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Abstract

We consider the estimation of gradient of density function of positive associated random process (Xi)i from noisy

observations. We establish asymptotic expressions for the variance of the gradient of estimator of density of

probability. We consider the case of algebraic decay of the tail of the noise characteristic function of εi.
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1. Introduction

We consider the problem of estimating the gradient of multivariate probability densities of a stationary process

using observations that are corrupted by additive noise. For each integer p ≥ 1, we consider that there exits a joint

probability density f (x) = f (x1, ..., xp) for X1, ..., Xp, where (Xi)i is a real-valued stationary process. Consider the

deconvolution problem

Yi = Xi + εi, i = 1, 2....

Such a model of measurements being contaminated by errors arises in many fields where the measurements cannot

be observed directly. The noise process (εi)i consists of independent and identically distributed random variables,

and assume furthermore that it is independent of the process (Xi)i, with known marginal density h(x). Let g(x) be

the joint probability density function of the random variables Y1, ..., Yp which is given by

g(x) =

∫
Rp

f (x − u)h(u)du,

where h(u) = Π
p
j=1

h(u j) and u = (u1, ..., up).

We consider the gradient ∇ f (x) of multivariate density deconvolution when the process (Xi)i is associated. Our

aim is to study the estimate of ∇ f (x) from the noisy observations (Yi)
n
i=1

. This is clearly a multidimensional density

deconvolution problem for dependent data.

In Chacon, Duong and Wand (2011), the authors investigate kernel estimators of multivariate density derivative

functions using general bandwidth matrix selectors. Given a random sample X1, X2, ..., Xn drawn from the same

density of probability f , and provide the results for mean integrated square convergence both asymptotically and

for finite samples. The influence of the bandwidth matrix on convergence is established.

The deconvolution problem for the estimation of f (x) has been investigated by many authors. We cite the work

of Fan (1991), Masry (2001), among others. Most of papers cited above address how to estimate the unknown

density and compute the rate of convergence for specific error process. Fan (1991) used kernel density estimator to

estimate the unknown density f , as well as its derivatives, for the case of i.i.d observations and p = 1. Masry (2003)

developed an estimation of the multivariate probability density when the underlying process (Xi)i is associated

(p ≥ 1).

We recall the definition of association for collections of random variables.
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Definition 1 The sequence (Xn)n∈Z is said to be positively associated if for every finite subcollection (Xi1 , ..., Xin )

and every pair of coordinate-wise non decreasing functions H1, H2:

cov(H1(Xi1 , ..., Xin ); H2(Xi1 , ..., Xin )) ≥ 0

whenever the covariance is defined.

This definition was introduced by Esary, Proschan, and Walkup (1967). Furthermore, positive association seems

to be a natural assumption to model certain clinical trials as those described in Ying and Wei (1994). It is also

known, see Pitt (1982), that Gaussian processes are positively associated, if and only if, their covariance function

is positive. We note that an important property of associated random variables is that non correlation implies

independence; the only alternative frame for this to hold is the Gaussian one. This means that one may hope

that dependence will appear in this case only through the covariance structure, and also justifies the study of

such processes. Indeed, a covariance is much easier to compute than a mixing coefficient. Unfortunately, a main

inconvenience of mixing is that there are only few mixing models for which the mixing coefficients can be explicitly

evaluated. We note that association and mixing define two distinct but not disjoint classes of processes.

Example 2 (see Louhichi, 2000) Let (εi) be a sequence of i.i.d random variables and (μi)i∈Z a sequence of numbers.

Let Xn
j =
∑
|i|≤n μ jε j−i; and assume that, there exists Xj such that limn→∞ Xn

j = Xj a.s; sup j E|Xn
j | < ∞ and |Xj| ≤ ∞

a.s. The linear process is Xj =
∑

i∈Z μ jε j−i. If the sequence (μi)i∈Z is non negative and
∑ |μ j| < ∞ then (Xj) j∈Z is

associated.

2. Notations and Assumptions

2.1 Notations

We denote the characteristic functions of f , g, h and h by φ f , φg, φh and φh respectively. Then φg(t) = φ f (t)φh(t)
and φh(t) = Πp

j=1
φh(t j), where t = (t1, ..., tp).

Let us consider ĝn(x) a kernel-type estimate of g(x) that is

ĝn(x) =
1

hn

n∑
i=1

K
(

x − Yi

hn

)
.

Let K(x) = Π
p
j=1

K(x j), where K(x) be a real-valued, even, bounded density function on the real line satisfying

K(x) = O(|x|−1−δ) for some δ > 0 and denote its Fourier transform by φK(t). Assumptions will be made on φK(t)

and φh(t) which will ensure that
φK(t)

φh(t/h)
∈ L1 ∩ L∞, where L1 is the space of Lebesgue integrable functions and

L∞ the space of bounded functions.

For every hn > 0 define the deconvolution kernel

Whn (x) =
1

2π

∫ ∞
−∞

eitx φK(t)

φh (t/hn)
dt.

Set Whn (x) = Π
p
j=1

Whn (x j) where x = (x1, ..., xp). So that φK(t) = Πp
j=1
φK(t j). The choice of product type kernel is

not essential and is made for sake of simplicity.

The kernel density estimator for estimating the unknown density of X is defined as follows:

Let (hn)n≥1 be a sequence of positive numbers such that hn → 0 as n → ∞; given the observations (Yi)
n
i=1

, the

estimate of f (x) is defined by

f̂n(x) =
1

(n − p)hp
n

n−p∑
j=0

Whn

(
x − Y j

hn

)
,

where Y j = (Yj+1, ..., Yj+p) and it is assumed that n > p.

Another expression of f̂n(x) is

f̂n(x) =
1

(2π)p

∫
Rp

e−itxφ̂n(t)
φK(hnt)
φh(t)

dt, (1)
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where φ̂n(t) is the standard estimate of the characteristic function of φg(t):

φ̂n(t) =
1

n − p

n−p∑
j=0

eitY j .

The difficulty of deconvolution depends on the smoothness of the distribution of the error variable ε. By smooth-

ness of the error distribution, we mean the order of characteristic function φh(t) of (εi) as t → ∞. We say that the

distribution of ε is algebraically decreasing or ordinary smooth of order β if φh(t) satisfies:

a0|t|−β ≤ φh(t) ≤ a1|t|−β as t → ∞,
where a0, a1, β are positive real numbers.

2.2 Assumptions

(A1) the probability density g(x) exists.

(A2) The p-dimensional density g(u, v) of the vectors Y0 and Yl for l ≥ p exists.

(A3) The process is associated and its covariance function c j = cov(Xj+1, X1) satisfies
∑∞

j=1 jδc j ≤ ∞ for some

δ > 1 + 2
p .

We need some lemmas for the proofs of the main results.

3. Some Auxiliary Lemmas

The result from real analysis that is needed here is the following (see for instance Wheeden & Zygmund, 1977, p.

189):

Lemma 3 Assume that Q(x) is a bounded integrable function on R
p. Let f ∈ L1 (Rp) and continuous. Then for

almost all x ∈ Rp we have

lim
n→∞

∫
Rp

[
1

hp
n

Q
(

x − u
hn

)]
f (u)du = f (x)

∫
Rp

Q (u) du.

Lemma 4 Assume that φh(t) and φK(t) satisfies

i) |φh(t)| > 0 for all t ∈ R,
ii) |t|β|φh(t)| → |B1| as |t| → ∞ for some B1 and β > 0,

iii) D1 =
1

2π|B1 |2
∫ ∞
−∞ |t|2β|φK(t)|2dt < ∞, D2 =

1
2π|B1 |2

∫ ∞
−∞ |t|2(β+1)|φK(t)|2dt < ∞ then h2β

∫ ∞
−∞ |Whn (x)|2dx → D1 and

h2β
∫ ∞
−∞ |W

′

hn
(t)|2dt → D2 as hn → 0. Thus

h2βp
n

∫
Rp

∣∣∣gn,k(x)
∣∣∣2 dx→ Dp−1

1
D2.

Proof. First we have h2β
∫ ∞
−∞ |Whn (x)|2dx = h2β

2π

∫ ∞
−∞
∣∣∣∣ φK (t)
φh(t/h)

∣∣∣∣2 dt. Hence, by ii) |t|β|φh(t)| ≥ |B1 |
2
. Thus

h2β

2π

∫ ∞
−∞

∣∣∣∣∣∣ φK(t)

φh(t/h)

∣∣∣∣∣∣
2

dt ≤ 4

2π|B1|2
∫ ∞
−∞
|t|2β|φK(t)|2dt = D1

and h2β
∫ ∞
−∞ |W

′

hn
(t)|2dt = h2β

2π

∫ ∞
−∞
∣∣∣∣ tφK (t)
φh(t/h)

∣∣∣∣2 dt. Hence by ii)

h2β

2π

∫ ∞
−∞

∣∣∣∣∣∣ tφK(t)

φh(t/h)

∣∣∣∣∣∣
2

dt ≤ 4

2π|B1|2
∫ ∞
−∞
|t|2(β+1)|φK(t)|2dt = D2.

�
Lemma 5 Assume that φh(t) and φK(t) are twice continuously differentiable with bounded derivatives such that

i) |φh(t)| > 0 for all t ∈ R,
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ii) |t|βφh(t)→ B1 as |t| → ∞ for some B1 and β ≥ 1,

iii)
∫ ∞
−∞ |t|β−2|φK(t)|2dt < ∞, ∫ ∞−∞ |t|β−1|φ′K(t)|2dt < ∞, ∫ ∞−∞ |t|β|φ′′K(t)|2dt < ∞. Then hβn|Whn (x)| ≤ C1 ≤ ∞, where C1

is a constant independent of hn, and hβn
∥∥∥Whn (x)

∥∥∥
1
≤ const.

Proof. By setting Fhn (t) = φK (t)
φh(t/hn)

; we have Fhn (t) ∈ L1 and is twice continuously differentiable with bounded

derivatives; F
′′
hn

(t) ∈ L1 then by integration by part one has

(ix)2Whn (x) =
1

2π

∫ ∞
−∞

eitxF
′′
hn

(t)dt

and by the Riemann-Lebesgue lemma Whn (x) = o(x−2), so that Whn (x) ∈ L1. Under such smoothness conditions

on φh and φK we will show that in fact hβn
∫ ∞
−∞ |F

′′
hn

(t)|dt ≤ C1 < ∞. From which we obtain a bound for its L1-norm

‖Whn‖1

F
′′
hn

(t) =
φ
′′

K(t)

φh(t/hn)
− 2

hn

φ
′

h(t/hn)φ
′

K(t)(
φh(t/hn)

)2 − 1

h2
n

φK(t)φ
′′

h(t/hn)

φh(t/hn)2
+

1

h2
n

φK(t)
(
φ
′

h(t/hn)
)2

(
φh(t/hn)

)3 . (2)

Based on (2), we get:

(ix)2Whn (x) = I1(x) + I2(x) + I3(x) + I4(x)

and thus

|I1(x)| ≤ 1

2π

∫ ∞
−∞

∣∣∣∣∣∣∣ φ
′′

K(t)

φh(t/hn)

∣∣∣∣∣∣∣ dt, |I2(x)| ≤ 1

2π

2

hn

∫ ∞
−∞

∣∣∣∣∣∣∣∣φ
′

h(t/hn)φ
′

K(t)(
φh(t/hn)

)2
∣∣∣∣∣∣∣∣ dt,

|I3(x)| ≤ 1

2π

1

h2
n

∫ ∞
−∞

∣∣∣∣∣∣∣φK(t)φ
′′

h(t/hn)

φh(t/hn)2

∣∣∣∣∣∣∣ dt, |I4(x)| ≤ 1

2π

1

h2
n

∫ ∞
−∞

∣∣∣∣∣∣∣∣∣∣∣
φK(t)

(
φ
′

h(t/hn)
)2

(
φh(t/hn)

)3
∣∣∣∣∣∣∣∣∣∣∣ dt.

By assumptions i), we have

|I1(x)| ≤ 1

2π|B1|hβn

∫ ∞
−∞
|t|β|φ′′K(t)|dt, |I2(x)| ≤ 1

2π|B1|2hβn

∫ ∞
−∞
|t|β−1|φ′K(t)|dt,

|I3(x)| ≤ 1

2π|B1|2hβn

∫ ∞
−∞
|t|β−2|φK(t)|dt, |I4(x)| ≤ 1

2π|B1|3hβn

∫ ∞
−∞
|t|β−2|φK(t)|dt.

Thus using iii) we have hβn|Whn (x)| ≤ C1 where C1 is independent of hn; and hβn‖Whn (x)‖1 ≤ const. �
Lemma 6 Assume that φh(t) and φK(t) are twice continuously differentiable with bounded derivatives such that

i) |φh(t)| ≥ 0 for all t ∈ R,
ii) |t|βφh(t)→ B1 as |t| → ∞ for some B1 and β ≥ 1,

iii)
∫ ∞
−∞ |u|β− j|φK(u)|2du < ∞ for j = 1, 2;

∫ ∞
−∞ |t|β− j|φ′K(t)|2dt < ∞ for j = −1, 0, 1;

∫ ∞
−∞ |t|β|φ

′′
K(t)|2dt < ∞. Then

hβn|W ′hn
(x)| ≤ C2 ≤ ∞, where C2 is a constant independent of hn, and hβn

∥∥∥∥W ′hn
(x)
∥∥∥∥

1
≤ const.

Proof. Let Fhn (t) = tφK (t)
φh(t/hn)

. Then

F
′′
hn

(t) =
(t + 1)φ

′

K(t) + φ
′′

K(t)

φh(t/hn)
− 2

hn

φK(t)φ
′

h(t/hn) + tφ
′

K(t)φ
′

h(t/hn)(t)(
φh(t/hn)

)2 − 1

h2
n

tφK(t)φ
′′

h(t/hn)(
φh(t/hn)

)2 +
2

h2
n

tφK(t)
(
φ
′

h(t/hn)
)2

(
φh(t/hn)

)3 .

Proceeding in the same way than Lemma 7, we show that hβn‖W
′

hn
(x)‖1 ≤ Const. We conclude, in view of Lemma

7 and lemma 8, that hpβ
n ‖gn,k(x)‖1 ≤ const. �
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4. Main Results

Let us now come back to the main purpose of this paper, which is the study of the estimate of the gradient of

density of probability under association.

4.1 Estimation of ∇ f̂n(x)

We have from (1)

∂ f̂n(x)

∂xk
=

1

(2π)p

∫
Rp

(−itk)e−itxφ̂n(t)
φK(hnt)
φh(t)

dt,

where t = (t1, ..., tp). Replace φ̂n(t) by its expression, we get

∂ f̂n(x)

∂xk
=

1

(2π)p

1

(n − p)hp+1
n

n−p∑
j=0

∫
Rp

(−itk)e
−it
(

x−Y j
hn

)
φK(t)
φh (t/hn)

dt.

Now let

gn,k(x) =
1

(2π)p

∫
Rp

(−itk)e−itx φK(t)
φh (t/hn)

dt

and

gn(x) = (gn,1(x), ..., gn,p(x)).

We can write

∇ f̂n(x) =
1

(n − p)hp+1
n

n−p∑
j=0

gn

(
x − Y j

hn

)
. (3)

4.2 Main Results

Proposition 7 Assume that ∇ f̂ (x) ∈ L1 (Rp) and f continuous, then for all x ∈ Rp, we have

E
(
∇ f̂n(x)

)
→ ∇ f (x) as n→ ∞.

Theorem 8 Let nh(2β+1)p+1
n → ∞ as n → ∞. Under assumptions A1-A3 and conditions on kernel function and on

distribution of errors in the lemmas 4, 5 and 6; we have:

lim
n→∞ nh(2β+1)p+1

n var
[
∇ f̂n(x)

]
= σ2 (x) 1p,

where 1p is the matrix all of whose elements are 1, and

σ2 (x) =

(
1

2π |B1|2
∫ ∞
−∞
|t|2β|φK(t)|2dt

)p−1 (
1

2π |B1|2
∫ ∞
−∞
|t|2(β+1)|φK(t)|2dt

)
g(x),

where B1 is defined in Lemma 4.

4.3 Special Case of the Main Result

We choose K Gaussian. The distribution of ε is the exponential distribution h(x) = λe−λx, then its characteristic

function is: φh(t) = λ
λ−it and (φh(t))−1 = 1 − i

λ
t. Here β = 2. Let

x =
(

x1

x2

)
, ∇ fn(x) =

(
gn,1(x)

gn,2(x)

)
First:

I1 =

∫ ∞
−∞

(
1 − it
λhn

)
e−itxe−

t2
2 dt =

√
2πe−

x2

2

(
1 +

x
λhn

)
.

Second:

I2 =

∫ ∞
−∞

(−it)
(
1 − it
λhn

)
e−itxe−

t2
2 dt =

√
2πe−

x2

2

(
x − x2 − 1

λhn

)
.
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Then

gn,1(x) =
1

2π

⎛⎜⎜⎜⎜⎝√2πe−
x2
1
2

⎛⎜⎜⎜⎜⎝x1 −
x2

1 − 1

λhn

⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠ (√2πe−
x2
2
2

(
1 +

x2

λhn

))
= e−

1
2 (x2

1
+x2

2)
⎛⎜⎜⎜⎜⎝x1 −

x2
1 − 1

λhn

⎞⎟⎟⎟⎟⎠ (1 + x2

λhn

)
.

and

gn,2(x) = e−
1
2 (x2

1
+x2

2)
⎛⎜⎜⎜⎜⎝x2 −

x2
2 − 1

λhn

⎞⎟⎟⎟⎟⎠ (1 + x1

λhn

)
5. Proof of Main Results

5.1 Proof of Proposition 3

We have from (3):

E∇ f̂n(x) =
1

(n − p)hp+1
n

n−p∑
j=0

E
[
gn

(
x − Y j

hn

)]
and

E
[
gn

(
x − Y j

hn

)]
=

(
E
[
gn,1

(
x − Y j

hn

)]
, ..., E

[
gn,p

(
x − Y j

hn

)])
,

hence

E
[
gn,k

(
x − Y j

hn

)]
=

1

(2π)p

∫
Rp

(−itk)e−itxE(eitY j )
φK(t)
φh(t/hn)

dt

=
1

hp+1
n (2π)p

∫
Rp

(−itk)e−itxφ f (t)φK(hnt)dt.

We use E(φ̂n(t)) = φ(t).

Now, set f
′
k (x) =

∂ f
∂xk

, then we can write

hp+1
n E

[
gn,k

(
x − Y j

hn

)]
=

1

(2π)p

∫
Rp

e−itxφ f ′k
(t)φK(hnt)dt

= f
′
k (x) ∗ 1

hn
K(

x
hn

) =

∫
Rp

1

hn
K(

u
hn

) f
′
k (x − u)du,

where ∗ is the convolution operator. Then, applying Lemma 3, we get

lim
n→∞ hp+1

n E
[
gn,k

(
x − Y j

hn

)]
= f

′
k (x) =

∂ f
∂xk

(x).

We conclude that E∇ f̂n(x)→ ∇ f (x).

5.2 Proof of Theorem 4

var∇ f̂n(x) =
1

n − p

n−p∑
l=−(n−p)

(
1 − |l|

n − p

)
cov
⎛⎜⎜⎜⎜⎝ 1

hp+1
n

gn

(
x − Y0

hn

)
,

1

hp+1
n

gn

(
x − Y|l|

hn

)⎞⎟⎟⎟⎟⎠
= In,0 + 2

n−p∑
l=1

(
1 − l

n − p

)
In,l.

First part

In,0 =
1

n − p
E
⎛⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎝ 1

hp+1
n

gn

(
x − Y0

hn

)⎞⎟⎟⎟⎟⎠t ⎛⎜⎜⎜⎜⎝ 1

hp+1
n

gn

(
x − Y0

hn

)⎞⎟⎟⎟⎟⎠⎞⎟⎟⎟⎟⎠ + O(
1

n
).
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i)

E
(
g2

n,k

(
x − Y0

hn

))
=

∫
Rp

g2
n,k

(
x − u

hn

)
g(u)du

= hp+1
n

∫
Rp
|gn,k(u)|2g(x − uhn)du

= hp+1
n

(
g(x)

∫
Rp
|gn,k(u)|2du + o(1)

)
and we conclude using Lemma 4.

ii)

E
(
gn,k

(
x − Y0

hn

)
gn,k′

(
x − Y0

hn

))
=

∫
Rp

gn,k

(
x − u

hn

)
gn,k′

(
x − u

hn

)
g(u)du

= hp+1
n

∫
Rp

gn,k(u)gn,k′ (u)g(x − uhn)du

= hp+1
n

(
g(x)

∫
Rp

gn,k(u)gn,k′ (u)du + o(1)

)
.

We can write: ∫
Rp

gn,k(u)gn,k′ (u)du �
∣∣∣∣∣∫

Rp
gn,k(u)gn,k′ (u)du

∣∣∣∣∣
�
∫
Rp

∣∣∣gn,k(u)gn,k′ (u)
∣∣∣ du =‖ gn,k × gn,k′ ‖21 .

By Cauchy-Schwarz’s inequality, we get ‖ gn,k × gn,k′ ‖1�
√‖ gn,k ‖2

√‖ gn,k′ ‖2,

thus ∫
Rp

gn,k(u)gn,k′ (u)du �
[∫

Rp

∣∣∣gn,k(x)
∣∣∣2 dx
]
×
[∫

Rp

∣∣∣gn,k′ (x)
∣∣∣2 dx
]
.

We deduce

h2βp
n

∫
Rp

∣∣∣gn,k(x)
∣∣∣2 dx→ Dp−1

1
D2 (4)

and

h2βp
n

∫
Rp

∣∣∣gn,k′ (x)
∣∣∣2 dx→ Dp−1

1
D2 (5)

in view of Lemma 4.

1

hp+1
n

∫
Rp

gn,k(u)gn,k′ (u)du � 1

hp+1
n

×
√[

h2βp
n

∫
Rp

∣∣∣gn,k(x)
∣∣∣2 dx
]

� 1

h2βp+p+1
n

×
√[

h2βp
n

∫
Rp

∣∣∣gn,k(x)
∣∣∣2 dx
]
×
√[

h2βp
n

∫
Rp

∣∣∣gn,k′ (x)
∣∣∣2 dx
]

� 1

h2βp+p+1
n

(
Dp−1

1
D2

)
.

and then

lim
n→∞

(
nh(2β+1)p+1

n E
(
gn,k

(
x − Y0

hn

)
gn,k′

(
x − Y0

hn

)))
=
(
Dp−1

1
D2

)
g(x).

i) and ii) gives

lim
n→∞ nhp(2β+1)+1

n In,0 = Dp−1

1
D2g(x)1p.

Second part

S =
n−p∑
j=1

(
1 − l

n − p

)
In,l ≤

p−1∑
j=1

|In,l| +
πn∑
j=p

|In,l| +
n−p∑

j=πn+1

|In,l| = S 1 + S 2 + S 3

30



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 1; 2014

with

In,l =
1

(n − p)h2p+2
n

cov
(
gn

(
x − Y0

hn

)
, gn

(
x − Yl

hn

))
.

Contribution of S 1.

Assume that the vector Y0 = (Y1, ..., Yp) and Y j = (Yj+1, ..., Yj+p) have a joint probability density g(u, v) of order

2p for j ≥ p and let g(u) be the probability density of Y0. Define the dependence index of the process (Yi) by

dp,n = supu,v
1

n

n∑
j=p

|g(u, v) − g(u)g(v)|.

Assume that

supu,v, j≥p|g(u, v) − g(u)g(v)| ≤ M2, (6)

for some M2 < ∞.

For 1 ≤ l ≤ p − 1, we note that the vectors Y0 = (Y1, ..., Yp) and Yl = (Yl+1, ..., Yl+p) overlap.

Let g(u
′
, u
′′
, u
′′′

) be the joint probability density of (Y1, ...Yl+p) with u
′
, u
′′
, u
′′′

having dimensions l, p − l and l
respectively. Let

E
(
gn,k

(
x − Y0

hn

)
gn,k′

(
x − Yl

hn

))
= hp+l+3

n

∫
Rp+l

gn,k(u
′
, u
′′
)gn,k′ (u

′′
, u
′′′

)

[g(x
′ − hnu

′
, x
′′ − hnu

′′
, x
′′′ − hnu

′′′
) −

g(x
′ − hnu

′
, x
′′ − hnu

′′
).g(x

′′ − hnu
′′
, x
′′′ − hnu

′′′
)]du

′
du

′′
du

′′′
.

We deduce then

E
(
gn,k

(
x − Y0

hn

)
gn,k′

(
x − Yl

hn

))
≤ hp+l+3

n M2

∫
Rp+l

gn,k(u
′
, u
′′
)gn,k′ (u

′′
, u
′′′

)du
′
du

′′
du

′′′

≤ hp+l+3
n M2

[∫ ∞
−∞
|Whn (x)|2dx

]p−l−1 [∫ ∞
−∞
|W

′

hn
(x)|2dx

]
[∫ ∞
−∞
|Whn (x)|

]2(l−1) [∫ ∞
−∞
|W

′

hn
(x)|dx

]2
.

It follows by Lemmas 4, 5 and 6; that

E
(
gn,k

(
x − Y0

hn

)
gn,k′

(
x − Yl

hn

))
≤ hp+l+3

n M2h−2βl
n h−2β(p−l)

n .

Consequently

S 1 ≤ O

⎛⎜⎜⎜⎜⎜⎜⎝ p−1∑
l=1

hl+1−(2β+1)p
n

(n − p)

⎞⎟⎟⎟⎟⎟⎟⎠
so that

nh(2β+1)p+1
n S 1 = O

⎛⎜⎜⎜⎜⎜⎜⎝ p−1∑
l=1

hl+2
n

⎞⎟⎟⎟⎟⎟⎟⎠ .
Next we consider S 2.

Let

S 2 =
1

(n − p)h2p+2
n

πn∑
j=p

cov
(
gn

(
x − Y0

hn

)
, gn

(
x − Yl

hn

))
.

for p ≤ l ≤ πn, where πn → ∞ such that πnhp+1
n → 0 as n→ ∞.
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Then

E
(
gn,k

(
x − Y0

hn

)
gn,k′

(
x − Yl

hn

))
=

∫
Rp

∫
Rp

gn,k

(
x − u

hn

)
gn,k′

(
x − v

hn

)
[g(u, v) − g(u)g(v)]dudv

≤ M2

(
hp+1

n

∫
Rp

∣∣∣gn,k(u)
∣∣∣ du
)
.

(
hp+1

n

∫
Rp

∣∣∣gn,k′ (u)
∣∣∣ du
)

≤ M2h2p+2
n h−2βp

n ,

where we used Lemmas 5 and 6 and the inequality (6). Hence we get

S 2 = o
⎛⎜⎜⎜⎜⎝ 1

nh(2β+1)p+1
n

⎞⎟⎟⎟⎟⎠ .
We bound S 3 for associated process and πn + 1 ≤ l ≤ n − p.

We use the following Birkel’s Lemma

Lemma 9 (Birkel, 1988) Let Vi; i ∈ I be a finite collection of associated (PA) random variables. Let I1 and I2 be
subsets of I and let Hi be functions on R

| j|, j = 1, 2; with bounded first order partial derivatives. Then

cov
(
H1 (Vi) ,H2

(
Vj

))
≤
∑

i

∑
j

∥∥∥∥∥∂H1

∂ti

∥∥∥∥∥∞
∥∥∥∥∥∥∂H2

∂t j

∥∥∥∥∥∥∞ cov
(
Vi,Vj

)
,

where ‖‖∞ stands for the sup norm.

In our case Hj are gn. The derivative can be written:
∂gn(x)

∂xl
= (
∂gn,1(x)

∂xl
, ...,

∂gn,p(x)

∂xl
).

For k = 1, ..., p,
∂gn,k(x)

∂xl
=

1

(2π)p

∫
Rp

tktle−itx φK(t)
φh(t/hn)

dt,

which implies ∣∣∣∣∣∂gn,k(x)

∂xl

∣∣∣∣∣ ≤ (∫
Rp−2

φK(t)
φh(t/hn)

dt
) (∫ ∞

−∞
tφK(t)
φh(t/hn)

dt
)2
.

Hence, applying Lemma 5 and 6, we get

hβp
n

∣∣∣∣∣∂gn,k(x)

∂xl

∣∣∣∣∣ ≤ Const,

and

hβp
n

∣∣∣∣∣∂gn(x)

∂xl

∣∣∣∣∣ ≤ const.

For associated process (Yj), we apply the Lemma 9 above.∣∣∣∣∣∣cov
(
gn

(
x − Y0

hn

)
, gn

(
x − Y|l|

hn

))∣∣∣∣∣∣ ≤ ∑
i

∑
j

(
Const

hβp
n

)2
cov(Yj+l,Yi)

=
∑

i

∑
j

(
Const

hβp
n

)2
cov(Xj+l, Xi),

where we have used the fact that cov(Yj+l,Yi) = cov(Xj+l, Xi) due to the independence of (Xj) and (ε j) and i.i.d

assumption on the (ε j)
′s. Thus

S 3 ≤ Const

nh2(βp)+2p+2
n

p−1∑
i=−(p−1)

n−p∑
l=πn+1

cl+i

≤ Const

nhp(2β+1)+p+2
n

p−1∑
i=−(p−1)

n−p+i∑
l=πn+i+1

cl

≤ Const

πδnh(2β+1)p+1+(p+1)
n

∞∑
l=πn

lδcl,
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where cl = cov(Xl+1, X1) is the covariance function of (Xi)i.

We now select πn = h
− p+1
δ

n and conclude by condition (A3) that:

nh(2β+1)p+1
n S 3 → 0.

The result of Theorem 4 follows from first and second part.

Theorem 4 and Proposition 3 yield the quadratic mean convergence of the estimate ∇ f̂n(x).

6. Conclusion

We have studied in this paper the problem of estimating the gradient of multivariate probability densities of a

stationary process using observations that are corrupted by additive noise. An important problem in non parametric

estimation consists in estimation of the mode, i.e., the location of an isolated maximum of the unknown density.

Nonparametric estimation of the mode of a density function via kernel methods may be considered when data is

contaminated with associated observations. We can then study the asymptotic properties of these mode estimates.
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