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Abstract

Integer-valued random variables arising from the difference of two discrete variables can be seen frequently in

various applications. In this paper, we obtain the distribution and derive the properties of the difference of two

generalised Poisson variables with unequal parameters. This distribution is adopted to model a set of ultra high

frequency (UHF) data relating to FTSE100 index futures using covariates. The unique characteristics of UHF data

have introduced new theoretical and computational challenges to both statistical and financial studies. Such data

consist of discrete-valued observations and unequally spaced time intervals. We also extend the model to its zero

inflated version in order to capture the excess of zeros in the given data set. The analysis is carried out in a Bayesian

framework using Markov Chain Monte Carlo methods. Various model diagnostics and model comparisons were

undertaken which showed that index changes were explained well by the fitted model.

Keywords: generalised Poisson difference distribution, probability generating function, cumulant generating func-

tion, zero inflated, ultra high frequency data

1. Introduction

Integer-valued variables (with negative and positive values) arising from the difference of two discrete variables

can be seen frequently in various applications, among others, in medicine (Karlis & Ntzoufras, 2006), sport (Karlis

& Ntzoufras, 2009), image analysis (Li, Emmerich, Eggermont, Bovenkamp, Bäck, Dijkstra, & Reiber, 2009),

finance and risk analysis (Consul, 1986; Shahtahmassebi, 2011). While, in the literature, there are many techniques

available for dealing with the difference of two continuous or binary variables, methods for modelling integer-

valued variables are rare. Available methods are mainly based on normal approximations of discrete distributions.

However, in most cases normal approximations are not valid, since such data may take on a small range of integers

Karlis and Ntzoufras (2006). Thus, techniques that are based on the distributions defined over both negative and

positive integer values may improve our inference of such variables.

A possible choice for such a distribution may be the Poisson difference (PD) distribution by Irwin (1937) and

Skellam (1946). This distribution has been used for the difference of any two Poisson variables, even when the two

variables are not independent (Karlis & Ntzoufras, 2009). However, there are cases where the PD distribution has

a tendency to underestimate values in the tails (Shahtahmassebi, 2011).

To address the problem of underestimation of the tails, there are several possible alternatives to the PD distribution,

for example the distribution of the difference of two geometric distributions random variables (Kozubowski &

Inusah, 2006) or the distribution of the difference of two generalised Poisson (GP) random variables. In this

paper, we investigate the latter because the distribution of the difference of two GP variables may have a wider

application as it could have longer or shorter tails compared to the PD distribution and also can be considered

as a generalisation of the PD distribution. The distribution of the difference of two GP variables with unequal

parameters is based on the idea of the GP distribution put forward by Consul (1986). The generalised Poisson

difference (GPD) distribution has two additional parameters. We obtain the probability generating function (pgf)

and the cumulant generating function (cgf) of the GPD distribution as well as a recurrence relation for all the

cumulants.

35



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 1; 2014

We show that the GPD distribution with three parameters (Consul, 1986) is a special case of our GPD distribution.

We introduce a zero inflated version of the GPD (ZGPD) distribution and use it for modelling the FTSE100 index

changes from March 25 2008. In order to validate the fitted model, we obtain one-step ahead predictions of the

index change for the next trading day (March 26, 2008). We assess the performance of the posterior predictive

distribution with the probability integral transform (PIT) modified for the case of integer-valued variables (Liesen-

feld, Nolte, & Pohlmeier, 2006). Finally, model comparisons were performed using the deviance information

criterion (DIC) and the Bayes factor (BF). We carried out all our analyses in R. The R functions for evaluating and

generating random samples from the GPD and ZGPD densities were written by the authors.

The remainder of the paper is organised as follows. In Section 2, we introduce the GPD distribution and obtain

its properties. Section 3 provides a graphical presentation of the GPD distribution. Section 4 describes the data

set available for this study and introduces the ZGPD model. The fitting of the ZGPD model using the Bayesian

framework is illustrated in Section 5. Results are presented in Section 6. Finally, we conclude and provide an

overview of possible extensions in Section 7.

2. Generalised Poisson Difference Distribution

Consider the GP distribution (Chandra, Roy, & Ghosh, 2013; Consul & Jain, 1973; Hubert, Lauretto, & Stern,

2009; Lerner, Lone, & Rao, 1997; Srivastava & Chen, 2010; Tuenter, 2006) (following the notation of Consul &

Jain, 1973) of a random variable X with the following probability function

fgp(x|λ, θ) =
⎧⎪⎪⎨⎪⎪⎩
λ(λ + θx)x−1e−λ−θx/x!, x = 0, 1, 2, . . . ,

0, for x > m if θ < 0,
(1)

where λ > 0, max(−1,−λ/m) ≤ θ ≤ 1, and m(≥ 4) is the largest positive integer for which λ + mθ > 0 when

θ < 0. This condition is considered to ensure that there are at least five classes with non-zero probability when

θ is negative. It can be seen that the GP distribution introduces over or underdispersion whether θ is positive or

negative. Also, it reduces to the Poisson distribution when θ = 0; see Consul and Famoye (2006, Chapter 9) and

Nikoloulopoulos and Karlis (2008) for further details.

Now, let us assume X ∼ GPX(λ1, θ1) and Y ∼ GPY (λ2, θ2) are independently distributed. The joint distribution of

X and Y is given by (following the notation of Consul, 1986)

fx,y(x, y|λ1, λ2, θ1, θ2) = fx(x|λ1, θ1) fy(y|λ2, θ2).

Therefore, the distribution of the difference Z = X − Y is

fgpd(Z = X − Y = z) =

∞∑
y=0

fx,y(z + y, y)

=

∞∑
y=0

[
λ1(λ1 + θ1(z + y))z+y−1

]
(z + y)!

e−λ1−θ1(z+y) ×
[
λ2(λ2 + θ2y)y−1

]
y!

e−λ2−θ2y

= e−λ1−λ2−θ1z
∞∑

y=0

(λ1, θ1)z+y (λ2, θ2)y e−(θ1+θ2)y, (2)

for any value of z ∈ Z, where

(λ, θ)x =
λ(λ + xθ)x−1

x!
.

We set lower limits for θ1 and θ2 to ensure that there are at least five classes of non-zero probabilities at both tails

when θ1 < 0 or θ2 < 0. Thus, we set

max(−1,−λ1/m1) < θ1 < 1,

max(−1,−λ2/m2) < θ2 < 1,

where m1, m2 ≥ 4 are the largest positive integers in which λ1 + m1θ1 > 0 and λ2 + m2θ2 > 0. Therefore, for any

z > m1 when θ1 < 0, or z < −m2 when θ2 < 0, we have

fgpd(z|λ1, λ2, θ1, θ2) = 0.
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Furthermore, parameters λ1 and θ1 refer to the positive half and parameters λ2 and θ2 to the negative half of the

GPD distribution. It is difficult to simplify the probability function defined in (2) in a compact form. We generally

denote this distribution by GPD(λ1, λ2, θ1, θ2) in which it can have the following particular forms when some of

the parameters are zero.

GPD(λ1, λ2 = 0, θ1, θ2 = 0) = GP(λ1, θ1) =
λ1(λ1 + θ1z)z−1

z!
e−λ1−θ1z,

GPD(λ1 = 0, λ2, θ1 = 0, θ2) =
λ2(λ2 − θ2z)−z−1

(−z)!
e−λ2+θ2z,

GPD(λ1, λ2, θ1 = 0, θ2 = 0) = PD(λ1, λ2) = e−λ1−λ2 (
λ1

λ2

)z/2 I|z|(2
√
λ1λ2).

It can be seen that the third case where θ1 = θ2 = 0 is the Poisson difference distribution (Skellam, 1946).

We obtain the following recurrence relation for the cumulants of the probability distribution of the random variable

Z (Appendix A)

(1 − θ1)(1 − θ2)Lk+1 = (2 − θ2)λ1θ1
∂2Lk

∂θ1∂λ1

+ (2 − θ2)λ1

∂Lk

∂λ1

+ θ1θ2λ2

∂2Lk

∂θ2∂λ2

+ θ1λ2

∂Lk

∂λ2

−θ1 ∂Lk

∂θ1
− θ2 ∂Lk

∂θ2
− Lk,

(3)

where L1 = [λ1/(1 − θ1)] − [λ2/(1 − θ2)] (mean of the GPD distribution μ = L1). The expression for the other

cumulants of the GPD distribution can be obtained by using (3) recursively for k = 1, 2, 3, . . . . For example Lk, for

k = 2, 3, 4, is as follows

L2 =
λ1

(1 − θ1)3
+

λ2

(1 − θ2)3
,

L3 =
λ1 (2θ1 + 1)

(1 − θ1)5
− λ2 (2θ2 + 1)

(1 − θ2)5
,

L4 =
λ1 (1 + 8θ1 + 6θ21)

(1 − θ1)7
+
λ2 (1 + 8θ2 + 6θ22)

(1 − θ2)7
.

where L2 = σ
2, the variance of the GPD distribution. Furthermore, the the coefficients of skewness and kurtosis

for the random variable Z are obtained as follows

β1 =

[
λ1(1 − θ2)5(1 + 2θ1)

]
−
[
λ2(1 − θ1)5(1 + 2θ2)

]
[
λ1(1 − θ2)3 + λ2(1 − θ1)3

]3/2
[(1 − θ1)(1 − θ2)]1/2

,

β2 =
λ1(1 + 8θ1 + 6θ21)(1 − θ2)7 + λ2(1 + 8θ2 + 6θ22)(1 − θ1)7

[
λ1(1 − θ2)3 + λ2(1 − θ1)3

]2
(1 − θ1)(1 − θ2)

.

By having θ1 = θ2, it can be seen that the GPD distribution of Consul (1986) is a special case of the GPD

distribution we introduced here.

It can be seen that the GPD distribution may arise as the difference of any two discrete variables which do not

necessarily follow the GP distribution. To see this consider X1 and X2 follow GP distribution and X0 follow any

discrete distribution. Let Y1 = X1 + X0 and Y2 = X2 + X0. If we now take the difference Y1 − Y2 = X1 − X2, we can

clearly see that this is equivalent to the difference of two GP variables (Karlis & Ntzoufras, 2009).

3. Graphical Presentation of GPD Distribution

The behaviour of a random variable Z following the GPD distribution with different values of λ1, λ2, θ1 and θ2 is

illustrated in this section. To study only the effect of θ1 and θ2 on the GPD distribution, first we assume λ1 = λ2 = λ
and change the values of θ1 and θ2 (Figure 1). In general, the distribution has a wider span over Z as either θ1 or θ2
increases. The distribution also becomes short tailed as either of the parameters decrease. For a fixed λ, the sign

of [λ/(1 − θ1)] − [λ/(1 − θ2)] determines the skewness of the GPD distribution.

Now, let us assume θ1 = θ2 = θ. It can be seen from Figure 2 that when λ1 < λ2, the GPD distribution becomes a

skewed distribution to the left. For any given value of θ, when λ1 decreases, the GPD tends to have a shorter tail.
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Since the following type of symmetry holds for the GPD distribution

fgpd(Z = z|λ1, λ2, θ1, θ2) = fgpd(Z = −z|λ2, λ1, θ2, θ1),

therefore for a given value of θ the GPD distribution tends to be skewed to the right when λ1 > λ2 (not illustrated).

Also, for any given values of λ1 and λ2, the form of the GPD is substantially altered by varying θ. Figure 3 suggests

that an increase in the value of θ increases the variance of the distribution and both the tails of the GPD distribution

become long and thin. For any value of λ, when θ becomes smaller most of the mass becomes concentrated at

Z = 0.

Figures 1(a) and 3(b) show the GPD (with θ1 > θ2) and PD (θ1 = θ2) distributions with identical values of

λ1 = λ2 = λ. It can be seen that the GPD distribution has a shorter left tail and a longer right tail in comparison

with the PD distribution.

(a) (b)
Figure 1. The GPD distribution for different values of θ1 and θ2 with λ1 = λ2 = 2

(a) (b)
Figure 2. The GPD distribution for different values of λ1 and λ2 with θ1 = θ2 = 0.4

(a) (b)
Figure 3. The GPD distribution for different values of λ1 = λ2 = λ and θ1 = θ2 = θ
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4. Application

The availability of trade-by-trade (commonly known as ultra high-frequency (UHF)) data on transactions, in the

recent decade, has revolutionised data processing and statistical modelling techniques in finance (McCulloch &

Tsay, 2001; Tsay, 2005; Liesenfeld, Nolte, & Pohlmeier, 2006; Pacurar, 2008). The unique characteristics of

UHF data has introduced new theoretical and computational challenges to both statistical and financial studies

(Liesenfeld, Nolte, & Pohlmeier, 2006; Pacurar, 2008; Tsay, 2005). Such data consist of (i) discrete-valued obser-

vations, as the price change in consecutive transactions is in a multiple of tick size, where one tick is defined as

the minimum amount by which the price of the market can change and (ii) unequally spaced time intervals; see

Tsay (2005, Chapter 5) and Liesenfeld, Nolte, and Pohlmeier (2006) and references therein for further details on

analysing UHF data sets.

4.1 Data: FTSE100 Index Change

Table 1. Relative frequencies of index change in multiples of tick size for 8:00-16:30, March 25, 2008

Number(tick) ≤ -4 -3 -2 -1 0 1 2 3 ≥ 4

Percentage 0.5 1.0 3.6 10.3 69.3 10.0 3.7 1.1 0.5

(a)

(b)

Figure 4. (a) FTSE100 index change futures: the discrete structure of index change process can be observed for

March 25, 2008. (b) One minute of FTSE100 index change presents the main features of UHF data, e.g. price

discreteness and unequally spaced time intervals

Here, we analyse a set of ultra high frequency index changes from FTSE100 index futures (Figure 4(a)) recorded

on March 25, 2008, traded on the London International Financial Futures and Option Exchange (LIFFE). The

normal trading hours of the FTSE100 are from 08:00 until 16:30. Therefore, for simplicity, any transaction beyond

these hours are discarded from the analysis. Thus, the number of transactions on March 25, eliminating 913

transactions, reduces from 46,180 to 45,267 transactions (Figure 4(a)). Furthermore, one tick size is considered to
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be 0.5 FTSE100 index. Each contract is valued as £10 per index point, therefore the value of one tick is £5.

A one-minute index change (10:00:00-10:01:00) is illustrated in Figure 4(b) which shows unequally spaced time

intervals and price discreteness. Table 1 provides the relative frequencies of index change for March 25, 2008. It

shows that the positive and the negative index changes are almost symmetrically distributed around zero. It can be

seen that about 69% of the indices have not changed at all and about 20% had a change of 1 tick size. In addition,

changes of 4 or more ticks are rare (235 and 225 in left and right tails respectively, around 1% in total), in which

the minimum and maximum changes occurred with the size of -18 and 15 ticks, respectively (see Appendix B).

4.2 Model for Index Change

Assume Pti is the index of the most recent transaction at time ti. Here ti is a continuous time, but indices are only

updated when a transaction actually occurs. We may consider the index, Pti , as

Pti = Pt0 +

nti∑
i=1

Zi, (4)

where Nti is the number of transactions recorded in the interval from time 0 up to time ti and Zi is the index change

associated with the ith transaction. In practice many of the Zi’s are zero. Instead of modelling the index process

itself, we model the index change process as a non-stationary and non-linear process (Rydberg & Shephard, 2003).

Here, we assume only the difference of two consecutive indices (an integer-valued variable) is observed and follows

the GPD distribution with the probability mass function given in Equation (2).

In real life applications, count (or integer-valued) data sets, such as dental (Karlis & Ntzoufras, 2006; Mwalili,

2008), spatial (Agarwal, Gelfand, & Citron-Pousty, 2002) and sports (Karlis & Ntzoufras, 2009), may contain an

excess of zero values, i.e. more than what the model would predict. We have already mentioned that in our data set

about 69% of index changes were zero, a figure which may be underestimated by the GPD model. By introducing

an extra probability parameter, a zero-inflated distribution enables us to capture the possible excess of zero values.

4.3 Zero-Inflated Generalised Poisson Difference Model

Zero-inflated distributions are used when there is an excess of zeros, relative to the expected frequency of zeros. In

the current data set about 70% of index changes are zero. Thus, we extend the GPD distribution to its zero inflated

version in order to capture the possible excess of zeros in a given data set. Let Z be a ZGPD random variable with

the following probability function

fzgpd(z|λ1, λ2, θ1, θ2, p) =

⎧⎪⎪⎨⎪⎪⎩
p + (1 − p) fgpd(z | λ1, λ2, θ1, θ2) if z = 0,

(1 − p) fgpd(z | λ1, λ2, θ1, θ2) if z � 0,
(5)

for z ∈ Z, where fgpd(z|λ1, θ1, λ2, θ2) is the GPD probability function given by (2) and p ∈ (0, 1) is the proportion

of extra zeros. According to (5), the first part of the model represents the probability of all zero values, while the

probability of z � 0 is given by the second part. Thus, the mean and the variance of a ZGPD random variable Z are

E(Z) = (1 − p) E(Zgpd), (6)

Var(Z) = (1 − p)
(
Var(Zgpd) + p [E(Zgpd)]2

)
(7)

Further details on the zero inflated distributions can be found in (Johnson, Kotz, & Kemp, 2005) and references

therein. Now let us assume Z, an integer-valued variable, is a response variable which follows the ZGPD(λ1, λ2, θ1,

θ2, p) distribution. We adopt a set up similar to a ZPD model which has been used widely in statistics literature (see

Karlis and Ntzoufras (2009) and references therein). Suppose there are n observations and k explanatory variables.

We define the parameters of the model as follows

log(λ1) = Xα1, (8)

log(λ2) = Xα2, (9)

where λ1 = (λ1,1, . . . , λ1,n)t and λ2 = (λ2,1, . . . , λ2,n)t, X is a matrix of covariates of size n × k and, α1 =

(α1,0, . . . , α1,k)t and α2 = (α2,0, . . . , α2,k)t are vectors of parameters of the ZGPD model. For simplicity, we

assume θ1, θ2 and p are fixed over the whole trading day. Furthermore, we set log(1− θ1) = β1 and log(1− θ2) = β2

in the model which allows us to have parameters over the real line. The advantage of modelling λ1 and λ2 in this
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manner is that it allows us to identify whether each covariate has a similar or different affect on the negative and

the positive values within the same model.

We assess the effect of the the previous index change (zi−1), the volume of the previous transaction (vi−1) and the

time duration between two consecutive transactions (Δti = ti − ti−1), on the current index change. Let us point

out that having Δt allows us to consider unequally spaced time intervals in the model. Thus, the ZGPD model in

Equations (8)-(9), in terms of the above covariates, is

log(λ1,i) = α1,0 + α1,1zi−1 + α1,2 log(vi−1) + α1,3 log(Δti),

log(λ2,i) = α2,0 + α2,1zi−1 + α2,2 log(vi−1) + α2,3 log(Δti).
(10)

5. Bayesian Analysis

5.1 Prior Distribution

To fully specify a Bayesian model, we need to specify the prior distribution. When no information is available,

we propose to use normal prior distributions for the parameters of the ZGPD model with mean equal to zero and

a large variance (e.g. 104) to express prior ignorance. For the proportion of the excess of zeros p, we propose a

uniform distribution defined in the (0, 1) interval.

Nevertheless, the Bayesian approach enables us to incorporate external information to our inference via our prior

distribution. Also, the Bayesian approach can be used sequentially by using the previous posterior distribution as

the current prior distribution which speeds up the process of updating our model. In other words, the information

from the previous day’s transactions can be used to specify our prior distribution (Karlis & Ntzoufras, 2009).

5.2 Posterior Distribution

We obtain our inference based on the posterior distribution of the parameter vector ψ = (α1,α2, β1, β2, p). The

posterior distribution of ψ can be obtained as

fpost(ψ|z) ∝ flike(z|ψ) fprior(ψ),

where the likelihood is given by

L(λ1, λ2, θ1, θ2, p) =

n∏
i=1

(
p I{0} + (1 − p) fgpd(zi|λ1,i, λ2,i, θ1,i, θ2,i)

)

=

n∏
i=1

[
p I{0} + (1 − p) fgpd

(
zi| exp(Xiα1), exp(Xiα2), 1 − exp(β1), 1 − exp(β2)

)]
, (11)

where I{0} is an indicator function and fprior(ψ) is the prior distribution given by

fprior(ψ) = fp(p) fα1
(α1) fα2

(α2) fβ1
(β1) fβ2

(β2).

It can be seen that the posterior distribution is not analytically tractable. Thus, in order to generate samples from

the posterior distribution we use MCMC methods, more specifically, the random walk Metropolis-Hastings (M-H)

algorithm.

5.3 Metropolis Hastings Algorithm

In the M-H algorithm, we choose the normal distribution to be our proposal distribution, such that in the kth

iteration, for k = 1, . . . ,m, where m is the number of iterations, the normal distribution is centred at the values from

the previous iteration, i.e. ψcand ∼ N(ψ(k−1), σ2), for some value of σ2. In addition,

(i) An important point to consider in the case of random walk chains is the choice of the value of the dispersion

parameter of the proposal distribution. A large value for the variance allows a greater variation from the previous

value, but will lead to a very small acceptance rate. On the other hand, a small value of the variance results in

draws which are close to the previous value with a high acceptance rate (Gamerman & Lopes, 2006). The optimal

choice for the variance of the normal proposal is σ2 = c2Σ, where c ≈ 2.4/
√

d (d is the dimension of the parameter

vector) and Σ is the variance-covariance matrix based on the curvature of the posterior at the mode (Tanner, 1998).

(ii) We use the logit transform for p, i.e. we assume y = log (p/(1 − p)) and draw ycand ∼ N(y(k−1), σ2
y).

41



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 3, No. 1; 2014

(iii) Parameters are updated one at the time.

5.4 Simulating Posterior Predictive Distribution

Let Z∗ = (Z∗1 , . . . , Z
∗
s )t be the s values which we wish to predict. The posterior predictive distribution is defined as

fpred(Z∗|z) =

∫
flike(Z∗|ψ) fpost(ψ|z)dψ, (12)

where flike(Z∗|ψ) may be given as

flike(Z∗|ψ) =

s∏
i=1

f (Z∗i |ψ). (13)

Therefore, by obtaining the predictive distribution for each component of index change we may be able to evaluate

the predictive distribution of index change. For this purpose, we add the following steps to the MCMC algorithm.

At the jth iteration, j = 1, . . . ,m, where m is the number MCMC iterations, repeat the following steps, for i =
1, . . . , s:

(i) Obtain

λ∗( j)
1,i = exp(Yiα

( j)
1

) and λ∗( j)
2,i = exp(Yiα

( j)
2

),

θ∗1
( j)
= 1 − exp(β

( j)
1

) and θ∗2
( j)
= 1 − exp(β

( j)
2

),

where λ∗( j)
1,i , λ

∗( j)
2,i ,θ

∗( j)
1,i and θ∗( j)

2,i are the ZGPD model parameters which are obtained by substituting the values of

α( j)
1

, α( j)
2

, β
( j)
1

and β
( j)
2

at the jth iteration in (8)-(9), and Yi is the ith row of a matrix of covariates, Y , of size s × k.

(ii) Draw b( j)
i ∼ Bernoulli(p( j)):

- If b( j)
i = 1, then Z∗( j)

i = 0, otherwise draw

Z∗( j)
i ∼ GPD(λ∗( j)

1,i , λ
∗( j)

2,i , θ
∗( j)

1
, θ∗( j)

2
),

where a random sample from the GPD distribution is obtained as the difference of the two generalised Poisson

random variables.

5.5 Model Checking

The posterior predictive distribution can be used to probabilistically quantify the response variable which enables

us to assess the goodness of fit and overall performance of the model. Therefore, if the predictive distribution, in

general, is in agreement with the observed data, this implies a good fit of the model (Karlis & Ntzoufras, 2009).

However, considering the size of the data and the fact that most of the values (70%) of index change is zero (no

index change), it may be difficult to find suitable diagnostics measures. Here, a randomised version of the PIT is

implemented to measure how well the predictive distribution, especially in the tails, is able to explain the density

of index change for the next trading day (Liesenfeld, Nolte, & Pohlmeier, 2006). In order to use the PIT, we have

to construct intervals based on the cumulative predictive distribution of the ith observed index change and the ith
observed index change minus 1, as follows

uu
i = p̂(Zi ≤ zi) =

zi∑
j=−∞

p̂(Z = j), (14)

ul
i = p̂(Zi ≤ zi − 1) =

zi−1∑
j=−∞

p̂(Z = j), (15)

where zi is the ith index change in the data set from the next trading day and p̂(·) represents the estimated counter-

part of the conditional probability given in Equation (5). It can be seen that Equations (14) and (15) form intervals

with upper and lower limits of uu
i and ul

i, respectively. If the model is correctly specified, random draws from such

intervals will have a standard uniform distribution. To test the idea of the uniformity of the constructed values, one

can use the Kolmogrov-Smirnov (K-S) test or transform the values to the standard normal distribution and plot a

quantile-quantile (Q-Q) plot of the standard normal distribution against the transformed values of random draws.

Here, we used both the K-S test and the Q-Q plot to judge the efficacy of the predicted values.
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Furthermore, in order to decide how much complexity is necessary to fit the data, model comparison is also

undertaken. That is, whether the full model fits the data properly or a model with fewer parameters has a similar

performance. For this purpose, we use the deviance information criterion (DIC):

DIC = pD + D̂avg(z),

where pD = D̂avg(z) − Dθ̂(z) is the effective number of parameters and D̂avg(z) = 1
L
∑L

l=1 D(z, θl), where L is the

number of MCMC iterations after burn-in, is a measure of goodness of fit, in which Dθ̂(z) = D(z, θ̂(z)) where

D(z, θ) = −2 log f (z|θ); see Gelman, Carlin, Stern, and Donald (2003, Chapter 6) for further details. It should be

noted that when comparing the Bayesian models, a smaller value of DIC suggests a better fit.

6. Results

The Gelman and Rubin’s convergence diagnostic with the statistic value of 1.01 suggests that we can consider the

convergence of the MCMC chains after 15000 iterations (Gelman & Rubin, 1992). A further 5000 samples were

collected after burn-in. Table 2 confirms that the model with three covariates and 11 parameters has the lowest

value of DIC.

Table 2. DIC, point-estimate, average deviance and estimated number of parameters for each of five models fitted

to the FTSE100 index change

Model DIC Dθ̂ D̂ave
Intercept 101402.0 101392.7 101397.3
zi−1 101021.7 101008.9 101015.3
zi−1 + log(vi−1) 101021.6 101000.0 101010.8
zi−1 + log(Δti−1) 99949.5 99930.49 99940.0
zi−1 + log(vi−1) + log(Δti) 99944.7 99922.4 99933.6

Table 3. Posterior means, standard deviations and 95% credible intervals of parameters of the ZGPD model based

on the FTSE100 data

Coefficients Mean SD 95% credible intervals

α1,0 -1.407 0.044 -1.492 -1.327

α1,1 -0.137 0.013 -0.164 -0.110

α1,2 -0.026 0.018 -0.060 0.009

α1,3 0.599 0.020 0.558 0.637

θ1 0.228 0.007 0.214 0.241

p 0.171 0.024 0.124 0.215

Coefficients Mean SD 95% credible intervals

α2,0 -1.387 0.044 -1.477 -1.301

α2,1 0.153 0.013 0.129 0.180

α2,2 0.032 0.017 -0.002 0.066

α2,3 0.577 0.020 0.537 0.616

θ2 0.217 0.007 0.203 0.231

The posterior mean, standard deviation and 95% credible intervals of the posterior distribution of model parameters

are provided in Table 3. For none of the model parameters the 95% credible intervals contained zero, indicating

that all three covariates have a significant effect on the index change. It can be seen that the previous index change

has a larger effect on λ2 compared to λ1. This implies that in the next transaction a switch from a positive to a

negative index change is more likely than a switch from a negative to a positive one. We can also see that the effect

of volume on the expected value of the index change tends to be small. Since the posterior means of α1,3 and α2,3

are almost the same, the mean index change at the next transaction, irrespective of when it occurs, is expected to

be zero, assuming all the other variables (previous volume and index change) were fixed. The posterior means of

θ1 and θ2 have values of 0.228 and 0.217 suggesting that the fitted model has longer tails than the corresponding

ZPD model. Finally, the 95% credible interval of p is (0.124, 0.215) which clearly indicates the presence of excess

of zeros and, therefore, the necessity of fitting a zero-inflated model.
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6.1 ZGPD and ZPD Models

In order to show that the ZGPD model with θ1 � θ2 (ZGPDθ1�θ2 ) outperforms a ZGPD with θ1 = θ2 (ZGPDθ1=θ2 )

model and a ZPD model, we use the Bayes factor (BF), which is defined as the ratio of marginal likelihood under

one model to the marginal likelihood under the other model (Gelman, Carlin, Stern, & Donald, 2003, July; Kass

& Raftery, 1995):

BF(M1,M2) =
flike,M1

(z|M1)

flike,M2
(z|M2)

=

∫
fprior,M1

(ψ|M1) flike,M1
(z|ψ,M1) dψ∫

fprior,M2
(ψ′|M2) flike,M2

(z|ψ′,M2) dψ′
, (16)

where ψ and ψ′ are vectors of parameters under the M1 and M2 distributions, respectively and flike,M1
(z|M1) and

flike,M2
(z|M2) are marginal likelihoods under M1 and M2 models. A Bayes factor greater than one ( or log(BF) > 0)

supports M1 model over M2 model. We obtain the BF using the “MCMCpack” package in R.

The logarithm of BF(ZGPDθ1�θ2 , ZGPDθ1=θ2 ) and BF(ZGPDθ1�θ2 , ZPD) are respectively 210.7 and 5538.7 suggest-

ing that the ZGPDθ1�θ2 model performs considerably better than a ZGPDθ1=θ2 and a ZPD model. Finally, Figure 5(a)

provides the Q-Q plot for the values of PIT which suggests that the ZGPD model explains the behaviour of the

data well, especially for the values in the tails. Comparing Figures 5(a) and 5(b), we see that the ZGPD model

outperforms the ZPD model.

(a) (b)

Figure 5. A normal Q-Q plot of random samples drawn from intervals based on the cumulative predictive

distribution (a) ZGPD and (b) ZPD models

7. Conclusion

In this paper we introduced the GPD distribution with four parameters. The GPD distribution can be considered as

an alternative to the PD distribution when the data has longer or shorter tails compared to the PD distribution. We

obtained the pgf and the cgf for the GPD distribution and explored the theoretical characteristics of the distribution.

We established a recurrence relation for all the cumulants of a GPD random variable and derived the first four

cumulants. In addition, we showed that the GPD distribution suggested by Consul (1986) is a special case of our

GPD distribution.

We proposed the ZGPD model and illustrated its application by modelling the FTSE100 index changes in a

Bayesian framework implemented via MCMC methods. The Bayesian estimation of the parameters of interest

were presented in detail. One of our principle interests concerned the distribution of index change for the whole

trading day and we have shown that our approach models the behaviour of index change well. Results from the data

revealed that the previous index change and the time duration between two consecutive transactions significantly

affect the FSTE100 index change. Finally, various model diagnostics were carried out which showed that index

changes were explained well by the fitted ZGPD model. Furthermore, we compared our results with the results

from the ZGPDθ1=θ2 and the ZPD models and showed that the ZGPDθ1�θ2 model fits significantly better than the
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both models, especially in the tails. A possible extension to the ZGPD model is a ZGPD duration model so that it

captures the dynamics of index change and time duration jointly.
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Appendix

A. Cumulant Generating Function

Let us assume ψ(β) =
∑∞

i=1 β
k Lk/k!, where Lk is the kth cumulant of the random variable Z, is the cgf of the GPD

distribution. Using the moment generating function and pgf of the variable Z, we are able to obtain cumulants as

follows. Consider the pgf of the random variable X ∼ G1(u), and Y ∼ G2(u−1) (Consul, & Famoye, 2006), given

by

G1(u) = eλ1(t1−1) and G2(u−1) = eλ2(t2−1),

where t1 = ueθ1(t1−1) and t2 = u−1eθ2(t2−1). Thus, the pgf of a GPD random variable is given by

G(u) = G1(u)G2(u) = eλ1(t1−1)+λ2(t2−1). (A.1)

By replacing t1, t2 and u by eT1 , eT2 and eβ, respectively in (A.1), and taking the logarithm, the cgf, ψ(β), of

Z = X − Y can be obtained as follows,

ψ(β) = λ1(eT1 − 1) + λ2(eT2 − 1) and =
(T1 − β)λ1

θ1
+

(T2 + β)λ2

θ2
, (A.2)

where T1 = β + θ1(eT1 − 1) and T2 = −β + θ2(eT2 − 1). Using the cgf, we are able to obtain cumulants for the GPD

distribution by differentiating w.r.t β, θ1 and θ2.

Let us start by differentiating T1 and T2 with respect to β, θ1 and θ2 as follows

∂T1

∂β
= (1 − θ1eT1 )−1 and θ1

∂T1

∂θ1
= −1 + (1 − θ1)

∂T1

∂β
, (A.3)

∂T2

∂β
= −(1 − θ2eT2 )−1 and θ2

∂T2

∂θ2
= −1 − (1 − θ2)

∂T2

∂β
. (A.4)

Next, we partially differentiate ψ(β) w.r.t β, θ1 and θ2. Furthermore, to simplify ψ(β)/∂β, we can eliminate ∂T1/∂β
using (A.3)-(A.4) and obtain the following equations

θ1
∂ψ(β)

∂θ1
+ ψ(β) = λ1

∂T1

∂θ1
+

(T2 + β)λ2

θ2
, (A.5)

θ2
∂ψ(β)

∂θ2
+ ψ(β) =

(T1 − β)λ1

θ1
+ λ2

∂T2

∂θ2
, (A.6)

(1 − θ1)(1 − θ2)
∂ψ(β)

∂β
− (1 − θ2)λ1 + (1 − θ1)λ2 = (1 − θ2)λ1

∂T1

∂θ1
− (1 − θ1)λ2

∂T2

∂θ2
, (A.7)

then add (A.5), (A.6) and (A.7), which results in

(2 − θ2)λ1

∂T1

∂θ1
+ θ1λ2

∂T2

∂θ2
= θ1
∂ψ(β)

∂θ1
+ θ2
∂ψ(β)

∂θ2
+ (1 − θ1)(1 − θ2)

∂ψ(β)

∂β
+ ψ(β) − (1 − θ2)λ1 + (1 − θ1)λ2. (A.8)

By differentiating ψ(β) in (A.2) w.r.t λ1, then differentiating partially w.r.t θ1 again, we have

∂2ψ(β)

∂θ1∂λ1

= − 1

θ1

∂ψ(β)

∂λ1

+
1

θ1

∂T1

∂θ1
, (A.9)

Similarly, by differentiating ψ(β) in (A.2) w.r.t λ2, then differentiating partially w.r.t θ2 again, we get

∂2ψ(β)

∂θ2∂λ2

= − 1

θ2

∂ψ(β)

∂λ2

+
1

θ2

∂T2

∂θ2
. (A.10)

By substituting (A.9) and (A.10) into (A.8), we eliminate ∂T1/∂θ1 and ∂T2/∂θ2, and obtain the following relation

(2 − θ2)λ1

[
θ1
∂2ψ(β)

∂θ1∂λ1

+
∂ψ(β)

∂λ1

]
+ θ1λ2

[
θ2
∂2ψ(β)

∂θ2∂λ2

+
∂ψ(β)

∂λ2

]
=
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θ1
∂ψ(β)

∂θ1
+ θ2
∂ψ(β)

∂θ2
+ (1 − θ1)(1 − θ2)

∂ψ(β)

∂β
+ ψ(β) − (1 − θ2)λ1 + (1 − θ1)λ2. (A.11)

by replacing the value of the cgf by ψ(β) =
∑

k β
kLk/k! in (A.8), and obtain the following recurrence relation for

the cumulants of the probability distribution of the random variable Z

(1 − θ1)(1 − θ2)Lk+1 = (2 − θ2)λ1θ1
∂2Lk

∂θ1∂λ1

+ (2 − θ2)λ1

∂Lk

∂λ1

+ θ1θ2λ2

∂2Lk

∂θ2∂λ2

+θ1λ2

∂Lk

∂λ2

− θ1 ∂Lk

∂θ1
− θ2 ∂Lk

∂θ2
− Lk, (A.12)

where L1 = [λ1/(1 − θ1)] − [λ2/(1 − θ2)].

B. Table of Frequency of the Tails

Table B1. Frequency distribution of index change in multiples of tick size with values ≤ −4 (or ≥ 4) for 8:00-

16:30, March 25, 2008

Ticks Freq

-18 1

-11 1

-10 1

-9 1

-8 3

-7 11

-6 18

-5 49

-4 150

4 158

5 35

6 16

7 7

8 5

9 1

10 1

12 1

15 1
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