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Abstract

In this study, we define the chi-square mixture of transformed gamma distribution which contained some special

submodels namely, the chi-square mixture of gamma, Weibull, and exponential mixture distributions. Also, the

chi-square mixture of inverse transformed gamma distribution is defined and a class of submodels are deduced,

that is, the chi-square mixture of inverse gamma, inverse Weibull, and inverse exponential mixture distributions.

For both classes, statistical properties are investigated, that is, mean, variance, skewness and kurtosis using rth raw

moment. The limiting behavior and special cases are also given to established relationships.

Keywords: mixture distribution, inverse/transformed gamma distribution, rth raw moments, skewness, kurtosis

1. Introduction

Mixtures models have continued to receive increasing attention over the years from both practical and theoretical

point of view. Fields in which mixture models have been successfully applied include, but not limited to, fisheries

(Fleischman & Burwen, 2003), economics (Alexander, 2004), medicine (Schlattmann, 2009), genetics (Schork et

al., 1996), psychology (Ram & Grimm, 2009), palaeontology (Hunt & Chapman, 2001), archaeology (Dong,

1997), electrophoresis (Melnykov et al., 2011), sedimentology (Sylvester, 2007), geology (Coli et al., 2012),

botany (Gutierrez et al., 1995), agriculture (Xu et al., 2010), zoology (Baral et al., 2013), communication theory

(Yang & Zwolinski, 2011) and engineering (Liu et al., 2008).

One of the oldest known applications of mixture model was that of Karl Pearson. Pearson (1894) successfully fitted

a mixture of two univariate normal densities to the crab forehead breadth data provided by Weldon who speculated

the presence of two new crab subspecies in the sample. Unfortunately, Pearson’s method on moments suffered

some computational difficulties where it involved solving of a ninth degree polynomial equation–an undaunted

task at that time.

Mixture distribution occurs naturally when the population consists of several homogeneous subpopulations. In a

finite mixture distribution, the density function is a convex combination of probability density functions (pdf) of

the form pi(x|θ) which can be represented as follows:

m(x|Θ) =

k∑
i=1

πi pi(x|θ), (1)

where 0 ≤ πi ≤ 1 for i = 1, 2, . . . , k and
∑k

i=1 πi = 1. The pdf pi(x|θ), called a component density, is the pdf of

the ith component for i = 1, 2, . . . , n associated with πi called a mixing weight. Moreover, Θ defines the set of

parameter given as Θ = {π1, π2, . . . πn, θ1, θ2, . . . , θk}.
Finite mixture distribution has been extensively studied (Böhning, 2007). An infinite analogue can also be for-

mulated. If the parameter space Θ is absolutely continuous random variable having pdf g(θ), then we have a

continuous mixture of densities f (x|θ) with weight function g(θ) of the following form:

m(x|Θ) =

∫
Θ

f (x|θ)g(θ)d(θ). (2)
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Recently, studies on infinite mixture distributions have surfaced (Adnan & Kiser, 2012; Rezaul et al., 2011). In

this article, we define the chi-square mixture distributions of transformed gamma and inverse transformed gamma

distributions. This leads to a new family of chi-square mixture distribution that generalize the classical trans-

formed/inverse transformed gamma family (Panjer, 2006). Furthermore, this study provides an analogue to similar

studies done by Roy et al. (2005, 2006a, 2006b).

The rest of this article is organized as follows. Section 2 of the paper presents the mixtures of transformed Gamma

family, mean, variance, skewness and kurtosis are obtained. Section 3 gives the mixtures of inverse transformed

gamma family. Similary, mean, variance, skewness and kurtosis are obtained. The results and conclusions are

given in Section 4.

2. Mixture of Transformed Gamma Family

This section presents the mixing of chi-square distribution with the transformed gamma family. Here, transformed

gamma, Weibul, gamma and exponential distributions were considered as weight function. Relationships of the

resulting mixture distributions are also shown. We have the following results.

Theorem 2.1 The chi-square mixture of exponential function given by

f (x; v, θ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

1

θ + χ2
e−

x
θ+χ2 dχ2, 0 < x < ∞ (3)

where θ and v are positive constants is a probability density function.

Proof. Function (3) is nonnegative, since the integrand is a product of two nonnegative functions, namely the

chi-square and exponential distribution, and so integrating over [0,∞] becomes nonnegative.

It is sufficient to show that

∫ ∞

−∞
f (x; v, θ)dx = 1. Hence,

∫ ∞

−∞
f (x; v, θ)dx =

∫ ∞

0

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

1

θ + χ2
e−

x
θ+χ2 dχ2dx

= lim
a→∞

∫ a

0

⎡⎢⎢⎢⎢⎢⎢⎣ lim
b→∞

∫ b

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

1

θ + χ2
e−

x
θ+χ2 dx

⎤⎥⎥⎥⎥⎥⎥⎦ dχ2

= lim
a→∞

∫ a

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

[
lim
b→∞

∫ b

0

1

θ + χ2
e−

x
θ+χ2 dx

]
dχ2

= 1,

where Γ(·) is the usual gamma function. The proof of Theorem 1 is now complete. �
Definition 2.1 A random variable X is said to have a chi-square mixture of exponential distribution with v degrees

of freedom and parameter θ if its density is given by function (3) above.

We now have the following theorem.

Theorem 2.2 Let X be a random variable which follows a chi-square mixture of exponential distribution with v
degrees of freedom and parameter θ. Then the rth raw moment about the origin is given by

μ′r = Γ(r + 1)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)
· (θ + χ2)rdχ2,

for r > −1. Furthermore, the mean is
θ + v,

and the variance is
(θ + v)2 + 4v,

The skewness, β1, is
[2θ3 + 2v3 + 6θv2 + 24v2 + 6θ2v + 24θv + 48v]2

[θ2 + 2θv + v2 + 4v]3
.
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and the kurtosis, β2, is

9θ4 + 9v4 + 36θv3 + 168v3 + 54θ2v2 + 336θv2 + 864v2 + 36θ3v + 168θ2v + 576θv + 1152v
[θ2 + 2θv + v2 + 4v]2

.

Proof. Let X be a random variable with density of chi-square mixture of exponential distribution. The rth raw

moment, μ′r, is given by

μ′r =
∫ ∞

0

∫ ∞

0

e− χ
2

2
χ2

v
2
−1

2
v
2 Γ( v

2
)
· (θ + χ2)−1e−

x
(θ+χ2) xrdxdχ2

= Γ(r + 1)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)
· (θ + χ2)rdχ2.

(4)

So, if r = 1, the mean, μ′1, is equal to

θ + v. (5)

To solve the variance, let r = 2 so that from Equation (4) we have

μ′2 = 2 (θ + v)2 + 4v. (6)

Therefore the variance, μ2, is

(θ + v)2 + 4v. (7)

In computing for skewness, β1, given as:
μ2

3

μ3
2

(8)

we need to obtain the third central moment, μ3, as given by the formula:

μ′3 − 3μ′2μ
′
1 + 2(μ′1)3. (9)

So for r = 3, Equation (4) yields

μ′3 = Γ(4)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)
· (θ + χ2)3dχ2

= 3
(
θ3 + 6θ2

( v
2

)
+ 12θ

( v
2

) ( v
2
+ 1

)
+ 8

( v
2
+ 2

) ( v
2
+ 1

) ( v
2

))

= 3θ3 + 9θ2v + 9θv2 + 18θv + 3v3 + 18v2 + 24v.

Hence,

μ′3 = 3θ3 + 9θ2v + 9θv2 + 18θv + 3v3 + 18v2 + 24v. (10)

By substituting Equation (5), (6) and (10) to Equation (9) we have

μ3 = 6v2 + 24v + 6θv −
(
θ3 + 3θ2v + 9θv + 7v3

)
. (11)

Therefore, by substituting Equations (7) and (11) to Equation (8) yields the following expression for skewness:

[
6v2 + 24v + 6θv −

(
θ3 + 3θ2v + 9θv + 7v3

)]2

(
θ2 + 2θv + 3v2 + 4v

)3
. (12)

Finally, we compute for kurtosis, β2, as given by the formula:

μ4

μ2
2

. (13)

First, we need the fourth central moment, μ4, given by

μ′4 − 4μ′1μ
′
3 + 6μ′2μ

′
1

2 − 3μ′1
4. (14)
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We proceed by letting r = 4, then Equation (4) becomes

μ′4 = 4θ4 + 16θ3v + 24θ2v2 + 48θ2v + 16θv3 + 96θv2 + 128θv + 4v4 + 48v3 + 176v2 + 192v. (15)

Consequently,

μ4 = θ
4 + 4θ3v + 18θ2v2 + 28θv3 − 48θv2 + 32θv + 13v4 + 12v2 + 192v. (16)

By substituting Equations (16) and (7) to Equation (13), we have the following expression for coefficient of kurto-

sis:

θ4 + 4θ3v + 18θ2v2 + 28θv3 − 48θv2 + 32θv + 13v4 + 12v2 + 192v(
θ2 + 2θv + 3v2 + 4v

)2
.

The proof is now complete. �
As special case of this theorem: When v → 0, the limiting distribution of chi-square mixture of exponential is the

exponential distribution with parameter θ.

In the succeding results, proofs are omitted as it follow similar idea in the preceding theorem.

Theorem 2.3 The chi-square mixture of Weibull function defined by

f (x; v, θ, τ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

τ( x
θ+χ2 )τe−( x

θ+χ2
)τ

x
dχ2, 0 < x < ∞ (17)

where parameters θ, τ and v are positive real numbers is a probability density function.

Definition 2.2 A random variable X is said to have a chi-square mixture of Weibull distribution with parameters

θ, τ and v if it has a density function given by (17) above.

We now have the following result.

Theorem 2.4 Let X be a random variable which follows a chi-square mixture of Weibull distribution with param-
eters v, θ and τ. Then the rth raw moment about the origin is given by,

μ′r = E[Xr] = Γ(1 +
r
τ

)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)rdχ2,

for τ > −r. Furthermore the mean, μ′1, is

Γ(1 +
1

τ
)(θ + v)

variance, σ2, is [
(θ + v)2 + 2v

]
Γ(1 +

2

τ
) − μ′1

while the skewness is

β1 =

(
Γ(1 + 3

τ
)((θ + v)3 + 2v(3θ + 3v + 4)) − 3μ′1σ

2 + 2μ′1
3
)2

σ6

and the kurtosis

β2 =
Γ(1 + 4

τ
)
(
(θ + v)4 + 12v(θ + v)2 + 4v(8θ + 11v + 12)

)
− 4β1

1/2μ′1σ
3 − 6μ′1

2σ2 + 6μ′1
3 + 5μ′1

4

σ4
.

Some special cases of chi-square mixture of Weibull distribution:

(1) When τ = 1, the chi-square mixture of Weibull distribution reduces to chi-square mixture of exponential

distribution with parameters v and θ.

(2) When τ = 1, in addition as v → 0, the limiting distribution of chi-square mixture of Weibull distribution is the

exponential distribution with parameter θ.

(3) The limit of a Chi-square mixture of Weibull distribution as v → 0 is the Weibull distribution with parameters

τ and θ.
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Theorem 2.5 The chi-square mixture of gamma function given by

f (x; v, θ, α) =

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

( x
θ+χ2 )αe−( x

θ+χ2
)

xΓ(α)
dχ2, 0 < x < ∞ (18)

where v, θ and α are positive real numbers is a probability density function.

Definition 2.3 A random variable X is said to have a chi-square mixture of gamma distribution with v degrees of

freedom and parameters θ, α if it has a probability density function given by (18) above.

Theorem 2.6 Let X be a random variable that follows a Chi-square mixture of gamma distribution with parameters
θ, τ and v > 0. Then the rth raw moment about the origin is given by

μ′r = E[Xr] =
Γ(α + r)

Γ(α)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)rdχ2,

for r > −α. Then the mean, μ′1, is
α(θ + v),

variance, σ2, is
μ′1(θ + v) + 2v(α + 1)α

and the skewness, β1, is
(
(α3 + 3α2 + 2α)

[
(θ + v)3 + 2v(3θ + 3v + 4)

]
− 3(α + 1)[μ′1

2(θ + v) + 2μ′1αv] + 2μ′1
3
)2

σ6
.

Finally the kurtosis, β2, is equal to(
Γ(α + 4)

Γ(α)

(
(θ + v)4 + 12v(θ + v)2 + 4v(8θ + 11v + 12)

)

− 4μ′1
(Γ(α + 3)

Γ(α)
((θ + v)3 + 2v(3θ + 3v + 4))

)

+ 6μ′1
2
(Γ(α + 2)

Γ(α)

[
(θ + v)2 + 2v

] )
− 3μ′1

4

)/
σ4.

Some special cases of chi-square mixture of gamma distribution:

(1) When τ = 1, the chi-square mixture of gamma distribution reduces to chi-square mixture of exponential

distribution with parameters v and θ.

(2) When τ = 1, in addition as v → 0, the limiting distribution of a Chi-square mixture of gamma distribution is

the exponential distribution with parameter θ.

(3) The limit of Chi-square mixture of gamma distribution as v → 0 is the gamma distribution with parameters α
and θ.

Theorem 2.7 The chi-square mixture of transformed gamma function given by

f (x; v, θ, α, τ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

τ( x
θ+χ2 )ταe−( x

θ+χ2
)τ

xΓ(α)
dχ2, 0 < x < ∞ (19)

where θ, τ, α, and v all are positive real numbers is a probability density function.

Definition 2.4 A random variable X is said to have a chi-square mixture of transformed gamma distribution with v
degrees of freedom and parameters θ, τ, and α if its probability density function is given by function (19) above.

The following result is a generalization of the previous results.

Theorem 2.8 Let X be a random variable that follows a chi-square mixture of transformed gamma distribution
with v degrees of freedom and positive parameters α, τ and θ. Then the rth raw moment about the origin is given
by

μ′r = E[Xr] =
Γ(α + r

τ
)

Γ(α)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)rdχ2
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for α > − r
τ
. Thus the mean, μ′1, is

Γ
(
α + 1

τ

)
Γ(α)

(θ + v)

while the variance, σ2,

(θ + v)2

Γ(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Γ(α +
2

τ
) −

[
Γ(α + 1

τ
)
]2

Γ(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
2vΓ(α + 2

τ
)

Γ(α)
,

the skewness, β1, is

Γ(α)

(
Γ(α +

3

τ
)
(
(θ + v)3 + 6v(θ + v) + 8v

)
− 3μ1Γ(α +

2

τ
)
[
(θ + v)2 + 2v

]
+ 2μ2

1

Γ(α +
1

τ
)(θ + v)

)2/(
(θ + v)2

[
Γ(α +

2

τ
) −

[
Γ(α + 1

τ
)
]2

Γ(α)

]
+ 2vΓ(α +

2

τ
)

)3

while the kurtosis, β2, is

Γ(α)

[
Γ(α +

4

τ
)
(
(θ + v)4 + 12v(θ + v)2 + 4v(8θ + 11v + 12)

)
− 4μ1

(
Γ(α +

3

τ
)
(
(θ + v)3 + 2v(3θ + 3v + 4)

))
+ 6μ2

1

(
Γ(α +

2

τ
)
[
(θ + v)2 + 2v

])

− 3μ3
1Γ(α +

1

τ
)(θ + v)

]/(
(θ + v)2

[
Γ(α +

2

τ
) −

[
Γ(α + 1

τ
)
]2

Γ(α)

]
+ 2vΓ(α +

2

τ
)

)2

.

Some special cases of chi-square mixture of transformed gamma distribution:

(1) When α = 1, the chi-square mixture of transformed gamma distribution reduces to chi-square mixture of

Weibull distribution with parameters v, τ and θ. The limit of chi-square mixture of transformed gamma distribution

as v→ 0 is the transformed gamma distribution.

(2) When τ = 1, the chi-square mixture of transformed gamma distribution reduces to Chi-square mixture of

gamma distribution with parameters v, α, and θ.

(3) When α = τ = 1, the chi-square mixture of transformed gamma distribution reduces to chi-square mixture of

exponential distribution with parameters v and θ.

3. Mixtures of Inverse Transformed Gamma Family

Proofs are omitted whenever they are similar to proofs given in last section.

Theorem 3.1 The chi-square mixture of inverse exponential distribution function given by

f (x; v, θ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)
e−

(θ+χ2)
x

x2
dχ2 0 < x < ∞, (20)

where v and θ are positive real numbers is a probability density function.

Definition 3.1 A random variable X is defined to have a chi-square mixture of inverse exponential distribution with

v degrees of freedom and parameter θ if its probability density function is given by function (20) above.

Theorem 3.2 Let X be a random variable which follows a chi-square mixture of inverse exponential distribution
with v degrees of freedom and parameter θ. Then the rth raw moment about the origin is given by,

μ′r = Γ(1 − r)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)
· (θ + χ2)rdχ2,

which exist for r > 1.

Hence, a chi-square mixture of inverse exponential has infinite mean (and higher moments), indicating a heavy

tail, which is also true for its unmixed distribution, the inverse exponential distribution.

6
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Note that the the inverse exponential distribution with parameter θ is the limiting distribution of chi-square mixture

of inverse exponential distribution as v→ 0.

Theorem 3.3 The chi-square mixture of inverse Weibull distribution function given by

f (x; v, θ, τ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

τ( θ+χ
2

x )τe−(
θ+χ2

x )τ

x
dχ2, 0 < x < ∞ (21)

where v, θ, and τ are positive real numbers is a probability density function.

Definition 3.2 A random variable X is said to have a chi-square mixture of inverse Weibull distribution with v
degrees of freedom and parameters θ and τ if its probability density function is given by function (21) above.

Theorem 3.4 Let X be a random variable which follows a chi-square mixture of inverse Weibull distribution with
v degrees of freedom and parameters τ, θ. Then the rth raw moment about the origin is given by

μ′r = E[Xr] = Γ(1 − r
τ

)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)rdχ2, (22)

for τ > r. Hence the mean is given by

μ′1 = Γ(1 −
1

τ
)(θ + v) for τ > 1,

and the variance

σ2 = (θ + v)2

⎡⎢⎢⎢⎢⎢⎣Γ(1 − 2

τ
) −

(
Γ(1 − 1

τ
)

)2
⎤⎥⎥⎥⎥⎥⎦ + 2vΓ(1 − 2

τ
) for τ > 2.

Furthermore the skewness, β1, is

(
Γ(1 − 3

τ
)
(
(θ + v)3 + 2v(3θ + 3v + 4)

)
− 3μ1Γ(1 − 2

τ
)
[
(θ + v)2 + 2v

]
+ 2μ3

1

)2

σ6
for τ > 3

while the kurtosis, β2, is

Γ(1 − 4

τ
)

(
(θ + v)4 + 12v(θ + v)2 + 4v(8θ + 11v + 12)

)

− 4μ′1

(
Γ(1 − 3

τ
)
(
(θ + v)3 + 2v(3θ + 3v + 4)

))

+ 6μ′1
2

(
Γ(1 − 2

τ
)
[
(θ + v)2 + 2v

])
− 3μ′1

4

/
σ4 for τ > 4.

Some special cases of chi-square mixture of inverse Weibull distribution:

(1) When τ = 1, the chi-square mixture of inverse Weibull distribution reduces to chi-square mixture of inverse

exponential distribution with parameters v and θ.

(2) The limit of chi-square mixture of inverse Weibull distribution as v→ 0 is the inverse Wiebull distribution with

parameters τ and θ.

Theorem 3.5 The chi-square mixture of inverse gamma distribution function given by

f (x; v, α, θ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(
θ+χ2

x )αe−(
θ+χ2

x )

xΓ(α)
dχ2, 0 < χ2 < ∞ (23)

where α, θ, v are positive real numbers is a probability density function.

Definition 3.3 A random variable X is said to have a chi-square mixture of inverse gamma distribution with v
degrees of freedom and parameters α, θ if its probability density function is given by function (23) above.

7
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Theorem 3.6 Let X follows a chi-square mixture of inverse gamma distribution with parameters α, θ and v degrees
of freedom. Then the rth raw moment about the origin is given by

μ′r =
Γ(α − r)

Γ(α)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)rdχ2, for α > r.

Then the mean and variance are respectively given by

μ′1 =
(θ + v)

α − 1
,

and

σ2 = (θ + v)2
(

1 + 2v(α − 1)

(α − 1)2(α − 2)

)
.

Also, the skewness and kurtosis are respectively given by

β1 =
16

(
(θ + v)2 + 3v(α − 1)

)2
(α − 2)

(α − 3)(θ + v)4(1 + 2v(α − 1))3

and

β2 =

(
(θ + v)4 + 12v(θ + v)2 + 4v(8θ + 11v + 12) − 4μ′1(α − 4)((θ + v)3 + 2v(3θ + 3v + 4))

+ 6μ′1
2
(α − 3)(α − 4)((θ + v)2 + 2v) − 3μ′1

4
(α − 1)(α − 2)(α − 3)(α − 4)

)/ (
(α − 1)(α − 2)(α − 3)(α − 4)σ4

)
.

Some special cases of chi-square mixture of inverse gamma distribution:

(1) When α = 1, the chi-square mixture of inverse gamma distribution reduces to chi-square mixture of inverse

exponential distribution with parameters v and θ.

(2) The limit of chi-square mixture of inverse gamma distribution, as v→ 0, is the inverse gamma distribution with

parameters α and θ.

Theorem 3.7 The chi-square mixture of inversed transformed gamma distribution function given by

f (x; v, θ, α, τ) =
∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

τ( θ+χ
2

x )ταe−(
θ+χ2

x )τ

xΓ(α)
dχ2, 0 < x < ∞ (24)

where θ, τ, α, and v all are positive real numbers is a probability density function.

Definition 3.4 A random variable X is said to have a chi-square mixture of inversed transformed gamma distribu-

tion with v degrees of freedom and parameters θ, τ, and α if its probability density function is given by function

(24) above.

We have the following result.

Theorem 3.8 Let X follows a chi-square mixture of inverse transformed gamma distribution with v degrees of
freedom and parameters τ, θ and α. Then the rth raw moment about the origin is given by

μ′r = E[Xr] =

Γ

(
α − r

τ

)

Γ(α)

∫ ∞

0

e−
χ2

2 (χ2)
v
2
−1

2
v
2 Γ( v

2
)

(θ + χ2)rdχ2

for ατ > r. Therefore, the mean and the variance are respectively given by

μ′1 =
Γ

(
α − 1

τ

)
Γ(α)

(θ + v) for α >
1

τ
,

8
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and

σ2 =
(θ + v)2

Γ(α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Γ
(
α − 2

τ

)
−

[
Γ

(
α − 1

τ

)]2

Γ(α)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
2vΓ

(
α − 2

τ

)
Γ(α)

for α >
2

τ
,

Similary, the skewness and the kurtosis is also respectively given by

β1 =

( Γ(α− 3
τ )

Γ(α)
((θ + v)3 + 2v(3θ + 3v + 4)) − 3μ′1

Γ(α− 2
τ )

Γ(α)
[(θ + v)2 + 2v] + 2μ′1

3)2

σ6
for α >

3

τ
,

and

β2 =
Γ

(
α − 4

τ

)
Γ(α)

(
(θ + v)4 + 12v(θ + v)2 + 4v (8θ + 11v + 12)

)
− 4μ′1

⎛⎜⎜⎜⎜⎜⎜⎝
Γ

(
α − 3

τ

)
Γ(α)

((θ + v)3 + 2v(3θ + 3v + 4))

⎞⎟⎟⎟⎟⎟⎟⎠

+ 6μ′1
2

⎛⎜⎜⎜⎜⎜⎜⎝
Γ

(
α − 2

τ

)
Γ(α)

[
(θ + v)2 + 2v

]⎞⎟⎟⎟⎟⎟⎟⎠ − 3μ′1
4

/
σ4 for α >

4

τ
.

(25)

Some special cases of chi-square mixture of inverse transformed gamma distribution:

(1) When α = 1, the chi-square mixture of inverse transformed gamma distribution reduces to chi-square mixture

of inverse Weibull distribution with parameters v, τ and θ.

(2) When τ = 1, chi-square mixture of inverse transformed gamma distribution reduces to chi-square mixture of

inverse gamma distribution with parameters v, α and θ.

(3) When α = τ = 1, chi-square mixture of inverse transformed gamma distribution reduces to chi-square mixture

of inverse exponential distribution with parameters v and θ.

4. Results and Conclusions

In this article, we introduce two models of the chi-square mixture distribution, namely, the chi-square mixture of

transform gamma distribution and the chi-square mixture of inverse transform gamma distribution. These mod-

els being studied are generalization of the classical transform gamma distribution and inverse transform gamma

distribution.

Special submodels of the chi-square mixture of transform gamma distribution, which are deduced and defined,

include the chi-square mixture of gamma, Weibull, and exponential mixture distributions. Various properties

including mean, variance, skewness, kurtosis are derived. Similarly, out of chi-square mixture of inverse transform

gamma distribution, special submodels are also deduced and defined. These are chi-square mixture of inverse

gamma, inverse Weibull, and inverse exponential mixture distributions. Also, same statistical properties of each

distributions are obtained. Finally, relationship of the two families of chi-square distribution are established via

limiting behavior and some special cases.

To best summarized the results, the following figures are helpful for readers understanding. The figure below is for

the class of chi-square mixture of transformed gamma distribution.

Figure 1. Chi-square mixture of transformed gamma distribution

9
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Similarly, for the class of chi-square mixture of inverse transformed gamma distribution, we have the figure below.

Figure 2. Chi-square mixture of inverse transformed gamma distribution
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