn
αn
∣∣∣ = O

(
(log n)−1)→ 0 as n→ ∞. �

4.2.2 Second Proof of Theorem 1

We begin by proving the theorem for longest runs Rn of “composites”. In Cramér’s model, urns Un (n ≥ 3) produce

white balls with a monotonically decreasing, slowly varying probability 1/ log n → 0 as n → ∞. We observe that

the more general Theorem A.1 (see Appendix) is applicable to our situation. Theorem A.1 tells us that, as n→ ∞,

the limiting distribution of longest runs exists; it is the Gumbel distribution with the scale and mode parameters

determined by EΠ(n), the expected total number of RPs ≤ n:

scale an ∼ n
EΠ(n)

=
n

li n + O(1)
∼ n

li n

mode bn ∼ n log EΠ(n)

EΠ(n)
=

n
li n + O(1)

log(li n + O(1)) ∼ n
li n

log li n.

Here we have used the fact that, for n ≥ 3, the expected total number of RPs ≤ n is

EΠ(n) = 1 +

n∑
k=3

1

log k
= li n + O(1) as n→ ∞.

Thus we can use the above scale and mode as rescaling parameters an and bn, to obtain the standard Gumbel

distribution exp(−e−z). Note that 1  an  bn as n → ∞; so the distribution rescaling formula z =
x − bn

an
will

produce approximately equal values of z, no matter whether we are rescaling the longest runs Rn or maximal gaps

Gn ≡ Rn + 1. �
4.3 Properties of the Distribution of Maximal Gaps

Let us look at the the properties of the distribution of maximal gaps. We can readily see that the exact distribution

of maximal gaps is discrete and bounded, while the limiting Gumbel distribution is continuous, smooth, and

unbounded. Below we discuss two properties that are common to the exact and asymptotic distributions of maximal

gaps: log-concavity and unimodailty.

4.3.1 Log-Concavity

A function f (x) > 0 with a convex domain is log-concave if log f (λx + (1 − λ)y) ≥ λ log f (x) + (1 − λ) log f (y)

for all 0 ≤ λ ≤ 1 and for all x, y in the domain of f (x). A discrete sequence {sk} is log-concave if s2
k ≥ sk−1sk+1 for

each middle term sk.

Log-concavity of the limiting distribution of maximal gaps. It is well known (and easy to check given the

formulas for the distribution’s pdf and cdf) that the Gumbel distribution pdf and cdf are log-concave. Note that, in

general, if f (x) is a continuous distribution pdf and F(x) is the corresponding cdf, then the following implications

are true:

f (x) is log-concave ⇒ F(x) is log-concave,

f (x) is log-concave ⇔ 1 − F(x) is log-concave.

Log-concavity of exact distributions of maximal gaps. A direct computational check shows that all the exact

distribution functions we have computed in Section 4.1 are also log-concave:

Fn(k)2 ≥ Fn(k − 1) Fn(k + 1), 1 < k < n.
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However, the log-concavity is not necessarily preserved if we use an approximate (e. g. Monte-Carlo) algorithm

rather than the exact formulas for computing the finite distribution functions Fn(x).

4.3.2 Unimodality

The Gumbel distribution Gumbel(x; a, μ) is unimodal for any μ and any a > 0: it has a unique mode (most probable

value), namely, μ. What about the exact distribution of maximal gaps between RPs in Cramér’s model with n urns?

By Theorem 1, the Gumbel distribution is the limiting distribution of maximal gaps between RPs in Cramér’s

model; therefore it is reasonable to expect that, for large n, in Cramér’s model with n urns the exact distribution

of maximal gaps between RPs is also unimodal. On the other hand, for moderate values of n one can check by

direct computation that each of the exact distributions of maximal gaps between RPs is unimodal. Here we will

state without a formal proof the following

Unimodality Lemma In Cramér’s model with n urns, the exact distribution of maximal gaps between RPs is
unimodal for each n > 1.

5. Generalizations • Applications • Concluding Remarks

We have thus shown that the Gumbel distribution is the limit law for extreme gaps between Cramér’s random

primes. In particular, when the number of urns n in Cramér’s model is large, the distribution of maximal prime

gaps approaches the Gumbel distribution Gumbel(x; an, bn) with these parameters:

scale an ∼ n
li n
, mode bn ∼ n

li n
log li n.

In view of this limit law for maximal gaps between Cramér’s RPs ≤ n, additional questions naturally arise:

• Is the Gumbel distribution, after proper rescaling, also an (almost sure) limit law for record prime gaps observed

in a single infinite sequence of Cramér’s random primes? Cf. Resnick (1973) and Arnold et al. (1998, p. 193).

• Is the Gumbel distribution, after proper rescaling, also the limit law for record gaps between true primes?

While the latter question appears particularly difficult, it clearly suggests that our probabilistic result has a potential

application to number theory. Indeed, in the spirit of Cramér’s program we quoted in Introduction, a number-

theoretic result can be first obtained heuristically via probability considerations, and a rigorous number-theoretic

proof could be found afterwards.

A straightforward generalization extends the Gumbel limit law to maximal gaps between prime constellations–

dense clusters of consecutive primes with a repeatable pattern (see Table 1). For this generalization, it is essential

that we regard prime constellations near x as random events occurring with a slowly varying probability decreasing

to zero as x → ∞. Just as with extreme gaps between primes, here we do not have rigorous number-theoretic

proofs–but we do have a convincing probabilistic argument explained below.

Table 1. Prime constellations. Conjectured probabilities to find a constellation starting at x (cf. Forbes, 2012)

Constellation type Pattern of primes Conjectured probability C(log x)−K at p ≈ x
Twin primes {p, p + 2} 1.32032 (log x)−2

Prime triplets {p, p + 2, p + 6} 2.85825 (log x)−3

Prime triplets {p, p + 4, p + 6} 2.85825 (log x)−3

Prime quadruplets {p, p + 2, p + 6, p + 8} 4.15118 (log x)−4

Prime quintuplets {p, p + 2, p + 6, p + 8, p + 12} 10.13179 (log x)−5

Prime quintuplets {p, p + 4, p + 6, p + 10, p + 12} 10.13179 (log x)−5

Prime sextuplets {p, p + 4, p + 6, p + 10, p + 12, p + 16} 17.29861 (log x)−6

The idea to model prime constellations by random events with predictable probabilities stems from the K-tuple
conjecture of Hardy and Littlewood (1922). Riesel (1994, pp. 60-68) gives an accessible account of this conjecture.

Forbes (2012) published extensive numerical data on densest permissible prime constellations; Table 1 is based on

a small subset of Forbes’ data. Once we agree to treat prime constellations as random events with slowly varying

probabilities given in Table 1, the Gumbel limit law for maximal gaps between such events immediately follows

from Theorem A.1 (Appendix). Specifically, we can estimate the scale and mode in the limit law Gumbel(x; an, bn)

for a particular constellation by expressing them in terms of EΠc(n), the expected total count of constellations
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below n:

scale an ∼ n
EΠc(n)

, mode bn ∼ n log EΠc(n)

EΠc(n)
, EΠc(n) ≈ C

∫ n

0

(log x)−Kdx,

where the values of C and K are given in the last column of Table 1. Thus prime constellations can be simulated

using a modified version of Cramér’s model: urn Un produces a white ball with probability C(log n)−K . (Of course,

it is also possible to simulate prime constellations by K consecutive white balls in the classical Cramér model as

described in Section 3. However, the latter approach is inferior because it does not accommodate the known values

of the Hardy-Littlewood constants C in Table 1).

The generalization of the Gumbel limit law to extreme gaps between prime sextuplets (Table 1, last line) leads to

a somewhat unexpected application: the riecoin cryptocurrency (Riecoin.org, 2014). The computational process

of riecoin mining consists in finding very large prime sextuplets (over 300 bits in size). The Gumbel limit law

for maximal gaps between prime sextuplets therefore also describes the distribution of “worst cases” in terms of

computational work in riecoin mining.

To conclude our brief discussion of applications, let us quote the British mathematician G. H. Hardy (1877–1947)

who made spectacular breakthroughs in the study of prime numbers–and paradoxically cautioned against empha-

sizing the applications and practical usefulness of mathematics:

A science is said to be useful if its development tends to accentuate the existing inequalities in the

distribution of wealth, or more directly promotes the destruction of human life. The theory of prime

numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to

justify their interest in a subject so trivial and so remote, and will console themselves with the thought

that the greatest mathematicians of all ages have found in it a mysterious attraction impossible to resist

(Hardy, 1915).
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Appendix: Maximal Intervals Between Random Events Occurring With Slowly Varying Probability �(t)→ 0

In this appendix we give a general theorem whose particular case (�(t) = 1/ log t for t ≥ 3) has been used in

Section 4.2.2. We say that a function �(t) > 0 is slowly varying if it is defined for positive t, and lim
t→∞
�(λt)
�(t)

= 1 for

any fixed λ > 0 (de Haan & Ferreira, 2006, p. 362).

Theorem A.1 Consider biased coins with tails probability �(k) at the k-th toss, 0 < �(k) < 1, where �(t) is a smooth,
slowly varying, monotonically decreasing function, and lim

t→∞ �(t) = 0. Then, after a large number n of tosses, the
asymptotic distribution of the longest runs of heads Rn is the Gumbel distribution: there exist an > 0 and bn such
that

lim
n→∞ P(Rn ≤ x ≡ anz + bn) = exp(−e−z), where an ∼ n

EΠ(n)
, bn ∼ n log EΠ(n)

EΠ(n)
.
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Here EΠ(n) is the mathematical expectation of the total number of tails Π(n) observed during the first n tosses:

EΠ(n) =

n∑
k=1

�(k).

It may be surprising that the asymptotic distribution does exist at all for discrete events occurring with a slowly

varying probability �(t)→ 0. In contrast, for a biased coin with a constant positive probability of tails, the limiting

distribution of the longest run of heads does not exist (Schilling, 1990, p. 203). In the lemmas below, we assume

the conditions of Theorem A.1 and take λ to be arbitrarily large (λ � 1). The lemmas are easy to prove using the

theory of regularly varying functions (see, e. g., de Haan & Ferreira, 2006, pp. 361–367).

Lemma 1 lim
t→∞Π(t) = ∞ a.s., while lim

t→∞
EΠ(t)

t
= 0.

Lemma 2 lim
t→∞ E(Π(λt) − Π(t)) = ∞.

Lemma 3 lim
t→∞ (EΠ(λt)/EΠ(t)) = λ.

Lemma 4 lim
t→∞

E(Π(λt) − Π(t))
EΠ(λt)

=
λ − 1

λ
.

Proof of Theorem A.1. Let k denote the ordinal number of a coin toss, so the k-th toss has the tails probability �(k).

Take λ � 1 and consider the sequence S (t, λt) of consecutive tosses with t < k ≤ λt. For toss sequences S (t, λt)
with larger and larger t, we see that:

(i) �(k) becomes nearly constant: �(λt) � �(k) � �(t) (by monotonicity + slow variation);

(ii) the expected total number of tails is E(Π(λt) − Π(t))→ ∞ as t → ∞ (by Lemma 2).

As t grows larger, the outcome of the toss sequence S (t, λt) becomes indistinguishable from an equally long

sequence of tosses of a constant-bias coin whose tails probability q is

q =
E(Π(λt) − Π(t))

λt − t
≈ EΠ(λt)

λt
≈ EΠ(n)

n
, where we set n = �λt�.

In the latter setup with a constant-bias coin, head runs are modeled by i.i.d. geometric random variables (Schilling,

1990). The expected total number m of head runs is

m = q(λt − t) = E(Π(λt) − Π(t)) ≈ λ − 1

λ
EΠ(n), with n = �λt�, (1)

In turn, these m geometric i.i.d. variables are highly accurately approximated by exponential i.i.d. variables whose

common cdf is Exp(ξ; a) = 1 − e−ξ/a (Anderson, 1970). The scale parameter a in Exp(ξ; a) is given by

a =
λt − t

E(Π(λt) − Π(t))
≈ n

EΠ(n)
(here and above we have used Lemma 4).

The largest value L of m exponential i.i.d. random variables, with the cdf 1 − e−ξ/a, has the limiting Gumbel

distribution (Gumbel, 1935; Gnedenko, 1943; Hall & Wellner, 1979):

lim
m→∞ P(L ≤ az + a log m) = exp(−e−z).

However, it is well known that for the geometrically distributed runs of heads with a constant-bias coin (i. e. the

tails probability q = const) the longest runs R do not have a limiting distribution (Anderson, 1970; Schilling, 1990):

P(R ≤ az + a log m) = exp(−e−z) + O(q), (2)

with the geometric-to-exponential approximation error O(q) preventing the convergence of the exact longest run

distributions to the Gumbel distribution. Nevertheless, in our original setup with slowly varying bias of the coin,

instead of a constant q we have

qn ∼ a−1
n ∼ �(n) ∼ EΠ(n)

n
→ 0 as n→ ∞. (3)
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For the sequence S (t, λt) to contain the absolute longest run of heads Rn up to n = �λt�, we must take λ very large,

so λ−1
λ
→ 1, and from Equation (1) we have log m ≈ log EΠ(n). Now Equations (2) and (3) yield the limiting

distribution of Rn under the theorem conditions:

lim
n→∞ P(Rn ≤ anz + bn) = exp(−e−z), where an ∼ n

EΠ(n)
, bn ∼ n log EΠ(n)

EΠ(n)
.

Thus the convergence to the limiting Gumbel distribution is restored. The convergence rate clearly depends on the

actual choice of the slowly varying function �(t)→ 0. �

Remarks. Theorem A.1 is general enough to describe maximal gaps for “primes” and “prime constellations”

in Cramér’s model. However, comparing it to the results of Mladenović (1999), one might look for a further

generalization. For example, what kind of a limiting distribution (if any) would we get if in Theorem A.1 we

replace the slowly varying probability �(t) → 0 by some regularly varying probability q(t) → 0, q(t) ∈ RVα with,

say, −1 ≤ α ≤ 0? Here α is the index of regular variation; for definitions of α and RVα see, e. g., de Haan &

Ferreira (2006, p. 362). Note that α = 0 corresponds to slowly varying functions.
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